精华内容
下载资源
问答
  • np.max(img,axis=2)中axis=2说明
    千次阅读
    2020-08-10 16:42:13
    更多相关内容
  • Python的numpy中axis=0、axis=1、axis=2解释

    千次阅读 多人点赞 2021-03-14 10:15:39
    参考:Python:一文让你彻底理解numpy中axis=-1/0/1/2… [实例讲解:np.argmax(axis= -1 0 1 2) np.sum(aixs= -1 0 1 2)] 0. 前置知识 0.1 axis axis翻译过来就是轴的意思。 numpy数组中: 一维数组拥有一个轴:...

    参考:Python:一文让你彻底理解numpy中axis=-1/0/1/2… [实例讲解:np.argmax(axis= -1 0 1 2) np.sum(aixs= -1 0 1 2)]


    0. 前置知识

    0.1 axis

    axis翻译过来就是轴的意思。

    numpy数组中:

    • 一维数组拥有一个轴:axis=0;
    • 二维数组拥有两个轴:axis=0,axis=1;
    • 三维数组拥有三个轴:axis=0,axis=1,axis=2。
    • 四维数组拥有三个轴:axis=0,axis=1,axis=2,axis=3。

    0.2 数组维度

    可以从左至右计算数组的方括号数目,一个方括号是一维数组,两个方括号是二维数组,三个方括号是三维数组。
    如: [1, 2, 3]是一维数组、[[1, 2, 3], [4, 5, 6]]是二维数组、[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]] 是三维数组。

    0.3 axis(轴)与数组括号的对应关系

    numpy数组都有[]标记,其对应关系:axis=0对应最外层的[],axis=1对应第二外层的[],…,axis=n对应第n外层的[]。以三维数组为例,两者关系如下表所示:

    axis[ ]
    axis = 0[ [ [ ] ] ]
    axis = 1[ [ [ ] ] ]
    axis = 2[ [ [ ] ] ]

    1. 如何理解对numpy数组的axis(轴)的操作

    这里使用了博主西北种田文的方法“括号最大块法”。

    博客链接为:Python:一文让你彻底理解numpy中axis=-1/0/1/2… [实例讲解:np.argmax(axis= -1 0 1 2) np.sum(aixs= -1 0 1 2)]

    括号最大块法有且仅有两步:

    • 第一步:由axis = value,找对应[]里的最大单位块。(np.sum()拆掉此层[],np.argmax()不拆此层[])

    • 第二步:对单位块进行计算,这里又分为两种情况:

      • 当单位块是数值时,直接计算
      • 当单位块是数组时,对应下标元素进行计算

    接下来对上述方法进行补充说明:

    首先,最大单位块就是某层[]里包裹的最大结构块。比如:

    • [1,2,3][]里最大的单位块是数值 1 2 3。
    • [[1,2],[3,4]]:最外层[]里最大单位块是[1,2][3,4],第二层[]里最大单位块是1,2 和 3,4。
    • [[[1,2],[3,4]],[[5,6],[7,8]]]:最外层[]里最大单位块是[[1,2],[3,4]][[5,6],[7,8]],第二层[]里最大单位块是[1,2][3,4] 还有 [5,6][7,8],第三层[]里最大单位块是1,2 和 3,4 和 5,6 和 7,8。

    其次,最大单位块数组时,对应下标元素的计算方法为:

    • 对于numpy二维数组[[1,2],[3,4]]
      axis=0,最外层[],有一对,其里包含两个最大块[1,2][3,4],这两个块1和3、2和4即为对应。
      axis=1,第二层[],有两对,两个[]都为数值,直接计算。
    • 对于numpy三维数组[[[1, 2],[3, 4]], [[5, 6],[7, 8]]]
      axis=0,最外层[],有一对,其里包含两个最大块[[1, 2],[3, 4]]、 [[5, 6],[7, 8]],这两个块1和5、2和6、3和7、4和8即为对应。
      axis=1,第二层[],有两对,第一个[]最大块为:[1, 2][3, 4],其中1和3、2和4对应;第二个[]最大块为:[5, 6][7, 8],其中5和7、6和8对应。
      axis=2,第三层[],有四对,4个[]内都是数值,直接计算。

    2. 实例

    2.1 实例1:np.sum(axis=-1/0/1/2)

    一维数组

    axis=0

    >>> import numpy as np
    >>> arr = np.array([1, 2, 3])
    >>> arr.sum(axis = 0)
    6
    

    第一步:axis=0对应最外层[],其内最大单位块为:1,2,3,并去掉[]
    第二步:单位块是数值,直接计算:1+2+3=6

    axis=1

    >>> arr = np.array([1, 2, 3])
    >>> arr.sum(axis = 1)  # 越界使用,报错
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "D:\Anaconda3\lib\site-packages\numpy\core\_methods.py", line 38, in _sum
        return umr_sum(a, axis, dtype, out, keepdims, initial, where)
    numpy.AxisError: axis 1 is out of bounds for array of dimension 1
    

    由此可知,使用axis时,不要越界,即:N维数组,最大能使用axis=N-1

    二维数组

    axis=0

    >>> arr = np.array([[1, 2], [3, 4]])
    >>> arr.sum(axis = 0)
    array([4, 6])
    

    第一步:axis=0对应最外层[],其内最大单位块为:[1,2] 和 [3,4],并去掉最外层[]
    第二步:单位块是数组,两者对应下标元素进行计算,即:[1+3,2+4]=[4,6]

    axis=1

    >>> arr = np.array([[1, 2], [3, 4]])
    >>> arr.sum(axis = 1)
    array([3, 7])
    

    第一步:axis=1对应第二层[],其内最大单位块为:第一[]内: 1,2;第二[]内: 3,4,并去掉第二层[]
    第二步:单位块是数值,直接进行计算,即:[1+2,3+4]=[3,7]

    三维数组

    axis=0

    >>> arr = np.array([[[1, 2],[3, 4]], [[5, 6],[7, 8]]])
    >>> arr
    array([[[1, 2],
            [3, 4]],
    
           [[5, 6],
            [7, 8]]])
    >>> arr.sum(axis=0)
    array([[ 6,  8],
           [10, 12]])
    

    第一步:axis=0对应最外层[],其内最大单位块为:[[1, 2],[3, 4]] 和 [[5, 6],[7, 8]],并去掉最外层[]
    第二步:单位块是数组,两者对应下标元素进行计算,即:[[1, 2],[3, 4]] + [[5, 6],[7, 8]] = [[1+5,2+6],[3+7,4+8]] = [[6,8], [10,12]]

    axis=1

    >>> arr = np.array([[[1, 2],[3, 4]], [[5, 6],[7, 8]]])
    >>> arr.sum(axis=1)
    array([[ 4,  6],
           [12, 14]])
    

    第一步:axis=1对应第二层[],其内最大单位块为:第一个[]: [1, 2]和[3, 4];第二个[]: [5, 6]和[7, 8],并去掉第二层[]
    第二步:单位块是数组,两者对应下标元素进行计算,即:第一个[]内:[1+3,2+4],第二个[]内:[5+7,6+8],即:[[1+3,2+4],[5+7, 6+8]] = [[4,6],[12,14]]

    axis=2

    >>> arr = np.array([[[1, 2],[3, 4]], [[5, 6],[7, 8]]])
    >>> arr.sum(axis=2)
    array([[ 3,  7],
           [11, 15]])
    

    第一步:axis=1对应第三层[],其内最大单位块为:第一个[]:1,2;第二个[]:3,4;第三个[]:5,6;第四个[]:7,8,并去掉第三层[]
    第二步:单位块是数值,直接进行计算,即:[[1+2,3+4],[5+6,7+8]] = [[3,7],[11,15]]

    axis=-1

    >>> arr = np.array([[[1, 2],[3, 4]], [[5, 6],[7, 8]]])
    >>> arr.sum(axis=-1)
    array([[ 3,  7],
           [11, 15]])
    

    axis=-1,表示在当前数组最后一维度操作,三维数组中axis=0/1/2,那么axis=-1即等价于axis=2,所以其结果与axis=2相同!

    2.2 实例2:np.argmax(axis=-1/0/1/2)

    np.argmax():取数组中元素最大值的下标值
    np.argmax()中axis=0/1/2…原理与np.sum()中类似,只是不用“拆括号”了!

    一维数组

    >>> import numpy as np
    >>> arr = np.array([3, 4, 6, 9, 1, 2])
    >>> print(np.argmax(arr)) # 默认axis=0
    3
    >>> print(np.argmax(arr, axis=0))
    3
    

    二维数组

    axis=0

    >>> arr = np.array([[3, 6, 6, 2], [4, 7, 11, 2], [5, 9, 1, 3]])
    >>> arr
    array([[ 3,  6,  6,  2],
           [ 4,  7, 11,  2],
           [ 5,  9,  1,  3]])
    >>> np.argmax(arr, axis=0)
    array([2, 2, 1, 2], dtype=int64)
    >>> print(np.argmax(arr, axis=0))
    [2 2 1 2]
    

    第一步:axis=0对应最外层[],其内最大单位块为:[ 3, 6, 6, 2]、 [ 4, 7, 11, 2]和[ 5, 9, 1, 3]
    第二步:单位块是数组,两者对应下标元素进行计算,即:argmax([3,4,5])、argmax([6,7,9])、argmax([6,11,1])、argmax([2,2,3]),得到4个最大值索引值:2、2、1、2,得到索引值数组:[2 2 1 2]

    axis=1

    >>> arr = np.array([[3, 6, 6, 2], [4, 7, 11, 2], [5, 9, 1, 3]])
    >>> arr
    array([[ 3,  6,  6,  2],
           [ 4,  7, 11,  2],
           [ 5,  9,  1,  3]])
    >>> print(np.argmax(arr, axis=1))
    [1 2 1]       
    

    第一步:axis=1对应第二层[],其内最大单位块为:3, 6, 6, 2 和 4, 7, 11, 2 和 5, 9, 1, 3
    第二步:单位块是数值,直接进行计算,即:argmax([3,6,6,2])、argmax([4,7,11,2])、argmax([5,9,1,3]),得到3个最大值索引值:1、2、1,得到索引数组:[1 2 1]

    三维数组

    axis=0

    >>> arr = np.array([[[1, 5, 5, 2], [9, -6, 2, 8], [-3, 7, -9, 1]], [[-1, 7, -5, 2], [9, 6, 2, 8], [3, 7, 9, 1]], [[21, 6, -5, 2], [9, 36, 2, 8], [2, 7, 66, 1]]])
    >>> arr
    array([[[ 1,  5,  5,  2],
            [ 9, -6,  2,  8],
            [-3,  7, -9,  1]],
    
           [[-1,  7, -5,  2],
            [ 9,  6,  2,  8],
            [ 3,  7,  9,  1]],
    
           [[21,  6, -5,  2],
            [ 9, 36,  2,  8],
            [ 2,  7, 66,  1]]])
    >>> print(np.argmax(arr, axis=0))
    [[2 1 0 0]
     [0 2 0 0]
     [1 0 2 0]]
    

    第一步:axis=0对应最外层[],其内最大单位块为:
    在这里插入图片描述
    第二步:单位块是数组,三者对应下标元素进行计算,如图:
    在这里插入图片描述
    即:argmax([1,-1,21)、argmax([5,7,6])、argmax([5,-5,-5])、argmax([2,2,2])、argmax([9,9,9])、argmax([-6,6,36])…以此类推,得到索引值数组:
    在这里插入图片描述

    axis=1

    >>> arr
    array([[[ 1,  5,  5,  2],
            [ 9, -6,  2,  8],
            [-3,  7, -9,  1]],
    
           [[-1,  7, -5,  2],
            [ 9,  6,  2,  8],
            [ 3,  7,  9,  1]],
    
           [[21,  6, -5,  2],
            [ 9, 36,  2,  8],
            [ 2,  7, 66,  1]]])
    >>> print(np.argmax(arr, axis=1))
    [[1 2 0 1]
     [1 0 2 1]
     [0 1 2 1]]
    

    第一步:axis=1对应第二层[],其内最大单位块为:
    第一个[]内最大单位块:
    在这里插入图片描述
    第二个[]内最大单位块:
    在这里插入图片描述
    第三个[]内最大单位块:
    在这里插入图片描述
    第二步:各[]内单位块是数组且都为三块,三者对应下标元素进行计算,即:
    第一个[]内,三块对应下标,如图:
    在这里插入图片描述
    计算:argmax([1,9,-3)、argmax([5,-6,7])、argmax([5,2,-9])、argmax(2,8,1)
    以此类推:第二个[]、第三个[],得到索引值数组:
    在这里插入图片描述

    axis=2

    >>> arr
    array([[[ 1,  5,  5,  2],
            [ 9, -6,  2,  8],
            [-3,  7, -9,  1]],
    
           [[-1,  7, -5,  2],
            [ 9,  6,  2,  8],
            [ 3,  7,  9,  1]],
    
           [[21,  6, -5,  2],
            [ 9, 36,  2,  8],
            [ 2,  7, 66,  1]]])
    >>> print(np.argmax(arr, axis=2))
    [[1 0 1]
     [1 0 2]
     [0 1 2]]
    

    第一步:axis=2对应第三层[],其内最大单位块为:
    1,5,5,2
    9,-6,2,8
    -3,7,-9,1

    -1,7,-5,2
    9,6,2,8
    3,7,9,1

    21,6,-5,2
    9,36,2,8
    2,7,66,1

    第二步:单位块是数值,直接进行计算,即:
    argmax([1,5,5,2])
    argmax([9,-6,2,8])
    argmax([-3,7,-9,1])
    argmax([-1,7,-5,2])

    以此类推,得到索引数组:
    在这里插入图片描述

    axis=-1

    >>> print(np.argmax(arr, axis=-1))
    [[1 0 1]
     [1 0 2]
     [0 1 2]]
    

    axis=-1,表示在当前数组最后一维度操作,三维数组中axis=0/1/2,那么axis=-1即等价于axis=2,所以其结果与axis=2相同!

    展开全文
  • \quad在看数据分析的时候,发现一个问题,之前对于axis的理解是0行1列。先看下面两个例子吧。 \quad从上述代码中,我们可以看到,data.mean(axis=1)是将data数据的行进行了求均值,而data.drop(“two”,axis=1)是...
  • 二维数组情形 例1 mu = np.mean(features,axis=0) ...例2 X_input = np.concatenate((features,intercept_feature),axis=1) features为M×N,那么X_input为M ×(N+1) 例3 &gt;&gt;&gt; a = n...

    二维数组情形

    例1

    mu = np.mean(features,axis=0)

    features为M×N, 那么mu为(N,)或记1×N


    例2

    X_input = np.concatenate((features,intercept_feature),axis=1)

    features为M×N,那么X_input为M ×(N+1)

     


    例3

    >>> a = np.array([[1, 2], [3, 4]])
    >>> np.mean(a)
    2.5
    >>> np.mean(a, axis=0)
    array([ 2.,  3.])
    >>> np.mean(a, axis=1)
    array([ 1.5,  3.5])

    点评:矩阵记法M×N,M为行数,N为列数。


    三维数组情形

    例4

    A = np.arange(8).reshape((2,2,2))

    A:

    array([[[0, 1],
            [2, 3]],

           [[4, 5],
            [6, 7]]])

    mu0 = np.mean(A,axis=0)

    mu0:

    array([[2., 3.],
           [4., 5.]])

    mu1 = np.mean(A,axis=1)

    mu1:

    array([[1., 2.],
           [5., 6.]])

    mu2= np.mean(A,axis=2)

    mu2:

    array([[0.5, 2.5],
           [4.5, 6.5]])

    点评:三维数组可以理解为两个二维平面平行放置。

    B=np.arange(50).reshape((2,5,5))

    B:

    array([[[ 0,  1,  2,  3,  4],
            [ 5,  6,  7,  8,  9],
            [10, 11, 12, 13, 14],
            [15, 16, 17, 18, 19],
            [20, 21, 22, 23, 24]],

           [[25, 26, 27, 28, 29],
            [30, 31, 32, 33, 34],
            [35, 36, 37, 38, 39],
            [40, 41, 42, 43, 44],
            [45, 46, 47, 48, 49]]])

    B[0]:

    array([[ 0,  1,  2,  3,  4],
           [ 5,  6,  7,  8,  9],
           [10, 11, 12, 13, 14],
           [15, 16, 17, 18, 19],
           [20, 21, 22, 23, 24]])

    C=np.arange(50).reshape((5,5,2))

    C:

    array([[[ 0,  1],
            [ 2,  3],
            [ 4,  5],
            [ 6,  7],
            [ 8,  9]],

           [[10, 11],
            [12, 13],
            [14, 15],
            [16, 17],
            [18, 19]],

           [[20, 21],
            [22, 23],
            [24, 25],
            [26, 27],
            [28, 29]],

           [[30, 31],
            [32, 33],
            [34, 35],
            [36, 37],
            [38, 39]],

           [[40, 41],
            [42, 43],
            [44, 45],
            [46, 47],
            [48, 49]]])


    例5

    A = np.arange(8).reshape((2,2,2))

    A:

    array([[[0, 1],
            [2, 3]],

           [[4, 5],
            [6, 7]]])

    filter_kernel_flipped=np.rot90(A, 1, (1,2))

    filter_kernel_flipped:

    array([[[1, 3],
            [0, 2]],

           [[5, 7],
            [4, 6]]])

    此例np.rot90()函数为axis1和axis2确定的平面内旋转一次。

    更多数学原理小文请关注公众号:未名方略

    展开全文
  • 本篇文章主要目的是讲解axis的含义,所以默认都是用L1_norm范数,方便理解。** 首先,来看一下2维的情况 创建一个 2×3 的常量 a = tf.constant(range(6), shape = [2,3]) tf.norm(a,ord=1,axis=0) axis=0,可以...

    tensorflow中的norm函数作用是用来求L1_norm范数和Eukl_norm范数。 本篇文章主要目的是讲解axis的含义,所以默认都是用L1_norm范数,方便理解。

    首先,来看一下2维的情况

    创建一个 2×3 的常量

    a = tf.constant(range(6), shape = [2,3])
    

    在这里插入图片描述

    tf.norm(a,ord=1,axis=0)
    

    axis=0,可以理解为将shape中的第0个索引盖住,只对其他索引进行操作
    此处,相当于只对列进行操作,即每一列都求范数。
    当axis=1时,同理。
    如图:

    在这里插入图片描述
    在这里插入图片描述

    接下来,在看3维的情况

    创建一个 2×3×4 的常量

    a = tf.constant(range(24), shape = [2,3,4])
    

    在这里插入图片描述

    同2维一样的理解:
    若axis=0,则将shape中的第0个索引无视,对其他索引进行操作。
    此处为 对所有的 3×4 矩阵进行求范数,也就是把所有的3×4的矩阵进行相加。
    如图:
    在这里插入图片描述
    axis=1,表示将shape中的第1个索引无视,只对第0个和第2个索引进行操作。
    此处可以理解为:
    将所有 3×4 矩阵中的列进行求范数,也就是说,对2个 3×4 列矩阵中的所有列进行求范数,而无视行的概念。
    如图:
    在这里插入图片描述
    axis=2, 则表示无视列概念,对所有的行进行操作。
    如图:
    在这里插入图片描述





    个人理解,有误请指正。

    展开全文
  • 对数据进行操作时,经常需要在横轴方向或者数轴方向对数据进行操作,这时需要设定参数axis的值: axis = 0 代表对横轴操作,也就是第0轴; axis = 1 代表对纵轴操作,也就是第1轴; numpy库中横轴、纵轴 axis 参数...
  • np.flip(img,axis=2)

    千次阅读 2021-12-28 17:40:57
    import numpy as np from PIL import Image img=Image.open('222.png') img1=np.flip(img, axis=2)#翻转rgb中的r和b img2=Image.fromarray(img1) img2.show() 源222.png 结果:
  • axis=-1,0,1的含义

    2021-01-20 03:13:50
    axis=-1,0,1的含义 axis的本意是轴的意思。 在python中,axis代表的是多维数组中数据操作的方向。 举例说明,在pycharm环境...[[[ 0 1 2] [ 3 4 5] [ 6 7 8]] [[ 9 10 11] [12 13 14] [15 16 17]] [[18 19 20] [21
  • 【numpy】argmax参数辨析(axis=0,axis=1,axis=-1)

    万次阅读 多人点赞 2020-04-30 10:47:21
    网上一般都是axis=0,axis=1,很少有axis=-1的博客,在这进行简单的小结,后续可能会增补。 说明: 代码在 jupyter notebook中实现。 1. 正文 1.1 简单介绍 argmax:一句话概括,返回最大值的索引。 当然这个索引是有...
  • 接触python有一段时间了,但总有一道坎在心中挥之不去,那就是Numpy模块中的axis=-1/0/1/2...,每每见到axis=-1、axis=0、axis=1、axis=2等操作,心中真是万马奔腾飘过... But,有幸看了几篇博文,学到一些“奇淫...
  • 主要介绍了Python之NumPy(axis=0 与axis=1)区分详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
  • day1:tf.argmax(x, axis = 0)和tf.reduce_max(x, axis = 0) 今天学习的这两个函数可以考虑为一大类函数,比如reduce_sum()计算张量的和,reduce_mean()计算张量的平均值,reduce_max()和reduce_min()计算张量的...
  • 文章目录1.argmax和max函数区别2.axis=0/axis=1/axis=-1的区别3.具体代码分析---3.1一维数组---3.2二维数组---3.3三维数组 1.argmax和max函数区别 argmax()返回的是函数取到最大值时的参数t,也就是说返回最大值的...
  • 在numpy的使用中,对axis的使用总是会产生疑问,如np.sum函数,在多维情况下,axis不同的取值应该做怎样的运算呢?返回的是什么形状的数组呢?在网上查了很多资料,总是似懂非懂,查阅了官方文件,以及多次试验后,...
  • Numpy中axis=0与axis=1的区分 1.问题描述 在使用Numpy中某些函数时,可能会遇到aixs=0与aixs=1的理解困惑。例如: 对于函数1:数组拼接函数numpy.concatenate((a1,a2,…), axis=0),...a1=np.array([1,2,3]) a...
  • axis=0:沿着行的方向跨列 axis=1:沿着列的方向跨行 2、引用一个动画视图来说明: 3、代码举例: Part 3-1 import numpy as np x = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) print ("x= \n",x) x=...
  • python中axis=0和axis=1的理解

    千次阅读 多人点赞 2020-02-23 15:49:22
    axis的重点在于方向,而不是行和列。1表示横轴,方向从左到右;0表示纵轴,方向从上到下。 即axis=1为横向,axis=0为纵向,而不是行和列,具体到各种用法而言也是如此。 当axis=1时,如果是求平均,那么是从左到右...
  • 【NumPy】sum(axis=0/1/2..)用图片解释

    万次阅读 2020-02-17 14:11:59
    1. numpy.sum(axis=0/1/2)结果对比 import numpy # a.shape=(2,3,4) 2页3行4列 即:2个3行4列的二维矩阵 a = numpy.array([ [[1,2,3,4], [5,6,7,8], [9,10,11,12]], [[11,12,13,14], [15,16,17,18], ...
  • 在学习Pandas的过程中碰到里面有一些函数都包含了axis这个参数,但是这参数包含两个值0和1,而且0和1代表不同的含义,这也让我学的有点懵逼,于是网上查阅了一些相关资料把学习心得记录下来。 以下面这张图为例,...
  • axis=1和axis=0的区别

    千次阅读 2019-11-19 15:18:15
    axis=1和axis=0的区别 一般axis=1,表示逐行读取,符合用户的理解顺序 看官方手册:...
  • 对二维数组而言,一般来说axis=1表示对行进行操作,axis=0表示对列进行操作。 以sort1、mean2为例进行描述 sort >>> import numpy as np >>> a = np.array([[1,4],[3,1]]) >>> np.sort(a...
  • axis=0 与 axis=1 的区分

    万次阅读 多人点赞 2018-12-05 10:14:30
    官方帮助的解释: ...当axis=1时,数组的变化是横向的,体现出列的增加或者减少。反之,当axis=0时,数组的变化是纵向的,体现出行的增加或减少。 下图为dataframe中axis为0和1时的图示:  ...
  • Python学习笔记——参数axis=0,1,2...

    千次阅读 2018-06-06 17:49:43
    在Python程序中,当需要对一些多维的数组或...axis=0/1/2该怎么区别?下面通过一段示例程序来学习。(1)首先定义一个2x3x4的三维数组a:a = [[[1,2 ,3 ,4 ], [5,6 ,7 ,8 ], [9,10,11,12]], [[13,14,15,16], ...
  • numpy.max(a, axis=1),中的axis=1, 指的是沿着列(第2个维度)进行,最终返回的数组中元素个数和axis=1中元素个数相同。 举例子: a = np.linspace(1, 12, 12).reshape(3, 4) a 得到: array([[ 1., 2., 3., 4.],...
  • python中axis=0 axis=1的理解

    万次阅读 多人点赞 2018-08-17 09:35:34
    而坐标轴是有方向的,所以千万不要用行和列的思维去想axis,因为行和列是没有方向的,这样想会在遇到不同的例子时感到困惑。   根据官方的说法,1表示横轴,方向从左到右;0表示纵轴,方向从上到下。当ax...
  • python中 axis=0 与 axis=1 的理解

    千次阅读 2019-08-28 16:10:18
    axis=0 : 表示纵轴,进行操作的方向为从上到下 axis=1 : 表示横轴,进行操作的方向为从左到右 引用一张图帮助理解: 图片引用源:https://www.cnblogs.com/rrttp/p/8028421.html ...
  • 对数据比如二维矩阵进行操作时,经常需要在横轴(行)方向或者纵轴(列)方向对数据进行操作,这时需要设定参数axis的值: axis = 0 代表对横轴(行)操作,也就是第0轴; axis = 1 代表对纵轴(列)操作,也就是...
  • python中的axis究竟是如何定义的呢?他们究竟代表是DataFrame的行还是列? 直接上代码 people=DataFrame(np.random.randn(5,5), columns=['a','b','c','d','e'], index=['Joe','Steve','Wes','Jim','Travis']) ...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 401,638
精华内容 160,655
关键字:

axis=2