精华内容
下载资源
问答
  • 1、三级管驱动电路设计及使用 三极管,全称应为半导体三极管,也称双极型晶体管、晶体三极管,是一种控制电流的半导体器件。其作用是把微弱信号放大成幅度值较大的电信号,也用作无触点开关。 三极管是半导体基本...

    1、三级管驱动电路设计及使用

    三极管,全称应为半导体三极管,也称双极型晶体管、晶体三极管,是一种控制电流的半导体器件。其作用是把微弱信号放大成幅度值较大的电信号,也用作无触点开关。

    三极管是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区(b),两侧部分是发射区(e)和集电区(c),排列方式有PNP和NPN两种,如下所示:

    1.1、NPN型三极管

    NPN型三极管,适合集电区(c)连接负载到VCC,发射区(e)连接到GND,若此时基区(b)电压高于发射区(e)0.7V,NPN型三极管导通。基区(b)用高电平驱动NPN型三极管导通,低电平驱动截止。

    NPN型三极管驱动电路设计时,基区(b)除了连接限流电阻外,最好连接10~20K下拉电阻到GNG,优点如下所示:

    ①使基区(b)控制电平由高变低时,基区(b)能够更快被拉低,NPN型三极管能够更快更可靠地截止;

    ②系统刚上电时,基极是确定的低电平。

    1.2、PNP型三极管

    PNP型三极管,适合发射区(e)连接到VCC,集电区(c)连接负载到GND,若此时基区(b)电压低于发射区(e)0.7V,NPN型三极管导通。基区(b)用高电平驱动PNP型三极管截止,低电平驱动导通。

    PNP型三极管驱动电路设计时,基区(b)除了连接限流电阻外,最好连接10~20K上拉电阻到VCC,优点如下所示:

    ①使基区(b)控制电平由低变高时,基区(b)能够更快被拉高,PNP型三极管能够更快更可靠地截止;

    ②系统刚上电时,基极是确定的高电平。

    NPN和PNP三极管电流放大满足以下条件:

    三极管直流增益(β/hFE)公式为:β/hFE≈Ic/Ib,故β/hFE=Ic/Ib=57mA/567uA≈100(以上选型的NPN和PNP三极管β/hFE为100);

    Ic≈Ib+Ie,故57mA≈567uA+57mA。

    2、场效应管驱动电路设计及使用
    场效应管是一种利用场效应原理工作的半导体器件,和三极管相比,场效应三极管具有输入阻抗高、噪声低、动态范围大、功耗小及易于集成等特点,可应用于小信号放大、功率放大、信号驱动及振荡器中。

    场效应管可分为结型场效应三极管(JFET)和绝缘栅型场效应三极管(MOSFET) 两种,每种类型又有N沟道和P沟道两种结构。场效应三极管有栅极(gate)、源极(source)和漏极(drain)3个管脚,分别相当于三极管的基区(b)、发射区(e)和集电区(c)。由于场效应三极管的源极S和漏极D是对称的,实际应用中可以互换。场效应三极管与普通三极管在外观上有相似之处,电路符号分别如下所示:
     

    下面以绝缘栅型场效应三极管(MOSFET)为例,简要介绍其驱动电路设计及使用。

    2.1、 P-MOS场效应管
    P-MOS场效应管,适合源极(source)连接VCC,漏极(drain)连接负载到GND,当栅极(gate)电压低于源极(source)电压超过阈值电压(Vth)后,P-MOS场效应管导通。栅极(gate)用低电平驱动P-MOS场效应管导通,高电平时截止。

    设定下图P-MOS场效应管阈值电压(Vth)为-1.5V,导通状况如下所示:
     

    P-MOS场效应管驱动电路设计时,除了连接限流电阻外,最好连接10~20k上拉电阻到VCC,使栅极(gate)控制电平由低变高时,能够更快被拉高,P-MOS场效应管能够更快更可靠地截止。

    2.2、 N-MOS场效应管
    N-MOS场效应管,适合源极(source)连接GND,漏极(drain)连接负载到VCC,当只要栅极(gate)电压高于源极(source)电压超过阈值电压(Vth)后,N-MOS场效应管即可导通。N-MOS场效应管用高电平驱动导通,低电平截止。

    设定下图N-MOS场效应管阈值电压(Vth)为1.5V,导通状况如下所示:
     

    N-MOS场效应管栅极(gate)除连接限流电阻外,更优的设计是,连接接10~20k下拉电阻到GND,使栅极(gate)控制电平由高变低时,能够更快被拉低,N-MOS场效应管能够更快更可靠地截止。

    展开全文
  • 场效应管驱动电路研究pdf,摘要:探讨了功率场效用管(MOSFET)的栅极驱动问题, 总结了三种在实际中很有应用价值的栅极驱动电路。
  • 本文主要讲了一下关于场效应管和可控硅驱动电路有哪些区别,希望对你的学习有所帮助。
  • 一文搞懂三级管和场效应管驱动电路设计及使用

    千次阅读 多人点赞 2020-07-05 11:34:45
    一文搞懂三级管和场效应管驱动电路设计及使用

    目录

    1、三级管驱动电路设计及使用

    1.1、NPN型三极管

    1.2、PNP型三极管

    2、场效应管驱动电路设计及使用

    2.1、 P-MOS场效应管

    2.2、 N-MOS场效应管


    1、三级管驱动电路设计及使用

    三极管,全称应为半导体三极管,也称双极型晶体管、晶体三极管,是一种控制电流的半导体器件。其作用是把微弱信号放大成幅度值较大的电信号,也用作无触点开关。

    三极管是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区(b),两侧部分是发射区(e)和集电区(c),排列方式有PNP和NPN两种,如下所示:

    1.1、NPN型三极管

    NPN型三极管,适合集电区(c)连接负载到VCC,发射区(e)连接到GND,若此时基区(b)电压高于发射区(e)0.7V,NPN型三极管导通。基区(b)用高电平驱动NPN型三极管导通,低电平驱动截止。

    NPN型三极管驱动电路设计时,基区(b)除了连接限流电阻外,最好连接10~20K下拉电阻到GNG,优点如下所示:

    ①使基区(b)控制电平由高变低时,基区(b)能够更快被拉低,NPN型三极管能够更快更可靠地截止;

    ②系统刚上电时,基极是确定的低电平。

    1.2、PNP型三极管

    PNP型三极管,适合发射区(e)连接到VCC,集电区(c)连接负载到GND,若此时基区(b)电压低于发射区(e)0.7V,PNP型三极管导通。基区(b)用高电平驱动PNP型三极管截止,低电平驱动导通。

    PNP型三极管驱动电路设计时,基区(b)除了连接限流电阻外,最好连接10~20K上拉电阻到VCC,优点如下所示:

    ①使基区(b)控制电平由低变高时,基区(b)能够更快被拉高,PNP型三极管能够更快更可靠地截止;

    ②系统刚上电时,基极是确定的高电平。

    NPN和PNP三极管电流放大满足以下条件:

    三极管直流增益(β/hFE)公式为:β/hFE≈Ic/Ib,故β/hFE=Ic/Ib=57mA/567uA≈100(以上选型的NPN和PNP三极管β/hFE为100);

    Ic≈Ib+Ie,故57mA≈567uA+57mA。

    2、场效应管驱动电路设计及使用

    场效应管是一种利用场效应原理工作的半导体器件,和三极管相比,场效应三极管具有输入阻抗高、噪声低、动态范围大、功耗小及易于集成等特点,可应用于小信号放大、功率放大、信号驱动及振荡器中。

    场效应管可分为结型场效应三极管(JFET)和绝缘栅型场效应三极管(MOSFET) 两种,每种类型又有N沟道和P沟道两种结构。场效应三极管有栅极(gate)、源极(source)和漏极(drain)3个管脚,分别相当于三极管的基区(b)、发射区(e)和集电区(c)。由于场效应三极管的源极S和漏极D是对称的,实际应用中可以互换。场效应三极管与普通三极管在外观上有相似之处,电路符号分别如下所示:

    下面以绝缘栅型场效应三极管(MOSFET)为例,简要介绍其驱动电路设计及使用。

    2.1、 P-MOS场效应管

    P-MOS场效应管,适合源极(source)连接VCC,漏极(drain)连接负载到GND,当栅极(gate)电压低于源极(source)电压超过阈值电压(Vth)后,P-MOS场效应管导通。栅极(gate)用低电平驱动P-MOS场效应管导通,高电平时截止。

    设定下图P-MOS场效应管阈值电压(Vth)为-1.5V,导通状况如下所示:

    P-MOS场效应管驱动电路设计时,除了连接限流电阻外,最好连接10~20k上拉电阻到VCC,使栅极(gate)控制电平由低变高时,能够更快被拉高,P-MOS场效应管能够更快更可靠地截止。

    2.2、 N-MOS场效应管

    N-MOS场效应管,适合源极(source)连接GND,漏极(drain)连接负载到VCC,当只要栅极(gate)电压高于源极(source)电压超过阈值电压(Vth)后,N-MOS场效应管即可导通。N-MOS场效应管用高电平驱动导通,低电平截止。

    设定下图N-MOS场效应管阈值电压(Vth)为1.5V,导通状况如下所示:

    N-MOS场效应管栅极(gate)除连接限流电阻外,更优的设计是,连接接10~20k下拉电阻到GND,使栅极(gate)控制电平由高变低时,能够更快被拉低,N-MOS场效应管能够更快更可靠地截止。

    展开全文
  • 本资源解释了场效应管驱动中米勒效应问题,问题分析到位
  • 电子政务-低压场效应管驱动电路动电路.zip
  • 驱动程序包-20210306
  • 1 引言  长期以来,直流电机以其良好的线性特性、优异的控制性能等特点成为大多数变速运动控制和闭环位置伺服控制系统的最佳...因此采用N沟道增强型场效应管构建H桥,实现大功率直流电机驱动控制。该驱动电路能够满足
  • 行业资料-电子功用-基于高电压输入反激拓扑的串联场效应管驱动电路.pdf.zip
  • 本文主要介绍了场效应管mos管vgs电压过大有什么后果。
  • 探讨了功率效用(MO SFET ) 的栅极驱动问题, 总结了三种在实际中很有应用价值的栅极驱动 电路。
  • 小议场效应管驱动电路

    千次阅读 2018-08-15 09:59:09
     场效应管的G极和S极是绝缘的,其阻抗达数十兆欧姆,理论上驱动场效应管只需要电压不需要电流,也就是零功率驱动,但许多电路尤其是要驱动功率较大的场效应管时,在G极前面却有一个用PNP型和NPN型三极管组成的推挽...

     

        场效应管的G极和S极是绝缘的,其阻抗达数十兆欧姆,理论上驱动场效应管只需要电压不需要电流,也就是零功率驱动,但许多电路尤其是要驱动功率较大的场效应管时,在G极前面却有一个用PNP型和NPN型三极管组成的推挽推动级,例如电磁炉IGBT管的推动电路。如图1所示。该推动级工作在开关状态,输出功率可以达5W左右,因为是射极输出,所以输出阻抗很小(< 10Ω)。无需功率驱动的场效应管为何要用大功率低阻抗的推动级呢?

          因为场效应管的G、S极间有较大的极间电容,功率越大的管子极间电容容量也越大,如图2所示。在直流或低频工作状态下,该电容影响不是很大,但当工作频率达到数十千赫兹或者数百千赫兹时,该电容的充放电情况将严重影响工作状态,如果驱动场效应管的信号源内阻较大,将会使驱动脉冲的上升沿变缓,场效应管从截止到导通的时间延长;当驱动脉冲下降时,由于该电容的存在,同样使驱动脉冲下降沿变缓,如图3所示,使场效应管从导通到截止的时间延长,这样将使场效应管的功耗大大增加,甚至根本无法工作。设置上述大功率低内阻的推动级就是为了加快极间电容的充放电速度,降低场效应管的导通和截止时的功耗,使场效应管能工作于较高频率下。



        在图1中,驱动脉冲的上升沿使Q2导通,这时由于Q1的b极电压高于e极电压而截止,15V电压通过Q2和R1给G极提供导通电压,同时使G和S的极间电容充电。当脉冲结束时。脉冲的下降沿使Q2快速截止,此时充满电的G、S极间电容电压使Q1的e极高于b极,Q1导通使极间电容快速放电,以准备下一次导通,图4中的Q1和图1的Q1作用是一样的,驱动脉冲由前面的控制芯片提供。在图5中,当驱动脉冲低电平时,D1导通,加速管子截止。



        图6是用变压器驱动场效应管电路,由于变压器绕组直流电阻很小,一般不另外设加速放电元件。在图1中,由于Q1和Q2瞬时要通过较大的电流,不能用高耐压小电流三极管,常用S8050和S8550(最大电流500mA,功耗1W)。Q1、Q2如果有问题也会引起烧功率管,在路检测可以用指针式万用表R×1挡(可提供较大的电流)测Q1、Q2的b-e结和b-c结的正向电阻,如果明显阻值变大,说明该管已变质应更换。
        电阻R1一是起限流作用,防止驱动脉冲上升时G、S极间电容充电电流过大,二是防止场效应管在高频工作时产生寄生振荡,其阻值一般在10Ω~100Ω之间。R2是G和S极间电容的泄放电阻,作用是防止G极悬空,因为G极阻抗极高,D极的高电压会通过D和G极间的电容C1给G和S极间的电容C2充电,当C2充电电压达到G极开启电压时,管子会瞬间全导通,如果D极没有限流措施则会马上烧坏。本人就曾经换好功率管后没焊好管脚就上电,瞬间烧坏功率管《因为该线路板D极和S极有铆打,虽然没焊好但已经接触线路,G极却处于悬空状态)。参见图2,由于G极阻抗极高,按电容分压计算G极电压,当D和S极间的电压超过10V时,C1、C2分压可使G极电压达到管子的导通电压,管子处于失控导通状态。因此,在检修开关管击穿故障时,补焊一下相关驱动电路是很有必要的。
        在图4中,ZD1是一只18V的稳压管,作用是防止加在G极上的电压过高击穿场效应管。当功率管击穿时,该稳压管可能受到冲击,最好一并更换。维修中曾遇到该稳压管漏电引起驱动场效应管的电压幅度变小,导致管子功耗增加而烧毁。
        在液晶电视电路中,有许多用P沟道场效应管组成的电子开关,如图7所示。P沟道管S极接输入电压,只要G极电压小于S极电压3V(5V)场效应管就可以导通,因为这里是直流控制,场效应管的极间电容影响不大,可以用极小的驱动电流去控制大电流,这里的R1在输入电压低于5V时是限流电阻,阻值较小;输入电压大于5V时,R1和R.2组成分压电阻,根据被控制的电压数值选择R1、R2阻值,使G极电压比S极电压低3V(10V)、R2同时是G、S极泄放电阻,所以阻值不能太大。

        另外,一般场效应管G极电压高于(N沟道)或低于(P沟道))S极3V左右管子就导通了,场效应管的导通电阻和上述控制电压的数值有很大关系,当控制电压3V时,虽然管子已导通,但导通电阻较大;控制电压达10V时,导通电阻仅为3V时的一半左右,所以驱动大功率管的驱动电路供电电压要15V左右,当该电压过低时,场效应管虽然也能正常导通,但由于导通电阻增加引起功耗增加也要烧坏管子,所以在维修中要注意驱动电路的供电是否正常。
        有人认为图1中的R2是一只分压电阻,开路后引起驱动电压太高而烧坏IGBT管,这是个误解。因为R1仅10Ω(推动级内阻也小于10Ω)、R2达4.7kΩ,所以R2的分压作用微乎其微,即使R2开路,经估算驱动脉冲仅升高0.03V(推动级15V供电),驱动脉冲不可能升高到使IGBT管击穿,真正原因应该是R2开路后,在某种情况下引起IGBT管G极悬空,造成管子击穿。
        由于驱动场效应管需要用低阻抗大电流的推动电路,如果由于线路接触不良引起驱动回路内阻变大,将增加场效应管的导通损耗和截止损耗,引起无规律烧管。维修中就有因双面线路板过孔电阻过大引起屡烧场效应管的实例。

    展开全文
  • 功率场效应管驱动电路的研究,Word文档,文章中有场效应管的各种典型驱动电路。
  • 场效应管电机驱动-MOS管H桥原理 所谓的H 桥电路就是控制电机正反转的。下图就是一种简单的H 桥电路,它由2 个P型场效应管Q1、Q2 与2 个N 型场效应管Q3、Q3 组成,所以它叫P-NMOS 管H 桥。 桥臂上的4 个场效应管相当...

    场效应管电机驱动-MOS管H桥原理
    所谓的H 桥电路就是控制电机正反转的。下图就是一种简单的H 桥电路,它由2 个P型场效应管Q1、Q2 与2 个N 型场效应管Q3、Q3 组成,所以它叫P-NMOS 管H 桥。
    桥臂上的4 个场效应管相当于四个开关,P 型管在栅极为低电平时导通,高电平时关闭;N 型管在栅极为高电平时导通,低电平时关闭。场效应管是电压控制型元件,栅极通过的电流几乎为“零”。
    正因为这个特点,在连接好下图电路后,控制臂1 置高电平(U=VCC)、控制臂2 置低电平(U=0)时,Q1、Q4 关闭,Q2、Q3 导通,电机左端低电平,右端高电平,所以电流沿箭头方向流动。设为电机正转。
    在这里插入图片描述

    控制臂1 置低电平、控制臂2 置高电平时,Q2、Q3 关闭,Q1、Q4 导通,电机左端高电平,右端低电平,所以电流沿箭头方向流动。设为电机反转。
    
    当控制臂1、2 均为低电平时,Q1、Q2 导通,Q3、Q4 关闭,电机两端均为高电平,电机不转;
    当控制臂1、2 均为高电平时,Q1、Q2 关闭,Q3、Q4 导通,电机两端均为低电平,电机也不转,
    所以,此电路有一个优点就是无论控制臂状态如何(绝不允许悬空状态),H 桥都不会出现“共态导通”(短路),很适合我们使用。
    (另外还有4 个N 型场效应管的H 桥,内阻更小,有“共态导通”现象,栅极驱动电路较复杂,或用专用驱动芯片,如MC33883,原理基本相似,不再赘述。)
    下面是由与非门CD4011 组成的栅极驱动电路,因为单片机输出电压为0~5V,而我们小车使用的H 桥的控制臂需要0V 或7.2V 电压才能使场效应管完全导通, PWM 输入0V 或5V时,栅极驱动电路输出电压为0V 或7.2V,前提是CD4011 电源电压为7.2V。切记!!
    故CD4011 仅做“电压放大”之用。之所以用两级与非门是为了与MC33886 兼容。
    

    在这里插入图片描述

    两者结合就是下面的电路:调试时两个PWM 输入端其中一个接地,另一个悬空(上拉置1),电机转为正常。监视MOS 管温度,如发热立即切断电源检查电路。
    CD4011 的14 引脚接7.2V,7引脚接地。
    

    在这里插入图片描述

    展开全文
  • 用MOS场效应管制作H 桥电路来控制电机正反转,下图就是一种简单的H 桥电路,它由2 个P沟道型场效应管Q1、Q2 与2 个N 沟道效应管Q3、Q3 组成,所以它叫P-NMOS 管H 桥。 原理: 桥臂上的4 个场效应管相当于四个...
  • 测量场效应管栅极和漏极 在实际电路中你要结合你的电路来选择场效应管的耐压,还有就是耐流。栅源电压是管子的驱动电压,一般15V-20V。过压会造成击穿 场效应管源极电位比栅极电位高(约0.4V)。 场效应管是利用多数...
  • VMOS桥式电路如图1-29所示,它由四只VMOS组成,是一种很有用的电路。在这种电路中,可方便地采用脉冲变压器驱动方式。
  • 采用两片IR2101和TL494设计的全桥开关电源驱动模块。电路结构简洁功能强大,下面电路可以直接1KW-1.5KW开关电源。 IRFP460MOS/20A开关电源驱动模块电路 IR2101的IO输出电流0.6A,可以直接驱动20A的IRFP460MOS...
  • 场效应管电机驱动-MOS管H桥原理场效应管电机驱动-MOS管H桥原理
  • MOS管驱动电路设计秘籍(工作原理+电路设计+问题总结)
  • 本发明涉及一种LED驱动场效应管调光控制电路,特别是LED驱动场效应管调光控制电路。背景技术:现有的LED驱动的调光电路中,专利申请号为201610033462.2 LED驱动调光的控制电路的申请专利。采用三极管进行调光,需要...
  • mos管驱动电流计算.pdf

    2019-09-14 22:26:29
    mos管驱动电流计算pdf,mos管开通过程的电流有点像给电容充电的过程(但不完全一样),他的电流是时时刻刻都变化的,如果你问的时候充电瞬间的最大电流,他可以达到1个或几个安培的电流,为此需要选的的驱动器最大...
  • Buck电源中绝缘栅场效应管驱动方法(电源技术)
  • IGBT(Insulated Gate Bipolar Transistor)又称绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 其输入极为MOSFET,输出极为PNP晶体管,因此,可以把其...
  • 场效应管是电压控制器件,它是继三极管之后的新一代放大元件,场效应晶体管可分为耗尽型效应晶体管和增强型效应晶体管,同时又有N沟道和P沟耗尽型之分。 场效应管一般用于开关作用,有开关用以及有功率用。特别是...
  • V-MOS功率型场效应管具有开关速度快、导通电阻小、输入阻抗高、耐压高及驱动功率小等特点,且有安全工作区宽、过载能力强及热稳定性好等优点,在功率放大、电机调速、开关电源等领域有着广泛的应用。 
  • 输入放大级采用双栅MOS场效应管,具有输入阻抗高、噪声低和AGC控制范围宽的优点。C1为再生调节电容,以控制正反馈再生强度,提高收音机灵敏度。L、C调谐回路选出的电台信号加到VT1的第一栅极进行放大。经VD1、VD2...
  • 本发明涉及一种LED驱动场效应管调光控制电路,特别是一种LED驱动场效应管调光控制电路。背景技术:现有的LED驱动的调光电路中,专利申请号为201610033462.2 LED驱动调光的控制电路的申请专利。采用三极管进行调光,...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 8,191
精华内容 3,276
关键字:

场效应管驱动