精华内容
下载资源
问答
  • 向量的数量的坐标运算公式是如何推导出的 两个向量向量积公式是怎
    千次阅读
    2020-12-18 23:08:36

    a·b=|a|·|b|·cos〈a,b〉是定义,推出交换律,分配率,与数的乘法的结合

    律,以及垂直时为零。

    ∴(x1,y1)·(x2,y2)=[x1i+y1j]·[x2i+y2j]

    =x1x2(i·i)+y1y2(j·j)+[x1y2+x2y1](i·j)=x1x2+y1y2.

    [ i,j是x轴。y轴上的单位向量。i²=1, j²=1, i·j=0 ]

    看你是要高中证明还是大学证明还是更严密的证明。

    向量有点量积、矢量积、旋量积之分。大多高中只接触个点积而已

    三维向量外积(即矢积、叉积)可以用几何方法证明;也可以借用外积的反对称性、内积的分配律和混合积性质,以代数方法证明。

    下面把向量外积定义为:

    a

    ×

    b

    =

    |a|·|b|·Sin

    b>.

    分配律的几何证明方法很繁琐,大意是用作图的方法验证。有兴趣的话请自己参阅参考文献中的证明。

    下面给出代数方法。我们假定已经知道了:

    1)外积的反对称性:

    a

    ×

    b

    =

    -

    b

    ×

    a.

    这由外积的定义是显然的。

    2)内积(即数积、点积)的分配律:

    a·(b

    +

    c)

    =

    a·b

    +

    a·c,

    (a

    +

    b)·c

    =

    a·c

    +

    b·c.

    这由内积的定义a·b

    =

    |a|·|b|·Cos

    更多相关内容
  • 向量的数量积公式大全

    千次阅读 2020-12-24 04:41:31
    平面向量的数量积平面向量数量积的定义已知两个非零向量a和b,它们的夹角为θ,把数量|a||b|cosθ叫做a和b的数量积(或内积),记作a·b.即a&m...积化和差,指初等数学三角函数部分的一组恒等式。可以通过展开角的...

    学习数学需要讲究方法和技巧,更要学会对知识点进行归纳整理。下面是小编为大家整理的高二数学平面向量的数量积知识点,希望对大家有所帮助!高二数学平面向量的数量积知识点总结1.平面向量的数量积平面向量数量积的定义已知两个非零向量a和b,它们的夹角为θ,把数量|a||b|cosθ叫做a和b的数量积(或内积),记作a·b.即a&m...

    积化和差,指初等数学三角函数部分的一组恒等式。可以通过展开角的和差恒等式的手段来证明。无论乘积项中的三角函数是否同名,化为和差形式时,都应是同名三角函数的和差。公式sinαsinβ=-[1][cos(α+β)-cos(α-β)]/2【注意等式右边前端的负号】cosαcosβ=[c...

    导语:高考临近,考生们都进入了紧张的最后冲刺阶段,高考数学是一科很容易拉开分数的科目,无论是文科生还是理科生,都要重视数学在高考中的重要性。下面小编给大家推荐一个高考数学复习的教程视频,欢迎大家进行学习观看。更多的学习视频。尽在。...

    向量的点乘a*b公式:a*b=|a|*|b|*sinθ,sin是a,b的夹角,取值[0,π]。向量积|c|=|a×b|=|a||b|sin。点乘又叫向量的内积、数量积,是一个向量和它在另一个向量上的投影的长度的乘积;是标量。向量的乘法有两种,分别成为内积和外积。内积也称数量积。因为其结果为一个数(标量)。向量a,b的内积为|a|*|b|cos,其中&lt...

    向量的数量积:a*b=|a||b|cosθ,a,b表示向量,θ表示向量a,b共起点时的夹角,很明显向量的数量积表示数,不是向量。在数学中,向量指具有大小和方向的量。向量数量积的基本性质设ab都是非零向量θ是a与b的夹角则①cosθ=a·b/|a||b|②当a与b同向时a·b=|a||b|当a与b反向时a·b=-|a||b|③|a·b|≤|a||b|④a⊥b=a·b=0适用在平面内的两直线几何意...

    向量a乘以向量b=(向量a得模长)乘以(向量b的模长)乘以cosα[α为2个向量的夹角];向量a(x1,y1)向量b(x2,y2),向量a乘以向量b=(x1*x2,y1*y2)。A向量乘B向量等于什么点乘向量A=(x1,y1)向量B=(x2,y2)向量A·向量B=|向量A||向量B|cosu=x1x2+y1y2=数值u为向量A、向量B之间夹角。叉乘向量A×向量B=(x1y2i,x2y2j)=向量向...

    向量垂直公式:x1*x2+y1*y2=0和|A|*|B|*cos(A与B的夹角)=0。垂直公式a,b是两个向量a=(a1,a2)b=(b1,b2)a//b:a1/b1=a2/b2或a1b1=a2b2或a=λb,λ是一个常数a垂直b:a1b1+a2b2=0证明:①几何角度:向量A(x1,y1),长度L1=√(x12+y12)向量B(x2,y2),长度L2=√(x22+y22)(x1,y...

    向量积的长度|a×b|可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)·c可以得到以a,b,c为棱的平行六面体的体积。向量积向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学...

    平面向量数量积教学要求学生掌握平面向量数量积的概念、几何意义、性质、运算律及坐标表示,分享了平面向量数量积的练习题,欢迎借鉴!一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.设i,j是互相垂直的单位向量,向量a=(m+1)i-3j,b=i+(m-1)j,(a+b)⊥(a-b),则实数m的值为( )A.-2 &...

    平面向量数量积教学要求学生掌握平面向量数量积的概念、几何意义、性质、运算律及坐标表示,分享了平面向量数量积的练习题,欢迎借鉴!一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.设i,j是互相垂直的单位向量,向量a=(m+1)i-3j,b=i+(m-1)j,(a+b)⊥(a-b),则实数m的值为( )A.-2 &...

    展开全文
  • 平面向量的所有公式-平面向量公式

    千次阅读 2020-12-18 23:08:41
    1平面向量的所有公式设a=(x,y),b=(x',y')。1、向量的加法向量的加法满足平行四边形法则和三角形法则。AB+BC=AC。a+b=(x+x',y+y')。a+0=0+a=a。向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。2、...

    1

    平面向量的所有公式

    a=

    (

    x

    y

    )

    b=(x'

    y')

    1

    、向量的加法

    向量的加法满足平行四边形法则和三角形法则。

    AB+BC=AC

    a+b=(x+x'

    y+y')

    a+0=0+a=a

    向量加法的运算律:

    交换律:

    a+b=b+a

    结合律:

    (a+b)+c=a+(b+c)

    2

    、向量的减法

    如果

    a

    b

    是互为相反的向量,那么

    a=-b

    b=-a

    a+b=0. 0

    的反向量为

    0

    AB-AC=CB.

    共同起点,指向被减

    a=(x,y) b=(x',y')

    a-b=(x-x',y-y').

    3

    、数乘向量

    实数

    λ

    和向量

    a

    的乘积是一个向量,记作

    λa

    ,且∣

    λa

    =

    λ

    a

    ∣。

    λ

    0

    时,

    λa

    a

    同方向;

    λ

    0

    时,

    λa

    a

    反方向;

    λ=0

    时,

    λa=0

    ,方向任意。

    a=0

    时,对于任意实数

    λ

    ,都有

    λa=0

    注:按定义知,如果

    λa=0

    ,那么

    λ=0

    a=0

    实数

    λ

    叫做向量

    a

    的系数,

    乘数向量

    λa

    的几何意义就是将表示向量

    a

    的有向线段伸长或压

    缩。

    当∣

    λ

    ∣>

    1

    时,表示向量

    a

    的有向线段在原方向(

    λ

    0

    )或反方向(

    λ

    0

    )上伸长为原来

    的∣

    λ

    ∣倍;

    当∣

    λ

    ∣<

    1

    时,表示向量

    a

    的有向线段在原方向(

    λ

    0

    )或反方向(

    λ

    0

    )上缩短为原来

    的∣

    λ

    ∣倍。

    数与向量的乘法满足下面的运算律

    结合律:

    (λa)•b=λ(a•b)=(a•λb)

    向量对于数的分配律(第一分配律)

    (λ+μ)a=λa+μa.

    数对于向量的分配律(第二分配律)

    λ(a+b)=λa+λb.

    数乘向量的消去律:

    如果实数

    λ≠0

    λa=λb

    那么

    a=b

    如果

    a≠0

    λa=μa

    那么

    λ=μ

    4

    、向量的的数量积

    定义:

    已知两个非零向量

    a,b

    OA=a,OB=b,

    则角

    AOB

    称作向量

    a

    和向量

    b

    的夹角,

    记作

    a,b

    〉并规定

    0≤

    a,b

    ≤π

    定义:

    两个向量的数量积

    (内积、

    点积)

    是一个数量,

    记作

    a•b

    a

    b

    不共线,

    a•b=|a|•|b|•cos

    a

    b

    ;若

    a

    b

    共线,则

    a•b=+

    -

    a

    ∣∣

    b

    ∣。

    向量的数量积的坐标表示:

    a•b=x•x'+y•y'

    向量的数量积的运算律

    a•b=b•a

    (交换律)

    (λa)•b=λ(a•b)(

    关于数乘法的结合律

    )

    (

    a+b)•c=a•c+b•c

    (分配律)

    向量的数量积的性质

    a•a=|a|

    的平方。

    a

    b

    =

    a•b=0

    |a•b|≤|a|•|b|

    向量的数量积与实数运算的主要不同点

    1

    、向量的数量积不满足结合律,即:

    (a•b)•c≠a•(b•c)

    ;例如:

    (a•b)^2≠a^2•b^2

    展开全文
  • 向量内积

    万次阅读 2017-12-22 18:03:17
    向量内积一般指点积; 在数学中,数量积(dot product; scalar product,也称为点积)是接受在实数R上的两个向量并返回一个实数值标量的二元运算。它是欧几里得空间的标准内积。[1]  两个向量a = [a1, a2,…, an...
    向量内积 一般指点积;
    在数学中,数量积(dot product; scalar product,也称为点积)是接受在实数R上的两个 向量并返回一个实数值 标量二元运算。它是 欧几里得空间的标准 内积[1]  
    两个向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的点积定义为:
    a·b=a1b1+a2b2+……+anbn。
    使用 矩阵乘法并把(纵列)向量当作n×1  矩阵,点积还可以写为:
    a·b=a^T*b,这里的a^T指示 矩阵a的 转置

    点乘的几何意义是可以用来表征或计算两个向量之间的夹角,以及在b向量在a向量方向上的投影,有公式:




    推导过程如下,首先看一下向量组成:





    定义向量:




    根据三角形余弦定理有:




    根据关系c=a-b(a、b、c均为向量)有:




    即:



    向量a,b的长度都是可以计算的已知量,从而有a和b间的夹角θ:




    根据这个公式就可以计算向量a和向量b之间的夹角。从而就可以进一步判断这两个向量是否是同一方向,是否正交(也就是垂直)等方向关系,具体对应关系为:


         a·b>0    方向基本相同,夹角在0°到90°之间

         a·b=0    正交,相互垂直  

         a·b<0    方向基本相反,夹角在90°到180°之间 



    展开全文
  • 很多人只知道用向量内积公式去推导向量外积公式,殊不知向量外积的证明可以更加直接,并不需要以几积公式为基础。如果我们领悟这种更加直接的方式,相信我们会很容易理解为什么矩阵行列式的绝对值表示矩阵的行向量或...
  • 向量向量乘法 - 内积 两个向量内积,也叫点积(但在我们这个笔记的前半部分,我们说的,或者用到的更多的应该是点积),他的计算方式是两个同维度向量(例如两个n维向量)的内部元素从1到n,逐一相乘再求和...
  • 向量的加减法与内外

    千次阅读 2020-04-16 14:37:21
    2、减法 a-b 意义: 3、点乘 a·b =|a||b|cosθ 意义: ①计算a在b上投影 ②判断a相对于b的方向。 如果a和b分别是单位向量 ,那么它们做点乘运算之后得到的值就是夹角θ的余弦值,即cosθ,取值范围[-1,1] 等于1时,...
  • 内积 内积又称:点积、点称、数量积 ...我们通过公式可以看出向量内积后得到的是一个数而非向量! 代码实现内积 (后面有完整代码) //向量内积 double dot(Vector a,Vector b) { return a.x*b.x+a.y*b.y; } 外积
  • 1、矩阵的乘法和除法 ...若想求两个向量内积,有3种常用方法: (1)sum(a.*b) (2) a * b’ (3)dot(a,b) 向量之间的叉积:cross(a,b),a,b向量中必须含有三个元素。实际的计算公式如下(只是为了便于理解) ...
  • 向量内积(点乘) 定义 概括地说,向量内积(点乘/数量积)。对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,如下所示,对于向量a和向量b: a和b的点积公式为: 这里要求一维...
  •   向量之间的叉乘和点乘,概念易混淆,分别不清楚,因此本文专门对这个概念进行了详细分析介绍。
  • 向量乘法有两种,一种是点--dot product,一种是外--cross product 点和外的区别: 点可以在任何维数的空间中定义,外只能在三维空间中定义 点的结果是一个标量,外的结果是一个向量 2. 外...
  • 向量的外向量积

    千次阅读 2019-02-28 12:06:38
    叉乘,也叫向量的外向量积。顾名思义,求下来的结果是一个向量,记这个向量为c。  |向量c|=|向量向量b|=|a||b|sin&lt;a,b&... 因此向量的外不遵守乘法交换率,因为向量向量b= -...
  • 本文介绍了向量內积和外积的概念,以及相关的运算公式
  • 向量叉乘计算公式

    万次阅读 2021-11-08 11:16:24
    二维向量叉乘 A=(a1,a2) B=(b1,b2) A×B =(a1,a2)×(b1,b2) =a1b2-a2b1 三维向量叉乘 A=(a1,a2,a3) B=(b1,b2,b3) A×B =(a1,a2,a3)×(b1,b2,b3) =(a2b3-a3b2,a3b1-a1b3,a1b2-a2b1)
  • 机器学习初级篇12——浅谈向量的各种积向量点乘(内积)和叉乘(外积、向量积)概念及几何意义解读一.点乘公式二.叉乘公式 向量点乘(内积)和叉乘(外积、向量积)概念及几何意义解读 向量是由n个实数组成的一个n行...
  • 向量乘法运算 矩阵 定义 矩阵乘积运算 Python代码 区别与联系 举例 总结 重点区别 点与矩阵相乘的联系 前言 看“花书”的过程中碰到这样一句话 两个相同维数的向量x 和y 的点(dot product)可...
  • 向量点乘相关公式推导

    万次阅读 2018-06-29 16:07:21
    1.向量点乘公式推导和几何解释一般来说,点乘结果描述了两个向量的“相似”程度,点乘结果越大,两向量越相近。01.向量点乘(dot product)是其各个分量乘积的和,公式:用连加号写:02.几何解释:点乘的结果是一个...
  • 向量减法向量的点(乘),向量的叉积(乘) 向量 是用来表示既有大小又有方向的量,不过向量在空间中没有具体的位置,通常用一个加粗的小写字母来表示一个向量,或者不加粗顶上带有小箭头的小写字母来表示 ...
  • 代码: public class Test { public static void main(String[] args) { // 测试数据 double[][] a = {{1.0, 2.0}, {3.0, 4.0}}; double[] b = {1.0, 2.0};... System.out.println("计算矩阵和向量:"); f
  • 向量点乘(内积)和叉乘(外积)

    万次阅读 2019-03-09 14:13:47
    向量的点乘,也叫内积,是对两个向量对应位一一相乘之后求和的操作,点乘的结果是一个标量。 1)计算公式: 2)几何意义: 表征或计算两个向量之间的夹角 b向量在a向量方向上的投影 2、向量差乘 两个向量...
  • 向量的点乘,也叫向量内积、数量积,对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,点乘的结果是一个标量。 点乘公式 对于向量a和向量b: a和b的点积公式为: 要求一维向量a和向量b的...
  •   设a, b, c为R3上的三个向量,λ, μ为两个标量,×表示两向量之间的向量积,·表示两向量之间的数量。则:    1. 向量积的定义   a与b的向量积为一向量,记为a×b。记a与b之间的夹角为θ,则它的模与方向...
  • Unity使用左手坐标系:拇指-X轴...3.点为0则两向量垂直,大于0是锐角(正数越大角度越小),小于0是钝角(负数越小角度越大)。 4.叉积是生成一个新的向量,原向量A和B是大拇指和食指,新向量C是中指。 在Unit...
  • 向量运算(点,叉积)

    万次阅读 2018-11-14 21:05:09
    向量减法: 两向量a与b的和为一个向量,记为c,即 c = a + b c与两向量a与b的关系遵循平行四边形法则。 设二维向量 P =(x1,y1) , Q = (x2 , y2),则向量的加法定义为:  P+Q = (x1+x2,y1+y2) 同理,向量...
  • 向量内积(点乘) 要求一维向量a和向量b的行列数相同。点乘的结果是一个标量而不是向量 定义:两个向量a与b的内积为 a·b = |a||b|cos∠(a, b),0·a =a·0 = 0;若a,b是非零向量,则a与b向量正交的充要条件是a...
  • 向量求导公式

    千次阅读 2016-12-15 16:00:01
    最近在看吴恩达的视频啊、LDA啊、PCA啊,觉得很有必要将向量求导公式复习一下,要不感觉算的时候怪怪的~
  • 向量积

    千次阅读 2017-12-19 12:35:13
    向量积(cross product)在中文中又被称为外、叉积、矢、叉乘。从英文中可以看到,叉乘或者叉积更符合直译标准。在学习的时候,就没有完全的数学描述,有时间看一下原版的线性代数书籍,弄的更严谨一些。直观...
  • 向量是由n个实数组成的一个...向量的点乘,也叫向量内积、数量积,对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,点乘的结果是一个标量。 点乘公式 对于向量a和向量b:    ...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 27,101
精华内容 10,840
关键字:

向量内积乘法公式