精华内容
下载资源
问答
  • 如何度量项目的总体进展

    千次阅读 2021-04-07 09:58:31
    在跟踪项目的总体进展时,传统的方法是采用挣值图进行跟踪,敏捷的方法是采用燃尽图或燃起图进行跟踪,精益的方法是采用累积流量图跟踪总体进展。在一家公司内有采用短周期迭代开发的,有采用传统瀑布模式开发的,有...

           在跟踪项目的总体进展时,传统的方法是采用挣值图进行跟踪,敏捷的方法是采用燃尽图或燃起图进行跟踪,精益的方法是采用累积流量图跟踪总体进展。在一家公司内有采用短周期迭代开发的,有采用传统瀑布模式开发的,有新品开发的项目,也有软件维护的项目,那么有无一种适合于所有类型项目的统一方法跟踪项目的总体进展呢?下面就介绍一种计算简单、易于理解的方法,它可以跟踪总体进展,也可以适合跟踪局部进展。

    两个度量元

    1 时间流逝百分比(TEPTime elapsed percentage

    时间流逝百分比=已经流逝的时间/项目计划总工期

    例如项目计划工期为100天,到目前为止已经过去了20天,则时间流逝百分比为20%。

    问题1:工期,流逝的时间是否包含节假日呢?

    答:理想的情况是要扣除节假日,但是人们习惯上所说的工期都是包含节假日的,而且如果要扣除节假日就会带来计算的复杂性。所以实际计算时,如果项目工期很长,可以包含节假日在里面,如果项目工期很短比如不超过3个月,可以很容易的扣除节假日,那么就扣除节假日。所以,这个度量元可以有2个公式:

            时间流逝百分比=已经流逝的自然天数/(项目计划结束日期-项目计划开始日期)

            时间流逝百分比=(已经流逝的自然天数-节假日天数)/(项目计划结束日期-项目计划开始日期-节假日天数)

    问题2: 如果需求不明确,没有项目计划总工期,怎么办?

    此时是否有阶段工期呢?如果有,就让分母为已知的阶段总工期!

    问题3: 工期的计量单位是否可以是周?

    可以。如果以周为单位进行跟踪,分子与分母的计量单位可以都是周!

    2 任务完成百分比(TCPTask completion percentage

    任务完成百分比=已经完成的任务/项目计划总任务数

    例如项目WBS分解完成后,计划的明细任务总数为100个,到当前位置已经完成了30个任务,则TCP为30%。

    问题1:任务有大有小,怎么办?

    答:限定任务分解的颗粒度,使任务具有可比性。比如每个任务的分解颗粒度在0.5人天到5人天之间,或者1人天到10人天之内,尽量不要让最大任务的工作量:最小任务的工作量超过10。把任务拆分到可比的颗粒度是本方法的唯一前提。

    问题2:  一开始任务识别不完备,后期有增加任务怎么办?

    对于未完成的任务可以进行增加、减少、拆分任务。此时公式中的项目计划总任务数进行调整即可。

    如果需求不明确,TEP的分布为阶段总工期,此时的计划总任务数也是当前阶段的计划总任务数。

    问题3: 何谓“已经完成”?

    项目组定义规则,判断每个任务是否已经完成即可。

    问题4: 何谓“任务”?

    任务可以是需求,可以是缺陷修复,可以是一个会议,可以是其他一个活动等等。项目组可以根据自己的习惯来定义。比如在迭代开发中,所有的任务可以都是一个用户故事;在瀑布开发中,任务可以是需求开发活动、评审活动、文档编写活动、编码活动、测试活动等等。

    问题5: 如果是已完成任务的返工,如何处理?

    对于费时较少的任务,可以不单独计数为任务。如果返工的任务费时较多,超过当前已识别任务的最小工时,可以单独计数为任务。

    一张趋势图

    对于TEP与TCP可以在一种图上进行展示。举例说明如下。某项目持续15周的项目总体进展的原始数据如下:

    周次TEPTCP任务总数当期完成任务数累计完成任务数
    16.67%8.00%10088
    213.33%18.00%1001018
    320.00%19.09%110321
    426.67%23.64%110526
    533.33%27.50%120733
    640.00%34.17%120841
    746.67%40.80%1251051
    853.33%52.80%1251566
    960.00%62.31%1301581
    1066.67%64.44%135687
    1173.33%67.14%140794
    1280.00%75.86%14516110
    1386.67%86.67%15020130
    1493.33%96.67%15015145
    15100.00%100.00%1505150

    基于上述的数据画总体进展趋势图如下:

    ​​​​​​​

     

           横坐标为时间,可以日期或周次,纵坐标为TEP与TCP,TEP为基准线,当TCP在TEP之下时,说明存在进度风险,二者距离越远,风险越大。当TCP在TEP之上,项目进展顺利或估算太悲观。

    展开全文
  • 自述文件 该存储库是做什么用的? 快速总结 版本 如何设置? Java:jdk1.8.0_11 Android Studio:1.1.0 在本地驱动器上创建目录 运行“ git init”(创建本地git仓库) “ git远程添加来源......
  • 在正则统计模型中,广义似然比检验其方法简洁而有效。但在经济、生物学等领域中有着广泛的应用的混合总体中,因其正则条件不再成立,...概述了在混合模型中广义似然比检验研究的进展,特别是检验统计量渐近分布的新进展
  • 电气设备行业深度报告:上半年总体平淡,关注工控复苏和泛在进展.pdf
  • 背景与目的:慢性萎缩性胃炎是一种已知的胃癌癌前病变,总体5年生存率不到20%。 然而,在中国尚无新数据描述从萎缩性胃炎(AG)到胃癌的进展速度。 我们回顾性分析了AG患者的胃癌风险,旨在确定中国内镜诊断AG的...
  • 【知识图谱】知识图谱的基础概念与构建流程

    千次阅读 多人点赞 2019-11-09 18:46:49
    接下来,本文将以知识抽取、知识表示、知识融合以及知识推理技术为重点,选取代表性的方法,说明其中的相关研究进展和实用技术手段 。 5.1 知识提取 知识抽取主要是面向开放的链接数据,通常典型的输入是自然...

    目录

    1、引言

    2、知识图谱的定义

    3、知识图谱的架构

    3.1 知识图谱的逻辑结构

    3.2 知识图谱的体系架构

    4、代表性知识图谱库

    5、知识图谱构建的关键技术

    5.1 知识提取

    5.2 知识表示

    5.3 知识融合


    【导读】知识图谱技术是人工智能技术的组成部分,其强大的语义处理和互联组织能力,为智能化信息应用提供了基础。我们专知的技术基石之一正是知识图谱-构建AI知识体系-专知主题知识树简介。下面我们特别整理了关于知识图谱的技术全面综述,涵盖基本定义与架构、代表性知识图谱库、构建技术、开源库和典型应用。

    1、引言

    随着互联网的发展,网络数据内容呈现爆炸式增长的态势。由于互联网内容的大规模、异质多元、组织结构松散的特点,给人们有效获取信息和知识提出了挑战。知识图谱(Knowledge Graph) 以其强大的语义处理能力和开放组织能力,为互联网时代的知识化组织和智能应用奠定了基础。最近,大规模知识图谱库的研究和应用在学术界和工业界引起了足够的注意力[1-5]。一个知识图谱旨在描述现实世界中存在的实体以及实体之间的关系。知识图谱于2012年5月17日由[Google]正式提出[6],其初衷是为了提高搜索引擎的能力,改善用户的搜索质量以及搜索体验。随着人工智能的技术发展和应用,知识图谱作为关键技术之一,已被广泛应用于智能搜索、智能问答、个性化推荐、内容分发等领域。

    2、知识图谱的定义

    在维基百科的官方词条中:知识图谱是Google用于增强其搜索引擎功能的知识库。本质上, 知识图谱旨在描述真实世界中存在的各种实体或概念及其关系,其构成一张巨大的语义网络图,节点表示实体或概念,边则由属性或关系构成。现在的知识图谱已被用来泛指各种大规模的知识库。 在具体介绍知识图谱的定义,我们先来看下知识类型的定义:

    知识图谱中包含三种节点:

    实体: 指的是具有可区别性且独立存在的某种事物。如某一个人、某一个城市、某一种植物等、某一种商品等等。世界万物有具体事物组成,此指实体。如图1的“中国”、“美国”、“日本”等。,实体是知识图谱中的最基本元素,不同的实体间存在不同的关系。

    语义类(概念):具有同种特性的实体构成的集合,如国家、民族、书籍、电脑等。 概念主要指集合、类别、对象类型、事物的种类,例如人物、地理等。

    内容: 通常作为实体和语义类的名字、描述、解释等,可以由文本、图像、音视频等来表达。

    属性(值): 从一个实体指向它的属性值。不同的属性类型对应于不同类型属性的边。属性值主要指对象指定属性的值。如图1所示的“面积”、“人口”、“首都”是几种不同的属性。属性值主要指对象指定属性的值,例如960万平方公里等。

    关系: 形式化为一个函数,它把kk个点映射到一个布尔值。在知识图谱上,关系则是一个把kk个图节点(实体、语义类、属性值)映射到布尔值的函数。

    基于上述定义。基于三元组是知识图谱的一种通用表示方式,即,其中,是知识库中的实体集合,共包含|E|种不同实体; 是知识库中的关系集合,共包含|R|种不同关系;代表知识库中的三元组集合。三元组的基本形式主要包括(实体1-关系-实体2)和(实体-属性-属性值)等。每个实体(概念的外延)可用一个全局唯一确定的ID来标识,每个属性-属性值对(attribute-value pair,AVP)可用来刻画实体的内在特性,而关系可用来连接两个实体,刻画它们之间的关联。如下图1的知识图谱例子所示,中国是一个实体,北京是一个实体,中国-首都-北京 是一个(实体-关系-实体)的三元组样例北京是一个实体 ,人口是一种属性2069.3万是属性值。北京-人口-2069.3万构成一个(实体-属性-属性值)的三元组样例。

    微信图片_20170930152906.jpg

    图1 知识图谱示例

    3、知识图谱的架构

    知识图谱的架构包括自身的逻辑结构以及构建知识图谱所采用的技术(体系)架构。

    3.1 知识图谱的逻辑结构

    知识图谱在逻辑上可分为模式层与数据层两个层次,数据层主要是由一系列的事实组成,而知识将以事实为单位进行存储。如果用(实体1,关系,实体2)、(实体、属性,属性值)这样的三元组来表达事实,可选择图数据库作为存储介质,例如开源的Neo4j[7]、Twitter的FlockDB[8]、sones的GraphDB[9]等。模式层构建在数据层之上,是知识图谱的核心,通常采用本体库来管理知识图谱的模式层。本体是结构化知识库的概念模板,通过本体库而形成的知识库不仅层次结构较强,并且冗余程度较小。

    3.2 知识图谱的体系架构

    图2 知识图谱的技术架构

    知识图谱的体系架构是其指构建模式结构,如图2所示。其中虚线框内的部分为知识图谱的构建过程,也包含知识图谱的更新过程。知识图谱构建从最原始的数据(包括结构化、半结构化、非结构化数据)出发,采用一系列自动或者半自动的技术手段,从原始数据库和第三方数据库中提取知识事实,并将其存入知识库的数据层和模式层,这一过程包含:信息抽取、知识表示、知识融合、知识推理四个过程,每一次更新迭代均包含这四个阶段。知识图谱主要有自顶向下(top-down)与自底向上(bottom-up)两种构建方式。自顶向下指的是先为知识图谱定义好本体与数据模式,再将实体加入到知识库。该构建方式需要利用一些现有的结构化知识库作为其基础知识库,例如Freebase项目就是采用这种方式,它的绝大部分数据是从维基百科中得到的。自底向上指的是从一些开放链接数据中提取出实体,选择其中置信度较高的加入到知识库,再构建顶层的本体模式[10]。目前,大多数知识图谱都采用自底向上的方式进行构建,其中最典型就是Google的Knowledge Vault[11]和微软的Satori知识库。现在也符合互联网数据内容知识产生的特点。

    4、代表性知识图谱库

    根据覆盖范围而言,知识图谱也可分为开放域通用知识图谱和垂直行业知识图谱[12]。开放通用知识图谱注重广度,强调融合更多的实体,较垂直行业知识图谱而言,其准确度不够高,并且受概念范围的影响,很难借助本体库对公理、规则以及约束条件的支持能力规范其实体、属性、实体间的关系等。通用知识图谱主要应用于智能搜索等领域。行业知识图谱通常需要依靠特定行业的数据来构建,具有特定的行业意义。行业知识图谱中,实体的属性与数据模式往往比较丰富,需要考虑到不同的业务场景与使用人员。下图展示了现在知名度较高的大规模知识库。

    微信图片_20170930153056.jpg

    图3 代表性知识图谱库概览

    5、知识图谱构建的关键技术

    大规模知识库的构建与应用需要多种技术的支持。通过知识提取技术,可以从一些公开的半结构化、非结构化和第三方结构化数据库的数据中提取出实体、关系、属性等知识要素。知识表示则通过一定有效手段对知识要素表示,便于进一步处理使用。然后通过知识融合,可消除实体、关系、属性等指称项与事实对象之间的歧义,形成高质量的知识库。知识推理则是在已有的知识库基础上进一步挖掘隐含的知识,从而丰富、扩展知识库。分布式的知识表示形成的综合向量对知识库的构建、推理、融合以及应用均具有重要的意义。接下来,本文将以知识抽取、知识表示、知识融合以及知识推理技术为重点,选取代表性的方法,说明其中的相关研究进展和实用技术手段 。

    5.1 知识提取

    知识抽取主要是面向开放的链接数据,通常典型的输入是自然语言文本或者多媒体内容文档(图像或者视频)等。然后通过自动化或者半自动化的技术抽取出可用的知识单元,知识单元主要包括实体(概念的外延)、关系以及属性3个知识要素,并以此为基础,形成一系列高质量的事实表达,为上层模式层的构建奠定基础。

    1.1 实体抽取

    实体抽取也称为命名实体学习(named entity learning) 或命名实体识别 (named entity recognition),指的是从原始数据语料中自动识别出命名实体。由于实体是知识图谱中的最基本元素,其抽取的完整性、准确率、召回率等将直接影响到知识图谱构建的质量。因此,实体抽取是知识抽取中最为基础与关键的一步。参照文献[13],我们可以将实体抽取的方法分为4种:基于百科站点或垂直站点提取、基于规则与词典的方法、基于统计机器学习的方法以及面向开放域的抽取方法。基于百科站点或垂直站点提取则是一种很常规基本的提取方法;基于规则的方法通常需要为目标实体编写模板,然后在原始语料中进行匹配;基于统计机器学习的方法主要是通过机器学习的方法对原始语料进行训练,然后再利用训练好的模型去识别实体;面向开放域的抽取将是面向海量的Web语料[14]。

    1) 基于百科或垂直站点提取

    基于百科站点或垂直站点提取这种方法是从百科类站点(如维基百科、百度百科、互动百科等)的标题和链接中提取实体名。这种方法的优点是可以得到开放互联网中最常见的实体名,其缺点是对于中低频的覆盖率低。与一般性通用的网站相比,垂直类站点的实体提取可以获取特定领域的实体。例如从豆瓣各频道(音乐、读书、电影等)获取各种实体列表。这种方法主要是基于爬取技术来实现和获取。基于百科类站点或垂直站点是一种最常规和基本的方法。

    2) 基于规则与词典的实体提取方法

    早期的实体抽取是在限定文本领域、限定语义单元类型的条件下进行的,主要采用的是基于规则与词典的方法,例如使用已定义的规则,抽取出文本中的人名、地名、组织机构名、特定时间等实体[15]。文献[16]首次实现了一套能够抽取公司名称的实体抽取系统,其中主要用到了启发式算法与规则模板相结合的方法。然而,基于规则模板的方法不仅需要依靠大量的专家来编写规则或模板,覆盖的领域范围有限,而且很难适应数据变化的新需求。

    3) 基于统计机器学习的实体抽取方法

    鉴于基于规则与词典实体的局限性,为具更有可扩展性,相关研究人员将机器学习中的监督学习算法用于命名实体的抽取问题上。例如文献[17]利用KNN算法与条件随机场模型,实现了对Twitter文本数据中实体的识别。单纯的监督学习算法在性能上不仅受到训练集合的限制,并且算法的准确率与召回率都不够理想。相关研究者认识到监督学习算法的制约性后,尝试将监督学习算法与规则相互结合,取得了一定的成果。例如文献[18]基于字典,使用最大熵算法在Medline论文摘要的GENIA数据集上进行了实体抽取实验,实验的准确率与召回率都在70%以上。近年来随着深度学习的兴起应用,基于深度学习的命名实体识别得到广泛应用。在文献[19],介绍了一种基于双向LSTM深度神经网络和条件随机场的识别方法,在测试数据上取得的最好的表现结果。

    微信图片_20170930153146.jpg

    图4 基于BI-LSTM和CRF的架构

    4) 面向开放域的实体抽取方法

    针对如何从少量实体实例中自动发现具有区分力的模式,进而扩展到海量文本去给实体做分类与聚类的问题,文献[20]提出了一种通过迭代方式扩展实体语料库的解决方案,其基本思想是通过少量的实体实例建立特征模型,再通过该模型应用于新的数据集得到新的命名实体。文献[21]提出了一种基于无监督学习的开放域聚类算法,其基本思想是基于已知实体的语义特征去搜索日志中识别出命名的实体,然后进行聚类。

    1.2 语义类抽取

    语义类抽取是指从文本中自动抽取信息来构造语义类并建立实体和语义类的关联, 作为实体层面上的规整和抽象。以下介绍一种行之有效的语义类抽取方法,包含三个模块:并列度相似计算、上下位关系提取以及语义类生成 [22]。

    1) 并列相似度计算

    并列相似度计算其结果是词和词之间的相似性信息,例如三元组(苹果,梨,s1)表示苹果和梨的相似度是s1。两个词有较高的并列相似度的条件是它们具有并列关系(即同属于一个语义类),并且有较大的关联度。按照这样的标准,北京和上海具有较高的并列相似度,而北京和汽车的并列相似度很低(因为它们不属于同一个语义类)。对于海淀、朝阳、闵行三个市辖区来说,海淀和朝阳的并列相似度大于海淀和闵行的并列相似度(因为前两者的关联度更高)。

    当前主流的并列相似度计算方法有分布相似度法(distributional similarity) 和模式匹配法(pattern Matching)。分布相似度方法[23-24]基于哈里斯(Harris)的分布假设(distributional hypothesis)[25],即经常出现在类似的上下文环境中的两个词具有语义上的相似性。分布相似度方法的实现分三个步骤:第一步,定义上下文;第二步,把每个词表示成一个特征向量,向量每一维代表一个不同的上下文,向量的值表示本词相对于上下文的权重;第三步,计算两个特征向量之间的相似度,将其作为它们所代表的词之间的相似度。 模式匹配法的基本思路是把一些模式作用于源数据,得到一些词和词之间共同出现的信息,然后把这些信息聚集起来生成单词之间的相似度。模式可以是手工定义的,也可以是根据一些种子数据而自动生成的。分布相似度法和模式匹配法都可以用来在数以百亿计的句子中或者数以十亿计的网页中抽取词的相似性信息。有关分布相似度法和模式匹配法所生成的相似度信息的质量比较参见文献。

    2) 上下位关系提取

    该该模块从文档中抽取词的上下位关系信息,生成(下义词,上义词)数据对,例如(狗,动物)、(悉尼,城市)。提取上下位关系最简单的方法是解析百科类站点的分类信息(如维基百科的“分类”和百度百科的“开放分类”)。这种方法的主要缺点包括:并不是所有的分类词条都代表上位词,例如百度百科中“狗”的开放分类“养殖”就不是其上位词;生成的关系图中没有权重信息,因此不能区分同一个实体所对应的不同上位词的重要性;覆盖率偏低,即很多上下位关系并没有包含在百科站点的分类信息中。

    在英文数据上用Hearst 模式和IsA 模式进行模式匹配被认为是比较有效的上下位关系抽取方法。下面是这些模式的中文版本(其中NPC 表示上位词,NP 表示下位词):

    NPC { 包括| 包含| 有} {NP、}* [ 等| 等等]
    NPC { 如| 比如| 像| 象} {NP、}*
    {NP、}* [{ 以及| 和| 与} NP] 等 NPC
    {NP、}* { 以及| 和| 与} { 其它| 其他} NPC
    NP 是 { 一个| 一种| 一类} NPC

    此外,一些网页表格中包含有上下位关系信息,例如在带有表头的表格中,表头行的文本是其它行的上位词。

    3) 语义类生成

    该模块包括聚类和语义类标定两个子模块。聚类的结果决定了要生成哪些语义类以及每个语义类包含哪些实体,而语义类标定的任务是给一个语义类附加一个或者多个上位词作为其成员的公共上位词。此模块依赖于并列相似性和上下位关系信息来进行聚类和标定。有些研究工作只根据上下位关系图来生成语义类,但经验表明并列相似性信息对于提高最终生成的语义类的精度和覆盖率都至关重要。

    1.3 属性和属性值抽取

    属性提取的任务是为每个本体语义类构造属性列表(如城市的属性包括面积、人口、所在国家、地理位置等),而属性值提取则为一个语义类的实体附加属性值。属性和属性值的抽取能够形成完整的实体概念的知识图谱维度。常见的属性和属性值抽取方法包括从百科类站点中提取,从垂直网站中进行包装器归纳,从网页表格中提取,以及利用手工定义或自动生成的模式从句子和查询日志中提取。

    常见的语义类/ 实体的常见属性/ 属性值可以通过解析百科类站点中的半结构化信息(如维基百科的信息盒和百度百科的属性表格)而获得。尽管通过这种简单手段能够得到高质量的属性,但同时需要采用其它方法来增加覆盖率(即为语义类增加更多属性以及为更多的实体添加属性值)。

    微信图片_20170930153321.jpg

    图5 爱因斯坦信息页

    由于垂直网站(如电子产品网站、图书网站、电影网站、音乐网站)包含有大量实体的属性信息。例如上图的网页中包含了图书的作者、出版社、出版时间、评分等信息。通过基于一定规则模板建立,便可以从垂直站点中生成包装器(或称为模版),并根据包装器来提取属性信息。从包装器生成的自动化程度来看,这些方法可以分为手工法(即手工编写包装器)、监督方法、半监督法以及无监督法。考虑到需要从大量不同的网站中提取信息,并且网站模版可能会更新等因素,无监督包装器归纳方法显得更加重要和现实。无监督包装器归纳的基本思路是利用对同一个网站下面多个网页的超文本标签树的对比来生成模版。简单来看,不同网页的公共部分往往对应于模版或者属性名,不同的部分则可能是属性值,而同一个网页中重复的标签块则预示着重复的记录。

    属性抽取的另一个信息源是网页表格。表格的内容对于人来说一目了然,而对于机器而言,情况则要复杂得多。由于表格类型千差万别,很多表格制作得不规则,加上机器缺乏人所具有的背景知识等原因,从网页表格中提取高质量的属性信息成为挑战。

    上述三种方法的共同点是通过挖掘原始数据中的半结构化信息来获取属性和属性值。与通过“阅读”句子来进行信息抽取的方法相比,这些方法绕开了自然语言理解这样一个“硬骨头”而试图达到以柔克刚的效果。在现阶段,计算机知识库中的大多数属性值确实是通过上述方法获得的。但现实情况是只有一部分的人类知识是以半结构化形式体现的,而更多的知识则隐藏在自然语言句子中,因此直接从句子中抽取信息成为进一步提高知识库覆盖率的关键。当前从句子和查询日志中提取属性和属性值的基本手段是模式匹配和对自然语言的浅层处理。图6 描绘了为语义类抽取属性名的主框架(同样的过程也适用于为实体抽取属性值)。图中虚线左边的部分是输入,它包括一些手工定义的模式和一个作为种子的(词,属性)列表。模式的例子参见表3,(词,属性)的例子如(北京,面积)。在只有语义类无关的模式作为输入的情况下,整个方法是一个在句子中进行模式匹配而生成(语义类,属性)关系图的无监督的知识提取过程。此过程分两个步骤,第一个步骤通过将输入的模式作用到句子上而生成一些(词,属性)元组,这些数据元组在第二个步骤中根据语义类进行合并而生成(语义类,属性)关系图。在输入中包含种子列表或者语义类相关模式的情况下,整个方法是一个半监督的自举过程,分三个步骤:

    模式生成:在句子中匹配种子列表中的词和属性从而生成模式。模式通常由词和属性的环境信息而生成。

    模式匹配。

    模式评价与选择:通过生成的(语义类,属性)关系图对自动生成的模式的质量进行自动评价并选择高分值的模式作为下一轮匹配的输入。

    1.3 关系抽取

    关系抽取的目标是解决实体语义链接的问题。关系的基本信息包括参数类型、满足此关系的元组模式等。例如关系BeCapitalOf(表示一个国家的首都)的基本信息如下:

    参数类型:(Capital, Country)
    模式:

    微信图片_20170930153412.jpg

    元组:(北京,中国);(华盛顿,美国);Capital 和 Country表示首都和国家两个语义类。

    早期的关系抽取主要是通过人工构造语义规则以及模板的方法识别实体关系。随后,实体间的关系模型逐渐替代了人工预定义的语法与规则。但是仍需要提前定义实体间的关系类型。 文献[26]提出了面向开放域的信息抽取框架 (open information extraction,OIE),这是抽取模式上的一个巨大进步。但OIE方法在对实体的隐含关系抽取方面性能低下,因此部分研究者提出了基于马尔可夫逻辑网、基于本体推理的深层隐含关系抽取方法[27]。

    开放式实体关系抽取

    开放式实体关系抽取可分为二元开放式关系抽取和n元开放式关系抽取。在二元开放式关系抽取中,早期的研究有KnowItAll[28]与TextRunner[27]系统,在准确率与召回率上表现一般。文献[29]提出了一种基于Wikipedia的OIE方法WOE,经自监督学习得到抽取器,准确率较TextRunner有明显的提高。针对WOE的缺点,文献[30]提出了第二代OIE ReVerb系统,以动词关系抽取为主。文献[31]提出了第三代OIE系统OLLIE(open language learning for information extraction),尝试弥补并扩展OIE的模型及相应的系统,抽取结果的准确度得到了增强。

    然而,基于语义角色标注的OIE分析显示:英文语句中40%的实体关系是n元的[32],如处理不当,可能会影响整体抽取的完整性。文献[33]提出了一种可抽取任意英文语句中n元实体关系的方法KPAKEN,弥补了ReVerb的不足。但是由于算法对语句深层语法特征的提取导致其效率显著下降,并不适用于大规模开放域语料的情况。

    基于联合推理的实体关系抽取

    联合推理的关系抽取中的典型方法是马尔可夫逻辑网MLN(Markov logic network)[34],它是一种将马尔可夫网络与一阶逻辑相结合的统计关系学习框架,同时也是在OIE中融入推理的一种重要实体关系抽取模型。基于该模型,文献[35]提出了一种无监督学习模型StatSnowball,不同于传统的OIE,该方法可自动产生或选择模板生成抽取器。在StatSnowball的基础上,文献[27,36]提出了一种实体识别与关系抽取相结合的模型EntSum,主要由扩展的CRF命名实体识别模块与基于StatSnowball的关系抽取模块组成,在保证准确率的同时也提高了召回率。文献[27,37]提出了一种简易的Markov逻辑TML(tractable Markov logic),TML将领域知识分解为若干部分,各部分主要来源于事物类的层次化结构,并依据此结构,将各大部分进一步分解为若干个子部分,以此类推。TML具有较强的表示能力,能够较为简洁地表示概念以及关系的本体结构。

    5.2 知识表示

    传统的知识表示方法主要是以RDF(Resource Description Framework资源描述框架)的三元组SPO(subject,property,object)来符号性描述实体之间的关系。这种表示方法通用简单,受到广泛认可,但是其在计算效率、数据稀疏性等方面面临诸多问题。近年来,以深度学习为代表的以深度学习为代表的表示学习技术取得了重要的进展,可以将实体的语义信息表示为稠密低维实值向量,进而在低维空间中高效计算实体、关系及其之间的复杂语义关联,对知识库的构建、推理、融合以及应用均具有重要的意义[38-40]。

    2.1 代表模型

    知识表示学习的代表模型有距离模型、单层神经网络模型、双线性模型、神经张量模型、矩阵分解模型、翻译模型等。详细可参见清华大学刘知远的知识表示学习研究进展。相关实现也可参见 [39]。

    1)距离模型

    距离模型在文献[41] 提出了知识库中实体以及关系的结构化表示方法(structured embedding,SE),其基本思想是:首先将实体用向量进行表示,然后通过关系矩阵将实体投影到与实体关系对的向量空间中,最后通过计算投影向量之间的距离来判断实体间已存在的关系的置信度。由于距离模型中的关系矩阵是两个不同的矩阵,使得协同性较差。

    2)单层神经网络模型

    文献[42]针对上述提到的距离模型中的缺陷,提出了采用单层神经网络的非线性模型(single layer model,SLM),模型为知识库中每个三元组(h,r,t) 定义了以下形式的评价函数:

    微信图片_20170930153950.png

    式中, ut的T次幂∈R的k次幂为关系 r 的向量化表示;g()为tanh函数; Mr,1×Mr,2∈R的k次幂是通过关系r定义的两个矩阵。单层神经网络模型的非线性操作虽然能够进一步刻画实体在关系下的语义相关性,但在计算开销上却大大增加。

    3)双线性模型

    双 线 性 模 型 又 叫 隐 变 量 模 型 (latent factor model,LFM),由文献[43-44]首先提出。模型为知识库中每个三元组 定义的评价函数具有如下形式:

    微信图片_20170930154623.png

    式中,Mr∈R的d×d次幂是通过关系r 定义的双线性变换矩阵;
    lh×lt∈R的d次幂是三元组中头实体与尾实体的向量化表示。双线性模型主要是通过基于实体间关系的双线性变换来刻画实体在关系下的语义相关性。模型不仅形式简单、易于计算,而且还能够有效刻画实体间的协同性。基于上述工作,文献[45]尝试将双线性变换矩阵r M 变换为对角矩阵, 提出了DISTMULT模型,不仅简化了计算的复杂度,并且实验效果得到了显著提升。

    4)神经张量模型

    文献[45]提出的神经张量模型,其基本思想是:在不同的维度下,将实体联系起来,表示实体间复杂的语义联系。模型为知识库中的每个三元组(h,r,t)定义了以下形式的评价函数:

    微信图片_20170930154916.png

    式中, ut的T次幂∈R的k次幂为关系 r 的向量化表示;g()为tanh函数; Mr∈d×k×k是一个三阶张量;Mr,1×Mr,2∈R的k次幂是通过关系r定义的两个矩阵。

    神经张量模型在构建实体的向量表示时,是将该实体中的所有单词的向量取平均值,这样一方面可以重复使用单词向量构建实体,另一方面将有利于增强低维向量的稠密程度以及实体与关系的语义计算。

    5)矩阵分解模型

    通过矩阵分解的方式可得到低维的向量表示,故不少研究者提出可采用该方式进行知识表示学习,其中的典型代表是文献[46]提出的RESACL模型。在RESCAL模型中,知识库中的三元组集合被表示为一个三阶张量,如果该三元组存在,张量中对应位置的元素被置1,否则置为0。通过张量分解算法,可将张量中每个三元组(h,r,t)对应的张量值解为双线性模型中的知识表示形式lh的T次幂×Mr×lt并使|Xhrt-lh的T次幂×Mr×l|尽量小。

    6)翻译模型

    文献[47]受到平移不变现象的启发,提出了TransE模型,即将知识库中实体之间的关系看成是从实体间的某种平移,并用向量表示。关系lr可以看作是从头实体向量到尾实体向量lt的翻译。对于知识库中的每个三元组(h,r,t),TransE都希望满足以下关系|lh+lt≈lt|:,其损失函数为:fr(h,t)=|lh+lr-lt|L1/L2, 该模型的参数较少,计算的复杂度显著降低。与此同时,TransE模型在大规模稀疏知识库上也同样具有较好的性能和可扩展性。

    2.2 复杂关系模型

    知识库中的实体关系类型也可分为1-to-1、1-to-N、N-to-1、N-to-N4种类型[47],而复杂关系主要指的是1-to-N、N-to-1、N-to-N的3种关系类型。由于TransE模型不能用在处理复杂关系上[39],一系列基于它的扩展模型纷纷被提出,下面将着重介绍其中的几项代表性工作。

    1)TransH模型

    文献[48]提出的TransH模型尝试通过不同的形式表示不同关系中的实体结构,对于同一个实体而言,它在不同的关系下也扮演着不同的角色。模型首先通过关系向量lr与其正交的法向量wr选取某一个超平面F, 然后将头实体向量lh和尾实体向量lt法向量wr的方向投影到F, 最后计算损失函数。TransH使不同的实体在不同的关系下拥有了不同的表示形式,但由于实体向量被投影到了关系的语义空间中,故它们具有相同的维度。

    2)TransR模型

    由于实体、关系是不同的对象,不同的关系所关注的实体的属性也不尽相同,将它们映射到同一个语义空间,在一定程度上就限制了模型的表达能力。所以,文献[49]提出了TransR模型。模型首先将知识库中的每个三元组(h, r,t)的头实体与尾实体向关系空间中投影,然后希望满足|lh+lt≈lt|的关系,最后计算损失函数。

    文献[49]提出的CTransR模型认为关系还可做更细致的划分,这将有利于提高实体与关系的语义联系。在CTransR模型中,通过对关系r 对应的头实体、尾实体向量的差值lh-lt进行聚类,可将r分为若干个子关系rc 。

    3)TransD模型

    考虑到在知识库的三元组中,头实体和尾实体表示的含义、类型以及属性可能有较大差异,之前的TransR模型使它们被同一个投影矩阵进行映射,在一定程度上就限制了模型的表达能力。除此之外,将实体映射到关系空间体现的是从实体到关系的语 义联系,而TransR模型中提出的投影矩阵仅考虑了不同的关系类型,而忽视了实体与关系之间的交互。因此,文献[50]提出了TransD模型,模型分别定义了头实体与尾实体在关系空间上的投影矩阵。

    4)TransG模型

    文献[51]提出的TransG模型认为一种关系可能会对应多种语义,而每一种语义都可以用一个高斯分布表示。TransG模型考虑到了关系r 的不同语义,使用高斯混合模型来描述知识库中每个三元组(h,r,t)头实体与尾实体之间的关系,具有较高的实体区分度。

    5)KG2E模型

    考虑到知识库中的实体以及关系的不确定性,文献[52]提出了KG2E模型,其中同样是用高斯分布来刻画实体与关系。模型使用高斯分布的均值表示实体或关系在语义空间中的中心位置,协方差则表示实体或关系的不确定度。

    知识库中,每个三元组(h,r,t)的头实体向量与尾实体向量间的

    微信图片_20170930160102.png

    关系r可表示为:

    微信图片_20170930160147.png

    5.3 知识融合

    通过知识提取,实现了从非结构化和半结构化数据中获取实体、关系以及实体属性信息的目标。但是由于知识来源广泛,存在知识质量良莠不齐、来自不同数据源的知识重复、层次结构缺失等问题,所以必须要进行知识的融合。知识融合是高层次的知识组织[53],使来自不同知识源的知识在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等步骤[54],达到数据、信息、方法、经验以及人的思想的融合,形成高质量的知识库。

    3.1 实体对齐

    实体对齐 (entity alignment) 也称为实体匹配 (entity matching)或实体解析(entity resolution)或者实体链接(entity linking),主要是用于消除异构数据中实体冲突、指向不明等不一致性问题,可以从顶层创建一个大规模的统一知识库,从而帮助机器理解多源异质的数据,形成高质量的知识。

    在大数据的环境下,受知识库规模的影响,在进行知识库实体对齐时,主要会面临以下3个方面的挑战[55]:1) 计算复杂度。匹配算法的计算复杂度会随知识库的规模呈二次增长,难以接受;2) 数据质量。由于不同知识库的构建目的与方式有所不同,可能存在知识质量良莠不齐、相似重复数据、孤立数据、数据时间粒度不一致等问题[56];3) 先验训练数据。在大规模知识库中想要获得这种先验数据却非常困难。通常情况下,需要研究者手工构造先验训练数据。

    基于上述,知识库实体对齐的主要流程将包括[55]:1) 将待对齐数据进行分区索引,以降低计算的复杂度;2) 利用相似度函数或相似性算法查找匹配实例;3) 使用实体对齐算法进行实例融合;4) 将步骤2)与步骤3)的结果结合起来,形成最终的对齐结果。对齐算法可分为成对实体对齐与集体实体对齐两大类,而集体实体对齐又可分为局部集体实体对齐与全局集体实体对齐。

    1)成对实体对齐方法

    ① 基于传统概率模型的实体对齐方法

    基于传统概率模型的实体对齐方法主要就是考虑两个实体各自属性的相似性,而并不考虑实体间的关系。文献[57]将基于属性相似度评分来判断实体是否匹配的问题转化为一个分类问题,建立了该问题的概率模型,缺点是没有体现重要属性对于实体相似度的影响。文献[58]基于概率实体链接模型,为每个匹配的属性对分配了不同的权重,匹配准确度有所提高。文献[59]还结合贝叶斯网络对属性的相关性进行建模,并使用最大似然估计方法对模型中的参数进行估计。

    ② 基于机器学习的实体对齐方法

    基于机器学习的实体对齐方法主要是将实体对齐问题转化为二分类问题。根据是否使用标注数据可分为有监督学习与无监督学习两类,基于监督学习的实体对齐方法主要可分为成对实体对齐、基于聚类的对齐、主动学习。

    通过属性比较向量来判断实体对匹配与否可称为成对实体对齐。这类方法中的典型代表有决策树 [60]、支持向量机[61]、集成学习[62]等。文献[63]使用分类回归树、线性分析判别等方法完成了实体辨析。文献[64]基于二阶段实体链接分析模型,提出了一种新的SVM分类方法,匹配准确率远高于TAILOR中的混合算法。

    基于聚类的实体对齐算法,其主要思想是将相似的实体尽量聚集到一起,再进行实体对齐。文献[65]提出了一种扩展性较强的自适应实体名称匹配与聚类算法,可通过训练样本生成一个自适应的距离函数。文献[66]采用类似的方法,在条件随机场实体对齐模型中使用监督学习的方法训练产生距离函数,然后调整权重,使特征函数与学习参数的积最大。

    在主动学习中,可通过与人员的不断交互来解决很难获得足够的训练数据问题,文献[67]构建的ALIAS系统可通过人机交互的方式完成实体链接与去重的任务。文献[68]采用相似的方法构建了ActiveAtlas系统。

    2)局部集体实体对齐方法

    局部集体实体对齐方法为实体本身的属性以及与它有关联的实体的属性分别设置不同的权重,并通过加权求和计算总体的相似度,还可使用向量空间模型以及余弦相似性来判别大规模知识库中的实体的相似程度[69],算法为每个实体建立了名称向量与虚拟文档向量,名称向量用于标识实体的属性,虚拟文档向量则用于表示实体的属性值以及其邻居节点的属性值的加权和值[55]。为了评价向量中每个分量的重要性,算法主要使用TF-IDF为每个分量设置权重,并为分量向量建立倒排索引,最后选择余弦相似性函数计算它们的相似程度[55]。该算法的召回率较高,执行速度快,但准确率不足。其根本原因在于没有真正从语义方面进行考虑。

    3)全局集体实体对齐方法

    ① 基于相似性传播的集体实体对齐方法

    基于相似性传播的方法是一种典型的集体实体对齐方法,匹配的两个实体与它们产生直接关联的其他实体也会具有较高的相似性,而这种相似性又会影响关联的其他实体[55]。

    相似性传播集体实体对齐方法最早来源于文献[70-71]提出的集合关系聚类算法,该算法主要通过一种改进的层次凝聚算法迭代产生匹配对象。文献[72]在以上算法的基础上提出了适用于大规模知识库实体对齐的算法SiGMa,该算法将实体对齐问题看成是一个全局匹配评分目标函数的优化问题进行建模,属于二次分配问题,可通过贪婪优化算法求得其近似解。SiGMa方法[55]能够综合考虑实体对的属性与关系,通过集体实体的领域,不断迭代发现所有的匹配对。

    ② 基于概率模型的集体实体对齐方法基于概率模型的集体实体对齐方法主要采用统计关系学习进行计算与推理,常用的方法有LDA模型[73]、CRF模型[74]、Markov逻辑网[75]等。

    文献[73]将LDA模型应用于实体的解析过程中,通过其中的隐含变量获取实体之间的关系。但在大规模的数据集上效果一般。文献[74]提出了一种基于图划分技术的CRF实体辨析模型,该模型以观察值为条件产生实体判别的决策,有利于处理属性间具有依赖关系的数据。文献[66]在CRF实体辨析模型的基础上提出了一种基于条件随机场模型的多关系的实体链接算法,引入了基于canopy的索引,提高了大规模知识库环境下的集体实体对齐效率。文献[75]提出了一种基于Markov逻辑网的实体解析方法。通过Markov逻辑网,可构建一个Markov网,将概率图模型中的最大可能性计算问题转化为典型的最大化加权可满足性问题,但基于Markov网进行实体辨析时,需要定义一系列的等价谓词公理,通过它们完成知识库的集体实体对齐。

    3.2 知识加工

    通过实体对齐,可以得到一系列的基本事实表达或初步的本体雏形,然而事实并不等于知识,它只是知识的基本单位。要形成高质量的知识,还需要经过知识加工的过程,从层次上形成一个大规模的知识体系,统一对知识进行管理。知识加工主要包括本体构建与质量评估两方面的内容。

    1)本体构建

    本体是同一领域内不同主体之间进行交流、连通的语义基础,其主要呈现树状结构,相邻的层次节点或概念之间具有严格的“IsA”关系,有利于进行约束、推理等,却不利于表达概念的多样性。本体在知识图谱中的地位相当于知识库的模具,通过本体库而形成的知识库不仅层次结构较强,并且冗余程度较小。

    展开全文
  • 自动驾驶概述

    万次阅读 2020-02-08 20:27:27
    提出到2020年,掌握智能辅助驾驶总体技术及各项关键技术,初步建立智能网联汽车自主研发体系及生产配套体系 2015年 国务院 《关于积极推进“互联网+”行动的指导意见》...

    随着5G逐渐走进人们的视线,自动驾驶汽车成为一个社会热门话题。那么自动驾驶究竟是什么样的?它真的能实现吗?什么时候我们才能真正使用上呢?

    汽车是当今社会的主要交通工具之一,自动驾驶汽车是目前可以看到,并能通过技术手段可以实现的汽车现阶段终极目标。

    自动驾驶是分阶段实现的,目前处于初级阶段,就是车本身的各种驾驶辅助系统以及自动驾驶的进化和配套系统的建立,重点在于解决如何提高汽车驾驶的安全性和可操控性;其高级阶段将是完全的、无人驾驶的智能汽车,彻底将人从方向盘后解脱出来,而汽车可以像人类一样具备感知、分析、判断能力。智能汽车现阶段也分两个发展方向,一类是汽车个体自动化系统控制,靠自主式的传感器,完全不需要依靠互联网;另外一类是智能网联汽车,也就是汽车自动驾驶技术+车联网。这是新兴的发展模式,是ICT和汽车产业的跨界结合出现的创新技术方向。两个方向都能实现自动驾驶的最终目标,中国大力推崇的是智能网联模式。

     

    一、智能化汽车发展

     

    • 智能车的概念

    智能车(Intelligent Vehicle ,IV)是一个集环境感知、动态决策与规划、智能控制与执行等多功能于一体的综合系统,相关技术涉及信息工程、控制科学与工程、计算机科学、机械工程、数理科学、生命科学等诸多学科,是衡量一个国家科研实力和工业水平的重要标志。

    • 智能化现状

    智能驾驶是汽车驾驶系统物化驾驶员在长期驾驶实践中,对“环境感知-决策规划-控制执行”过程的理解、学习和记忆。

     

     

    环境感知作为第一环节,是智能驾驶的典型应用场景,例如激光雷达与摄像头的车辆检测技术中,需要对数据做聚类处理;线性回归算法、支持向量机算法、人工神经网络算法也常用于车道线和交通标志的检测。它处于智能驾驶车辆与外界环境信息交互的重要地位,其关键在于使智能驾驶车辆更好地模拟人类驾驶员的感知能力,从而理解自身和周边的驾驶态势。

    决策规划是智能驾驶的主要应用场景,状态机、决策树、贝叶斯网络等技术已经有大量的应用。近年来兴起的深度学习与强化学习能通过大量的机器学习做出对复杂情况的决策,并能进行在线学习优化。由于需要较多的计算资源,是当前计算机与互联网领域内,研究自动驾驶决策规划系统的热门技术。

    控制执行:智能控制方法主要有基于模型的控制、神经网络控制和深度学习等方法。

     

    世界各国都在积极制定自动驾驶技术路线图,推动自动驾驶汽车的发展,如美国在80年代初已经开始自动驾驶技术的军事化应用;欧洲从80年代中期开始研发自动驾驶车辆,更多强调单车自动化、智能化的发展;日本的自动驾驶研发略晚于欧美,更多关注于采用智能安全系统降低事故发生率、以及采用车间通信方式辅助驾驶。

    由于深度学习算法的引入,汽车智能化技术有了爆发性的突破,成为汽车产业化发展的重要突破口,2009年谷歌开始研发自动驾驶,引发了新一轮的自动驾驶产业热潮,更多科技企业加入市场争夺中。

     

    与欧美等发达国家相比,我国的自动驾驶研发起步相对较晚,自上个世纪90年代起,我国各高校和研究机构陆续开展自动驾驶的研发工作,推出多个测试车型;2009年以来,国家自然科学基金委员会举办“中国智能和未来挑战赛”,为国内智能车技术和交流起到很好的促进作用,在此期间一汽、北汽等传统车企也逐步布局自动驾驶。

     

    二、网联化现状

     

    网联化是指汽车依靠通信技术,将车本身和其它相关联的因素数据通过网络联系在一起,这个网络就叫车联网。车联网的概念源于物联网,即车辆物联网,是以行驶中的车辆为信息感知对象,借助新一代信息通信技术,实现车与X(即车与车-V2V、人-V2P、路-V2I、服务平台-V2N)之间的全方位网络连接,实现了 “三网融合”,将车内网、车际网和车载移动互联网进行融合。车联网利用传感技术感知车辆的状态信息,并借助无线通信网络与现代智能信息处理技术实现交通的智能化管理,以及交通信息服务的智能决策和车辆的智能化控制。

     

     

    车联网是一个很宽泛的领域,从车内发展到车外,正在从车内娱乐导航服务向汽车数据中心发展,内涵不断延伸。目前车联网有两个世界标准流派:一个是IEEE基于WIFI制定的DSRC(Dedicated Short Range Communications,专用短程通信技术),获得通用、丰田、雷诺、恩智浦、AutoTalks和Kapsch TrafficCom 等的支持;另一个是由3GPP通过拓展通信LTE标准制定的C-V2X,并向5G演进,获得多家车企和通信企业的支持,如:福特、宝马、奥迪、戴姆勒、本田、现代、日产、沃尔沃、PSA Group、华为、爱立信、高通、英特尔、三星等。C-V2X的成员显然比DSRC要壮观。

     

    两种技术标准各有千秋,国际上对于车联网到底采用哪种标准,尚未达成一致。业界专家存在三种观点:一种是DSRC技术已经成熟,其经过多年的测试与验证,可行性已经得到验证,同时网络、芯片等产业链相对成熟,没有理由放弃;另外也有观点认为,LTE-V2X技术具备技术优势,其安全性和可靠性都更胜一筹,更有前景;此外还有观点表示,汽车与手机不同,是有本国属性但一般不会大量跨国行驶,因此,不同国家可以使用不同技术。中国有通信网络覆盖广和用户量庞大的优势,一直以来都是LTE-V2X的积极倡导者。

     

    汽车发展经历了机械化和电气化升级,目前又到了一个上台阶的关头。网联时代汽车产品需要创新的重点转向数字化技术,如云平台、人工智能、机器学习等。目前,最基本的车载内嵌网联设备装车率2017年还普遍低于20%,尽管众多厂家的2025年远期规划都近乎100%标配,但当下发展依然缓慢,真正起飞要至少等到2020年。

     

    三、智能网联化

    智能化和网联化相结合成为未来自动驾驶汽车产业发展的重要方向,在智能网联汽车的技术演进过程中,智能化及网联化两者的发展相互促进,不可分割,从而实现完全自动驾驶的最高目标。

    受制于技术和网络覆盖,车联网的价值还远没有被挖掘出来,大多还停留在娱乐和导航的单车、单用户服务,但车联网作为汽车互联网络,尤其是在5G移动网络普及后,可以将衣食住行都连接起来,汽车的内涵由此也在发生改变。5G通信网络的高速、低时延数据传输、高容量、低失真、低误码都为这种模式提供了技术可能。所以,智能化和网联化的结合,可以为汽车智能化系统提供更多、更详细、更准确的数据,以供机器学习,促进智能系统演义进化。

     

    网联汽车会采集、产生大量实时数据,如行驶过程中“(汽)车、(道)路、(数据)云、(路)网、(地) 图五大基本要素交互的数据。诸如汽车和驾驶人信息,汽车信息包括:汽车位置和周边环境信息,以及汽车诊断信息、保养信息、安全信息(门窗开闭,安全气囊使用)、性能信息(发动机和变速箱状态,电池电量)、行驶信息(燃油消耗量,速度,刹车加速,方向盘);驾驶人信息(包括地理位置、用户模式、驾驶历史)等。一辆汽车一天大概产生500GB左右数据,数据主要由汽车制造商安装车载内嵌SIM卡来收集,这就是学习素材的来源。自动驾驶技术其核心决策者是人工智能(AI)系统,就需要大量数据进行训练,现在开展自动驾驶技术的公司可以获得的数据仍然是少量的,有些是在使用模拟数据训练人工智能,大量实际使用数据是自动驾驶技术发展不可或缺的一部分。因此自动驾驶的智能汽车不是一蹴而就的,它的进化发展是靠不断的技术产品迭代,循序渐进实现目标,一个完善的车联网,是促进实现自动驾驶的前置条件之一。

     

    四、我国智能网联汽车政策及标准概况

     

    时间

    发布机构

    政策、标准

    主要内容

    2011年

    国务院

    《中华人民共和国居民经济和社会发展第十二个五年规划》

    国家把车联网列入重大专项

    2011年

    国务院

    《国家“十二五”科学和技术规划》

    车联网项目被列为国家重大专项(第三专项)中的重要项目,首期投入资金打百亿

    2012年

    交通部

    《2012-2020交通运输业智能智能交通发展战略》

    标志着智能交通上升到国家战略,交通部启动的新一代智能交通体系发展战略和应用车联网技术推进现代交通运输策略重大研究项目,为未来5-10年的发展进行谋划

    2013 年

    国务院

    《国务院关于推进物联网有序健康发展的指导意见》

    将车联网作为物联网的核心应用领域

    2015年

    国务院

    《中国制造2025》

    提出到2020年,掌握智能辅助驾驶总体技术及各项关键技术,初步建立智能网联汽车自主研发体系及生产配套体系

    2015年

    国务院

    《关于积极推进“互联网+”行动的指导意见》

    提出通过基础设施、运输工具、运行信息等互联网化,推进基于互联网平台的便捷化交通运输服务发展

    2015年

    工信部

    《车联网发展创新行动计划(2015-2020年)》

    推动车联网技术研发和标准制定,组织发展车联网试点、基于5G技术的车联网示范

    2016年

    工信部

    《智能网联汽车发展技术路线图》

    为行业发展提供清晰思路和方向,同时为相关政策和行业标准的推出奠定基础

    2016年

    国家质检总局

    《装备制造业和质量提供规划》

    加快开展智能网联汽车标准化工作

    2016年

    发改委、交通部

    《推进“互联网+”便捷交通促进智能交通发展的实施方案》

    从“智能”和“网联”连个方面提出加大研发和示范效应的要求

    2016年

    工信部、公安部、交通部

    《智能网联汽车公共道路适应性验证规范》

    对测试车辆、测试道路、测试驾驶人、路试信息记录等相关要是提出了基本要求

    2016年

    中国汽车工程学会、智能交通联盟

    启动ADAS相关标准研究与制定工作

    主要包括AEB、DSB、LKA、自动泊车等标准、并发布了C-NCAP的2018版的详细试验及评分方案

    2016年

    交通部

    《营运客车安全技术条件(JT/T19042016)》

    要求9m以上的营运客车加装车道偏离预警系统(LDWS)以及符合标准的自动紧急自动系统(AEBS)功能

    2017年

    中国智能网联产业创新联盟

    《合作式智能交通系统车用通信系统应用层及应用数据交互标准》

    中国汽车工程学学会的团体标准、填补了国内V2X应用层标准的空白

    2017年

    国务院

    《新一代人工智能发展规划》

    构建开放协同的人工智能科技创新体系,明确提出发展自动驾驶汽车等智能运载工具

    2018年4月

    工信部、交通部、公安部

    《智能网联汽车道路测试管理规范(试行)》

    明确道路测试的管理要求和职责分工规范和统一各地方基础性检测项目和测试规程

    2018年6月

    工信部

    车联网(智能网联汽车)直连通信使用5905-5925MHz频段的管理规定(征求意见稿)

    拟规划5905-5925MHz频段作为LTE-V2X技术的车联网(智能网联汽车)直连通信工作频段

    2018年6月

    工信部、国家标准委

    《国家车联网产业标准体系建设指南(智能网联汽车)》

    明确智能网联汽车标准体系建设的指导思想、基本原则、建设目标和标准体系框架

    2018年7月

    交通部

    《自动驾驶封闭场地建设技术指南》

    国家部委出台的第一部关于自动驾驶风暴测试场地建设技术的规范性文件

    2018年12月

    工信部

    《车联网(智能网联汽车)产业发展行动计划》

    到2020年,实现车联网(智能网联汽车)产业跨行业融合取得突破,具备高级别自动驾驶功能的智能网联汽车实现特点场景应用,车联网综合应用体系基本构建

    2019年3月

    发展改革委、生态环境部、商务部

    《推动重点消费品更新升级 畅通资源循环利用实施方案(2019-2020年)》

    推动智能汽车创新发展。加强汽车制造、信息通信、互联网等领域企业深度合作,组织实施智能汽车关键技术攻关,重点开展车载传感器、芯片、中央处理器、操作系统等研发与产业化。坚持自主式和网联式相结合的发展模式,培育具有国际竞争力的智能汽车品牌。


    五、 智能网联汽车未来发展所面临的问题 

     

    智能网联汽车的愿景非常美好, 自动驾驶未来也一定会实现, 但征途不会平坦。要实现高级别的自动驾驶, 智能网联汽车产业发展过程中仍然有很多问题需要解决:一是提升关键技术掌控能力,如传感器、控制器、执行器等智能网联汽车核心电子件、车载智能化软硬件平台、智能感知部件、先进能源动力平台、车载通信系统等方面;二是智能网联汽车制造及配套体系仍需完善,传统汽车制造领域在智能网联汽车技术积累与产品研发方面存在局限性,适应智能网联汽车制造的新型智能化汽车制造能力尚有不足;三是传统汽车设计制造与计算、通信等能力在融合与协调还需要加强,从而进一步适应快速发展的汽车网联化、智能化的需求;四是智能交通还需加强统筹规划,在智能路网、运管运控平台、应用示范等方面有待统一标准、提升能力;五是构建智能网联汽车安全保障体系,如汽车接入授权、个人信息数据、云端控制、等安全问题仍需进一步探索和提升。

     

    六、智能网联车标准及法律突破方向

     

    智能网联汽车相关技术标准尚处于建设初期,现有标准大部分是行业标准,难以满足智能网联快速、跨行业、融合发展的需求,目前国际上进行自动驾驶技术研发的国家和领头企业,都在试图抢先制定出相应的行业标准,成为这个领域的引领者。

    近年来,我国相继出台了《国家车联网产业标准体系建设指南(智能网联汽车)》、《2019年智能网联汽车标准化工作要点》等标准定制指导性文件,分为总体要求、智能网联汽车、信息通信、电子产品与服务等部分,目前已取得了阶段性进展,近期在高级驾驶辅助系统方面已经有6项标准完成了标准审查,进入到报批阶段,还有9项标准目前正在立项,编制相关的标准草案。

     

     

    在法律层面,尚未针对智能网联汽车做出调整,《道路交通安全法》、《公路法》、《保险法》等都不涉及自动驾驶方面内容。智能网联汽车不仅仅关系到车辆制造者,同时还有网络提供者、云端运营者、道路建设维护者等,每一个元素都是至关重要的因子,自动驾驶的社会化,将彻底颠覆这几者间的法律关系。要厘清各自的责任与义务是必须的,这需要法律法规作为保障。还有《网络安全法》、《测绘法》等都存在不适用于智能网联汽车技术产业化的规定。例如现行的《道路交通安全法》未有涉及到关于智能网联汽车的相关条例,因此,智能网联汽车只能遵守机动车上道路行驶以及机动车试验的一般规定。

     

    结语:

    智能网联汽车不只是一种交通工具,它将成为一张巨大交通网络上的智能终端、一个完全自动行走的机器。它作为一种社会生活、生产工具,影响着人、车、物、路、自然环境等的因素,人们需要考量其安全性要远高于其运输载体的属性。所以,如何将一套冷冰冰的机器培养训练成为精密的人脑,任重而道远!

    展开全文
  • 总结了国际5G总体进展及趋势,包括国际电信联盟(ITU)在未来用户、业务趋势、5G关键能力需求等方面的核心研究成果和制定的5G工作计划,3GPP的5G工作计划以及欧盟METIS科技项目的主要研究内容及成果;并介绍了NGMN ...
  • matlab人脸识别论文

    万次阅读 多人点赞 2019-10-11 17:41:51
    虽然人脸识别方法的分类标准可能有所不同,但是8前的研究主要有两个方向,一类是从人脸图像整体(Holistic Approaches)出发,基于图像的总体信息进行分类识别,他重点考虑了模式的整体属性,其中较为著名的方法有:...

    摘 要

     本文设计了一种基于BP神经网络的人脸识别系统,并对其进行了性能分析。该系统首先利用离散小波变换获取包含人脸图像大部分原始信息的低频分量,对图像数据进行降维;再由PCA算法对人脸图像进行主成分特征提取,进--步降低图像数据的处理量;最后使用经过训练后的BP神经网络对待测人脸进行分类识别。详细介绍了离散小波变换PCA特征提取以及BP神经网络分类设计。通过系统仿真实验与分析发现:人脸特征的提取是该系统的关键;同时,由于人脸灰度信息的统计特征与有监督训练BP神经网络分类器,使该系统只在固定类别,并且光照均匀的人脸识别应用场景中具有较高的识别准确率。因此,很难在复杂环境中应用。
    

    关键词:人脸识别;人工神经网络;离散小波变换; PCA; BP神经网络
    Abstract
    In this paper, a face recognition system based on BP neural network is designed and its performance is analyzed. The system first uses discrete wavelet transform to obtain the low-frequency components which contain most of the original information of the face image, and then uses PCA algorithm to extract the principal component features of the face image, progressively reducing the processing capacity of the image data. Finally, the trained BP neural network is used to classify and recognize the tested face. Discrete wavelet transform PCA feature extraction and BP neural network classification design are introduced in detail. Through the system simulation experiment and analysis, it is found that the extraction of facial features is the key of the system. At the same time, because of the statistical features of gray information and the supervised training of BP neural network classifier, the system only has a high recognition accuracy in fixed categories and uniform illumination of face recognition application scenarios. Therefore, it is difficult to apply in complex environment.

    Key words: face recognition; artificial neural network; discrete wavelet transform; PCA; BP neural network
    1绪论

      人脸识别是模式识别研究的一个热点,它在身份鉴别、信用卡识别,护照的核对及监控系统等方面有着I泛的应用。人脸图像由于受光照、表情以及姿态等因索的影响,使得同一个人的脸像矩阵差异也比较大。因此,进行人脸识别时,所选取的特征必须对上述因素具备-一定的稳定性和不变性。主元分析(PCA)方法是一种有效的特征提取方法,将人脸图像表示成一一个列向量,经过PCA变换后,不仅可以有效地降低其维数,同时又能保留所需要的识别信息,这些信息对光照、表情以及姿态具有一定的不敏感性。 在获得有效的特征向量后,关键问题是设计具有良好分类能力和鲁棒性的分类器、支持向量机(SVI )模式识别方法,兼顾调练误差和泛化能力,在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势。
    

    1.1人脸识别技术的细节

    一般来说,人脸识别系统包括图像提取、人脸定位、图形预处理、以及人脸识别(身份确认或者身份查找)。系统输入一般是一张或者一系列含有未确定身份的人脸图像,以及人脸数据库中的若干已知身份的人脸图像或者相应的编码,而其输出则是一系列相似度得分,表明待识别的人脸的身份。
    1.2人脸识别技术的广泛应用

    一项技术的问世和发展与人类的迫切需求是密切相关的,快速发展的社会经济和科学技术使得人类对安全(包括人身安全、隐私保护等)得认识越来越重视。人脸识别得一个重要应用就是人类的身份识别。一-般来说, 人类得身份识别方式分为三类:
    1.特征物品,包括各种证件和凭证,如身份证、驾驶证、房门钥匙、印章等;
    2.特殊知识,包括各种密码、口令和暗号等;

    3.人类生物特征,包括各种人类得生理和行为特征,如人脸、指纹、手形、掌纹、虹膜. DNA、签名、语音等。前两类识别方式属于传统的身份识别技术,其特点是方便、快捷,但致命的缺点是安全性差、易伪造、易窃取。特殊物品可能会丢失、偷盗和复制,特殊知识可以被遗忘、混淆和泄漏。相比较而言,由于生物特征使人的内在属性,具有很强的自身稳定性和个体差异性,因此生物特征是身份识别的最理想依据。基于以上相对独特的生物特征,结合计算机技术,发展了众多的基于人类生物特征的身份识别技术,如DNA识别技术、指纹识别技术、虹膜识别技术、语音识别技术和人脸识别技术等。生物识别技术在上个世纪已经有了- -定得发展,其中指纹识别技术已经趋近成熟,但人脸识别技术的研究还处于起步阶段。指纹、虹膜、掌纹等识别技术都需要被识别者的配合,有的识别技术还需要添置复杂昂贵的设备。人脸识别可以利用已有的照片或是摄像头远距离捕捉图像,无需特殊的采集设备,系统的成本低。并且自动人脸识别可以在当事人毫无觉察的情况下完成身份确认识别工作,这对反恐怖活动有非常重要的意义。基于人脸识别技术具有如此多的优势,因此它的应用前最非常广阔,已成为最具潜力的生物特征识别技术之一
    1.3人脸识别技术的难点

      虽然人类可以毫不困难地根据人脸来辨别一个人,但是利用计算机进行完全自动的人脸识别仍然有许多困难。人脸模式差异性使得人脸识别成为-个非常困难的问题,表现在以下方面:
    
      1.人脸表情复杂,人脸具有多样的变化能力,人的脸上分布着Ii十多块面部肌肉,这些肌肉的运动导致不同面部表情的出现,会造成人脸特征的显著改变。
    
      2.随着年龄而改变,随着年龄的增长,皱纹的出现和面部肌肉的松驰使得人脸的结构和纹理都将发生改变。
    
      3.人脸有易变化的附加物,例如改变发型,留胡须,戴帽子或眼镜等饰物。4.人脸特征遮掩,人脸全部、部分遮掩将会造成错误识别。
    
      5.人脸图像的畸变,由于光照、视角、摄取角度不同,可能造成图像的灰度。
    

    1.4国内外研究状况

    人脸识别是人类视觉最杰出的能力之-。 它的研究涉及模式识别、图像处理、生物学、心理学、认知科学,与基于其它生物特征的身份鉴别方法以及计算机人机感知交互领域都有密切联系。人脸识别早在六七十年代就引起了研究者的强烈兴趣。20世纪60年代,Bledsoe 提出了人脸识别的半自动系统模式与特征提取方法。70年代,美、英等发达国家开始重视人脸识别的研究工作并取得进展。1972 年,Harmon 用交互人脸识别方法在理论上与实践上进行了详细的论述。同年,Sakai 设计了人脸图像自动识别系统。80年代初
    T. Minami 研究出了优于Sakai的人脸图像自动识别系统。但早期的人脸识别一般都需要人的某些先验知识,无法摆脱人的干预。进入九十年代,由于各方面对人脸识别系统的迫切需求,人臉识别的研究变的非常热门。人脸识别的方法有了重大突破,进入了真正的机器自动识别阶段,如Kartbunen-Loeve变换等或新的神经网络技术。人脸识别研究

    得到了前所未有的重视,国际上发表有关人脸识别等方面的论文数量大幅度增加,仅从1990年到2000年之间,sCl 及EI可检索到的相关文献多达数千篇,这期间关于人脸识别的综述也屡屡可见。国外有许多学校在研究人脸识别技术,研究涉及的领域很广。这些研究受到军方、警方及大公司的高度重视和资助,国内的一些知名院校也开始从事人脸识别的研究。

      人脸识别是当前模式识别领域的一个前沿课题,但目前人脸识别尚处于研究课题阶段,尚不是实用化领域的活跃课题。虽然人类可以毫不困难地由人脸辨别一个人,但利用计算机进行完全自动的人脸识别存在许多困难,其表现在:人脸是非刚体,存在表情变化:人脸随年龄增长面变化:发型、眼镜等装饰对人脸造成遮挡:人脸所成图像受光照、成像角度、成像距离等影响。人脸识别的困难还在于图像包括大量的数据,输入的像素可能成百上千,每个像素都含有各自不同的灰度级,由此带来的计算的复杂度将会增加。现有的识别方法中,通过从人脸图像中提取出特征信息,来对数据库进行检索的方法速度快,而利用拓扑属性图匹配来确定匹配度的方法则相对较快。
    

    1.5人脸识别的研究内容

    人脸识别技术(AFR)就是利用计算机技术,根据数据库的人脸图像,分析提取出有效的识别信息,用来“辨认”身份的技术。人脸识别技术的研究始于六十年代末七十年代初,其研究领城涉及图像处理、计算机视觉、模式识别、计算机智能等领城,是伴随着现代化计算机技术、数据库技术发展起来的综合交叉学科。
    1.5.1人脸识别研究内容

      人脸识别的研究范围广义上来讲大致包括以下hi个方面的内容。
    
      1.人脸定位和检测(Face Detection) :即从动态的场景与复杂的背景中检测出人臉的存在并且确定其位置,最后分离出来。这一任务主要受到光照、噪声、面部倾斜以及各种各样遮挡的影响。
    
      2.人脸表征(Face Representation) (也称人脸特征提取) :即采用某种表示方法来表示检测出人脸与数据库中的已知人脸。通常的表示方法包括几何特征(如欧氏距离、曲率、角度)、代数特征(如矩阵特征向量)、固定特征模板等。
    
      3.人脸识别(Face Recogni tion) :即将待识别的人脸与数据库中已知人脸比较,得出相关信息。这一过程的核心是选择适当的人脸表征方法与匹配策略。
    
      4.表情姿态分析(Expression/Gesture Analysis) :即对待识别人脸的表情或姿态信息进行分析,并对其加以归类。
    
    
      5.生理分类(Physical Classi fication) :即对待识别人脸的生理特征进行分析,得出其年龄、性别等相关信息,或者从几幅相关的图像推导出希望得到的人脸图像,如从父母图像推导出孩子脸部图像和基于年龄增长的人脸图像估算等。
    
      人臉识别的研究内容,从生物特征技术的应用前景来分类,包括以下两个方面:人脸验证与人脸识别。
    
      1.人脸验证((Face Veri ficat ion/Authenticat ion):即是回答“是不是某人?"的问题.它是给定一幅待识别人脸图像,判断它是否是某人的问题,属于一对一的两类模式分类问题,主要用于安全系统的身份验证。
    
      2.人脸识别(Face 。Recognition) :即是回答“是谁”的问题。它是给定-幅待识别人脸图像,再已有的人脸数据库中,判断它的身份的问题。它是个“-对多”的多类模式分类问题,通常所说的人脸识别即指此类问题,这也是本文的主要研究内容。
    

    1.5.2人脸识别系统的组成

      在人脸识别技术发展的几十年中,研究者们提出了多种多样的人脸识别方法,但大部分的人脸识别系统主要由三部分组成:图像预处理、特征提取和人脸的分类识别。一个完整的自动人脸识别系统还包括人脸检测定位和数据库的组织等模块,如图1.1.其中人脸检测和人脸识别是整个自动人脸识别系统中非常重要的两个环节,并且相对独立。下面分别介绍这两个环节。
    

    人脸检测与定位,检测图像中是否由人脸,若有,将其从背景中分割出来,并确定其在图
    像中的位置。在某些可以控制拍摄条件的场合,如警察拍罪犯照片时将人脸限定在标尺内,此时人脸的定位很简单。证件照背景简单,定位比较容易。在另一些情况下,人脸在图像
    中的位置预先是未知的,比如在复杂背景下拍摄的照片,这时人脸的检测与定位将受以下因素的影响: :

      1.人脸在图像中的位置、角度、不固定尺寸以及光照的影响:
    
      2.发型、眼睛、胡须以及人脸的表情变化等,3.图像中的噪声等。
    
      特征提取与人脸识别,特征提取之前一般都要敌几何归一化和灰度归一化的工作。前者指根据人脸定位结果将图像中的人脸变化到同一位置和大小:后者是指对图像进行光照补偿等处理,以克服光照变化的影响,光照补偿能够一定程度的克服光照变化的影响而提高识别率。提取出待识别的人脸特征之后,即进行特征匹配。这个过程是一对多或者一对一的匹配过程,前者是确定输入图像为图象库中的哪一个人(即人脸识别),后者是验证输入图像的人的身份是否属实(人脸验证).  
    

    以上两个环节的独立性很强。在许多特定场合下人脸的检测与定位相对比较容易,因此“特征提取与人脸识别环节”得到了更广泛和深入的研究。近几年随着人们越来越关心各种复杂的情形下的人臉自动识别系统以及多功能感知研究的兴起,人脸检测与定位才作为一个独立的模式识别问题得到了较多的重视。本文主要研究人脸的特征提取与分类识别的问题。

    2基于bp神经网络的人脸识别算法

      虽然人脸识别方法的分类标准可能有所不同,但是8前的研究主要有两个方向,一类是从人脸图像整体(Holistic Approaches)出发,基于图像的总体信息进行分类识别,他重点考虑了模式的整体属性,其中较为著名的方法有:人工神经网络的方法、统计模式的方法等。另一类是基于提取人脸图像的几何特征参数(Feature-Based Approaches), 例如眼、嘴和鼻子的特征,再按照某种距离准则进行分类识别。这种方法非常有效,因为人脸不是刚体,有着复杂的表情,对其严格进行特征匹配会出现困难。面分别介绍- -些常 用的方法,前两种方法属于从图像的整体方面进行研究,后三种方法主要从提取图像的局部特征讲行研究。
    
    
      2.1基于特征脸的方法
    

    特征脸方法(cigenface)是从生元分析方法PCA c Principal ComponentAnalysis 导出的一种人脸分析识别方法,它根据一-组人脸图像构造主元子空间,由于主元具有人脸的形状也称作特征脸。识别时将测试图像投影到主元子空间上得到了-组投影系数,然后和各个已知人的人脸图像进行比较识别,取得了很好的识别效果。在此基础上出现了很多特征脸的改进算法。

      特征脸方法原理简单、易于实现,它把人脸作为一个整体来处理,大大降低了识别复杂度。但是特征脸方法忽视了人脸的个性差异,存在着一定的理论缺陷。研究表明:特征脸方法随光线角度及人脸尺寸的影响,识别率会有所下降。
    

    2.2基于bp神经网络的方法

    一、实验要求采用三层前馈BP神经网络实现标准人脸YALE数据库的识别,编程语言为C系列语言。
    二、BP神经网络的结构和学习算法实验中建议采用如下最简单的三层BP神经网络,输入层为,有n个神经元节点,输出层具有m个神经元,网络输出为,隐含层具有k个神经元,采用BP学习算法训练神经网络。BP神经网络的结构BP网络在本质上是一种输入到输出的映射,它能够学习大量的输入与输出之间的映射关系,而不需要任何输入和输出之间的精确的数学表达式,只要用已知的模式对BP网络加以训练,网络就具有输入输出对之间的映射能力。BP网络执行的是有教师训练,其样本集是由形如(输入向量,期望输出向量)的向量对构成的。在开始训练前,所有的权值和阈值都应该用一些不同的小随机数进行初始化。BP算法主要包括两个阶段:

    2.2.1向前传播阶段

    ①从样本集中取一个样本(Xp,Yp),将Xp输入网络,其中Xp为输入向量,Yp为期望输出向量。
    ②计算相应的实际输出Op。在此阶段,信息从输入层经过逐级的变换,传送到输出层。这个过程也是网络在完成训练后正常运行时执行的过程。在此过程中,网络执行的是下列运算:

    (2) 向后传播阶段
    ①计算实际输出Op与相应的理想输出Yp的差;
    ②按极小化误差的方法调整权矩阵。这两个阶段的工作一般应受到精度要求的控制

    (1)作为网络关于第p个样本的误差测度(误差函数)。

    (2)如前所述,之所以将此阶段称为向后传播阶段,是对应于输入信号的正常传播而言的,也称之为误差传播阶段。为了更清楚地说明本文所使用的BP网络的训练过程,首先假设输入层、中间层和输出层的单元数分别是N、L和M。X=(x0,x1,…,xN-1)是加到网络的输入矢量,H=(h0,h1,…,hL-1)是中间层输出矢量,Y=(y0,y1,…,yM-1)是网络的实际输出矢量,并且用D=(d0,d1,…,dM-1)来表示训练组中各模式的目标输出矢量。输出单元i到隐单元j的权值是Vij,而隐单元j到输出单元k的权值是Wjk。另外用θk和Φj来分别表示输出单元和隐单元的阈值。于是,中间层各单元的输出为:

    (3)而输出层各单元的输出是:

    其中f(*)是激励函数,采用S型函数:

    2.2.2在上述条件下,网络的训练过程如下:

    (1) 选定训练集。由相应的训练策略选择样本图像作为训练集。
    (2) 初始化各权值Vij,Wjk和阈值Φj,θk,将其设置为接近于0的随机值,并初始化精度控制参数ε和学习率α。
    (3) 从训练集中取一个输入向量X加到网络,并给定它的目标输出向量D。
    (4) 利用式(3)计算出一个中间层输出H,再用式(4)计算出网络的实际输出Y。
    (5) 将输出矢量中的元素yk与目标矢量中的元素dk进行比较,计算出M个输出

    误差项:

    对中间层的隐单元也计算出L个误差项:

    (6) 依次计算出各权值和阈值的调整量:

    (8) 当k每经历1至M后,判断指标是否满足精度要求:E≤ε,其中E是总误差函数。

    如果不满足,就返回(3),继续迭代。如果满足,就进入下一步。
    (9) 训练结束,将权值和阈值保存在文件中。这时可以认为各个权值已经达到稳定,分类器形成。再一次进行训练时,直接从文件导出权值和阈值进行训练,不需要进行初始化。

    YALE数据库是由耶鲁大学计算视觉与扼制中心创立,包括15位志愿者,每个人有11张不同姿势、光照和表情的图片,共计165张图片,图片均为80*100像素的BMP格式图像。我们将整个数据库分为两个部分,每个人的前5幅图片作为网络的训练使用,后6副图片作为测试使用。测试样例:

    输入输出:

      神经网络在人脸识别应用中有很长的历史。早期用于人脸识别的神经网络主要是Kohonen自联想映射神经网络,用于人脸的“回忆”。所谓“回忆”是指当输入图像上的人脸受噪声污染严重或部分缺损时,能用Kohonen网络恢复出原来完整的人脸。Intrator 等人用一个无监督/监督混合神经网络进行人脸识别。其输入是原始图像的梯度图像,以此可以去除光照的变化。监督学习目的是寻找类的特征,有监督学习的目的是减少训练样本被错分的比例。这种网络提取的特征明显,识别率高,如果用几个网络同时运算,求其平均,识别效果还会提高。
    
      与其他类型的方法相比,神经网络方法在人脸识别上有其独到的优势,它避免了复:杂的特征提取工作,可以通过学习的过程获得其他方法难以实现的关于人脸识别的规律和规则的隐性表达。此外,神经网络以时示方式处理信息,如果能用硬件实现,就能显著提高速度。神经网络方法除了用于人脸识别外,还适用于性别识别、种族识别等。
    

    2.3弹性图匹配法

    弹性图匹配方法是-种基于动态链接结构DLA C Dynamic Link Architecture的方法。它将人脸用格状的稀疏图表示,图中的节点用图像位置的Gabor小波分解得到的特征向量标记,图的边用连接节点的距离向量标记。匹配时,首先J找与输入图像最相似的模型图,再对图中的每个节点位置进行最佳匹配,这样产生-一个变形图,其节点逼近模型图的对应点的位置。弹性图匹配方法对光照、位移、旋转及尺度变化都敏感。此方法的主要缺点是对每个存储的人臉需计算其模型图,计算量大,存储量大。为此,Wiskott 在原有方法的基础上提出聚東图匹配,部分克服了这些缺点。在聚束图中,所有节点都已经定位在相应目标上。对于大量数据库,这样可以大大减少识别时间。另外,利用聚束图还能够匹配小同人的最相似特征,因此可以获得关于未知人的性别、胡须和眼镜等相关信息。
    2.4基于模板匹配的方法
    模板匹配法是一-种经典的模式识别方法,这种方法大多是用归一一化和互相关,直接计算两副图像之间的匹配程度。由于这种方法要求两副图像上的目标要有相同的尺度、取向和光照条件,所以预处理要做尺度归一化和灰度归一化的工作。最简单的人脸模板是将人脸看成-一个椭圆,检测人臉也就是检测图像中的椭圆。另一种方法是将人脸用一-组独立的小模板表示,如眼睛模板、嘴巴模板、鼻子模板、眉毛模板和下巴模板等。但这些模板的获得必须利用各个特征的轮廓,而传统的基于边缘提取的方法很难获得较高的连续边缘。即使获得了可靠度高的边缘,也很难从中自动提取所需的特征量。模板匹配方法在尺度、光照、旋转角度等各种条件稳定的状态下,它的识别的效果优于其它方法,但它对光照、旋转和表情变化比较敏感,影响了它的直接使用。2.5基于人脸特征的方法人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以作为人脸识别的重要特征。几何特征最早是用于人脸检测轮廓的描述与识别,首先根据检测轮廓曲线确定若干显著点,并由这些显著点导出- -组用于识别的特征度量如距离、角度等。采用儿何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征。
    定位眼睛往往是提取人脸几何特征的第-步。由于眼睛的对称性以及眼珠呈现为低灰度值的圆形,因此在人脸图像清晰瑞正的时候,眼睛的提取是比较容易的。但是如果人脸图像模糊,或者噪声很多,则往往需要利用更多的信息(如眼睛和眉毛、鼻子的相对位置等),而且.这将使得眼睛的定位变得很复杂。而且实际图像中,部件未必轮廓分明,有时人用眼看也只是个大概,计算机提取就更成问题,因而导致描述同-一个人的不同人脸时,其模型参数可能相差很大,面失去识别意义。尽管如此,在正确提取部件以及表情变化微小的前提下,该方法依然奏效,因此在许多方面仍可应用,如对标准身份证照片的应用。

    2.5九个人脸库介绍

    1. FERET人脸数据库
      http://www.nist.gov/itl/iad/ig/colorferet.cfm
      由FERET项目创建,此图像集包含大量的人脸图像,并且每幅图中均只有一个人脸。该集中,同一个人的照片有不同表情、光照、姿态和年龄的变化。包含1万多张多姿态和光照的人脸图像,是人脸识别领域应用最广泛的人脸数据库之一。其中的多数人是西方人,每个人所包含的人脸图像的变化比较单一。

    2. CMU Multi-PIE人脸数据库
      http://www.flintbox.com/public/project/4742/
      由美国卡耐基梅隆大学建立。所谓“PIE”就是姿态(Pose),光照(Illumination)和表情(Expression)的缩写。CMU Multi-PIE人脸数据库是在CMU-PIE人脸数据库的基础上发展起来的。包含337位志愿者的75000多张多姿态,光照和表情的面部图像。其中的姿态和光照变化图像也是在严格控制的条件下采集的,目前已经逐渐成为人脸识别领域的一个重要的测试集合。

    3. YALE人脸数据库(美国,耶鲁大学)
      http://cvc.cs.yale.edu/cvc/projects/yalefaces/yalefaces.html
      由耶鲁大学计算视觉与控制中心创建,包含15位志愿者的165张图片,包含光照、表情和姿态的变化。
      Yale人脸数据库中一个采集志愿者的10张样本,相比较ORL人脸数据库Yale库中每个对象采集的样本包含更明显的光照、表情和姿态以及遮挡变化。

    4. YALE人脸数据库B
      https://computervisiononline.com/dataset/1105138686
      包含了10个人的5850幅在9种姿态,64种光照条件下的图像。其中的姿态和光照变化的图像都是在严格控制的条件下采集的,主要用于光照和姿态问题的建模与分析。由于采集人数较少,该数据库的进一步应用受到了比较大的限制。

    5. MIT人脸数据库
      由麻省理工大学媒体实验室创建,包含16位志愿者的2592张不同姿态(每人27张照片),光照和大小的面部图像。

    6. ORL人脸数据库
      https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
      由英国剑桥大学AT&T实验室创建,包含40人共400张面部图像,部分志愿者的图像包括了姿态,表情和面部饰物的变化。该人脸库在人脸识别研究的早期经常被人们采用,但由于变化模式较少,多数系统的识别率均可以达到90%以上,因此进一步利用的价值已经不大。
      ORL人脸数据库中一个采集对象的全部样本库中每个采集对象包含10幅经过归一化处理的灰度图像,图像尺寸均为92×112,图像背景为黑色。其中采集对象的面部表情和细节均有变化,例如笑与不笑、眼睛睁着或闭着以及戴或不戴眼镜等,不同人脸样本的姿态也有变化,其深度旋转和平面旋转可达20度。

    7. BioID人脸数据库
      https://www.bioid.com/facedb/
      包含在各种光照和复杂背景下的1521张灰度面部图像,眼睛位置已经被手工标注。

    8. UMIST图像集
      由英国曼彻斯特大学建立。包括20个人共564幅图像,每个人具有不同角度、不同姿态的多幅图像。

    9. 年龄识别数据集IMDB-WIKI
      https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/
      包含524230张从IMDB和Wikipedia爬取的名人数据图片。应用了一个新颖的化回归为分类的年龄算法。本质就是在0-100之间的101类分类后,对于得到的分数和0-100相乘,并将最终结果求和,得到最终识别的年龄

    3matlab分析人脸方法介绍
    人脸识别之一:查找图片中的人脸并用方框圈出
    这种类似于智能手机拍照时,屏幕里那个框任务头部的红框。大致步骤为:获取RGB图片—>转换为灰度图像—>图像处理—>人脸识别。代码如下:clear all
    clc

    %获取原始图片
    i=imread(‘face.jpg’);
    I=rgb2gray(i);
    BW=im2bw(I); %利用阈值值变换法将灰度图像转换成二进制图像
    figure(1);
    imshow(BW);
    %最小化背景
    [n1 n2]=size(BW);
    r=floor(n1/10);
    c=floor(n2/10);
    x1=1;x2=r;
    s=r*c;

    for i=1:10
    y1=1;y2=c;
    for j=1:10
    if(y2<=c || y2>=9c) || (x11 || x2r10)
    loc=find(BW(x1:x2,y1:y2)==0);
    [o p]=size(loc);
    pr=o*100/s;
    if pr<=100
    BW(x1:x2,y1:y2)=0;
    r1=x1;r2=x2;s1=y1;s2=y2;
    pr1=0;
    end
    imshow(BW);
    end
    y1=y1+c;
    y2=y2+c;
    end
    x1=x1+r;
    x2=x2+c;
    end
    figure(2)
    subplot(1,2,1);
    imshow(BW)
    title(‘图像处理’);
    %人脸识别
    L=bwlabel(BW,8);
    BB=regionprops(L,‘BoundingBox’);
    BB1=struct2cell(BB);
    BB2=cell2mat(BB1);

    [s1 s2]=size(BB2);
    mx=0;
    for k=3:4:s2-1
    p=BB2(1,k)*BB2(1,k+1);
    if p>mx && (BB2(1,k)/BB2(1,k+1))<1.8
    mx=p;
    j=k;
    end
    end
    subplot(1,2,2);
    title(‘人脸识别’);
    imshow(I);
    hold on;
    rectangle(‘Position’,[BB2(1,j-2),BB2(1,j-1),BB2(1,j),BB2(1,j)],‘EdgeColor’,‘r’)实验效果图:

             从实验效果图中,可以看出红框框出了人脸部分。
    

    人脸识别之二:由输入的人像识别出数据库中人像
    这种情况类似于手机人脸解锁,通过当前的人脸去和保存的人脸做比对来实现解锁等功能;从网上看了好多资料,由于个人能力有限大多都没仿真出来,最后通过学习PCA算法,了解到可通过PCA算法对输入矩阵降维,提取特征值和特征向量的方式来做人脸比对。具体的PCA的东西在这里不作介绍,主要介绍一下如何实现人脸比对。
    大致步骤:制作人脸数据样本—>PCA提取样本数据特征值—>人脸比对1.人脸样本
    从网上搜集了10张人脸图片,来制作成样本。

                         %读取转换10张图片,生成数据矩阵function ImgData = imgdata()  
    

    %导入图片
    picture1 = rgb2gray(imread(‘1.jpg’));
    picture2 = rgb2gray(imread(‘2.jpg’));
    picture3 = rgb2gray(imread(‘3.jpg’));
    picture4 = rgb2gray(imread(‘4.jpg’));
    picture5 = rgb2gray(imread(‘5.jpg’));
    picture6 = rgb2gray(imread(‘6.jpg’));
    picture7 = rgb2gray(imread(‘7.jpg’));
    picture8 = rgb2gray(imread(‘8.jpg’));
    picture9 = rgb2gray(imread(‘9.jpg’));
    picture10 = rgb2gray(imread(‘10.jpg’));
    [m,n] = size(picture1);
    picture_ten = {picture1,picture2,picture3,picture4,picture5,picture6,picture7,picture8,picture9,picture10};
    for i=1:10
    %把mn的矩阵变换成1(mn)的矩阵
    ImgData(i,:) = reshape(picture_ten{i},1,m
    n);
    end
    %数据范围缩小到0到1之间
    ImgData = double(ImgData)/255;

    PCA分析function Cell_ten = PCA(imgdata,k)
    [m,n] = size(imgdata);
    img_mean = mean(imgdata); %计算每列平均值
    img_mean_ten = repmat(img_mean,m,1); %复制m行平均值至矩阵img_mean_ten
    Z = imgdata - img_mean_ten;
    T = Z’Z;%协方差矩阵
    [V,D] = eigs(T,k); %计算T中最大的前k个特征值与特征向量
    img_new = imgdata
    V*D; %低维度下的各个人脸的数据
    Cell_ten = {img_new,V,D};3.通过输入测试人脸从数据库中找到相对应人脸function face= facefind(Cell_ten,testdata)%此函数代码借鉴于他人,还未征求其同意,这里就暂时略过这里testdata是测试图片的数据4.主程序调用img=imgdata(); %图片矩阵数据
    Cell_ten=PCA(img,2);% PCA
    face1=facefind(Cell_ten,imread(‘test.jpg’));%识别
    subplot(1,2,1)
    imshow(‘test.jpg’)
    title(‘测试图像’)
    subplot(1,2,2)
    imshow(strcat(num2str(face1),’.jpg’))
    title(‘数据库图像’)测试效果: 使用这个方式可以实现简单的人脸识别,但精确度不高;

    4 分析算法
    在人脸识别系统中有许多关键环节,其中最重要的莫过于特征提取。利用主成分分析法(PCA)进行特征提取是目前应用最多的提取方法。作为一种科学的统计方法,它在模式识别、信号处理、数字图像处理等等领域都有广泛涉猎。基于PCA中空间原始数据主要特征提取,减少数据冗余的思想,一些在低维特征空间的数据被处理,并合理保留了原始数据中有用的信息,数据空间中维数过高的问题也得以解决。
    4.1  主成分分析的基本原理

    实际上主成分分析就是一种数学降维演算方法,用若干个综合变量来代替原本更多的变量,让这些综合变量尽可能的实现对原有变量信息的取代,并保持彼此之间不存在关联。这种多变量化为少数相互无关的变量且信息量不变的统计分析方法就叫做主成分分析法。
      假设F1表示原变量的首个线性组合所组成的主要成分指标,就有F1=a11X1+a21X2+…ap1Xp。根据这个数学式可知,如果在每一个主成分中提取一个信息量,即可用方差(F1)进行度量,随着方差F1的增大,F1所包含的信息也就越多,同时它的线性组合选取也可表示为X1、X2…XP,它们都被称为方差F1中的第一主成分。如果第一主成分不足以代表原有的P个变量信息时,就可以考虑选取F2,即第二个线性组合,借由它来反映原本的有效信息。在F2中可以不显示第一主成分中已有的信息,以数学语言来表达要求的话即Cov(F1,F2)=0,其中F2为第二主成分。所以按照实际原变量的变化需求,就可以构造出多个主成分指标。
      4.2人脸识别的技术特点

    人脸识别是模式识别中的重要分支,它是指通过计算机系统来分析人脸图像,从中获取有价值的识别信息,从而辨识身份。所以说从技术特点上来看,人脸识别具有以下几个关键特色。
     1、PCA算法
    算法大致步骤:
    设有m条n维数据。
    1)将原始数据按列组成n行m列矩阵X;
    2)将X的每一行(这里是图片也就是一张图片变换到一行)进行零均值化,即减去这一行的均值(样本中心化和标准化);将所有的样本融合到一个矩阵里面特征向量就是变换空间的基向量U=[u1,u2,u3,u4,…],脑袋里面要想到一个样本投影变换就是该空间的一个点,然后对于许多点可以用KNN等不同的方法进行分类。
    3)求出协方差矩阵C=1mXXTC=1mXXT C=\frac {1 }{m } XX^TC=m1XXT;
    4)求出协方差矩阵的特征值及对应的特征向量;
    5)将特征向量按对应特征值大小从上到下按行排列成矩阵,取前k行组成矩阵P;
    6)Y=PXY=PX Y=PXY=PX即为降维到kk kk维后的数据。
      对数据进行中心化预处理,这样做的目的是要增加基向量的正交性,便于高维度向低纬度的投影,即便于更好的描述数据。
      对数据标准化的目的是消除特征之间的差异性,当原始数据不同维度上的特征的尺度不一致时,需要标准化步骤对数据进行预处理,使得在训练神经网络的过程中,能够加速权重参数的收敛。
      过中心化和标准化,最后得到均值为0,标准差为1的服从标准正态分布的数据。
      求协方差矩阵的目的是为了计算各维度之间的相关性,而协方差矩阵的特征值大小就反映了变换后在特征向量方向上变换的幅度,幅度越大,说明这个方向上的元素差异也越大(越有投影的必要,矩阵相乘的过程就是投影),故而选取合适的前k个能以及小的损失来大量的减少元数据的维度。

    2、PCA原理推导
    基于K-L展开的PCA特征提取:

    5.算法优化方法
    我用了三种方法对其进行优化
    1.采用动量梯度下降算法训练 BP 网络。
    训练样本定义如下:
    输入矢量为
    p =[-1 -2 3 1
    -1 1 5 -3]
    目标矢量为 t = [-1 -1 1 1]
    2. 采用贝叶斯正则化算法提高 BP 网络的推广能力。在本例中,我们采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。其中,样本数据可以采用如下MATLAB 语句生成:
    输入矢量:P = [-1:0.05:1];
    目标矢量:randn(’seed’,78341223);
    T = sin(2piP)+0.1randn(size§);
    3. 采用“提前停止”方法提高 BP 网络的推广能力。对于和例 2相同的问题,在本例中我们将采用训练函数 traingdx 和“提前停止”相结合的方法来训练 BP 网络,以提高 BP 网络的推广能力。在利用“提前停止”方法时,首先应分别定义训练样本、验证样本或测试样本,其中,验证样本是必不可少的。在本例中,我们只定义并使用验证样本,即有
    验证样本输入矢量:val.P = [-0.975:.05:0.975]
    验证样本目标矢量:val.T = sin(2
    pival.P)+0.1randn(size(val.P))
    值得注意的是,尽管“提前停止”方法可以和任何一种 BP 网络训练函数一起使用,但是不适合同训练速度过快的算法联合使用,比如 trainlm 函数,所以本例中我们采用训练速度相对较慢的变学习速率算法 traingdx 函数作为训练函数。
    参考文献

    [1] HongZiquan.AlgbricFeatureExcaciofmftfoReonino[JPatteo Recognition. 1991. 22 (1) :43~44.
    [2] Yuille A L Detcction Templates for Face Recognitio[JCognitive Neuroscience , 1991. 191-200
    [3]卢春雨张长水局城区城特征的快速人脸检测法[D北京:清华大学学报.1999.96 (1) ;4-6.
    [4]陈刚,减飞虎实用人脸识别系统的本征脸法实现[D]2001年5月230():45-46.
    [
    5]杜平,徐大为,刘重庆,基F整体特征的人脸识别方法的研究[12003年6月49 (3) ;382-383.
    [6] Chow G, Li X. Towards A System for Automatic Facial Feature Detctio[U] 1993. 2903)2-3.
    [7]杨变若,王煎法,杨未来人脸全局特iE识别研究[Z]1997年11月3(5):; 871-875.
    [8]边肇棋,张学工阎平凡等模式识别D]北京:清华大学出版社2000 302)16-17.

    致 谢

      从毕业设计的选题到论文的指导到最后定稿,期间遇到了无数的困难和阻碍,也曾想过对自己降低要求,也曾想过放弃最初想要坚持的设计,但是最后在孙老师和同学的鼓励和陪伴下,努力克服了所有的困难,独立完成了毕业设计和论文的书写。尤其是要感射我的论文指导老师孙老师,不厌其烦的对我的设计进行指导修改,耐心的帮助我改进设计帮助我搜集相关的资料,感谢孙老师如母亲--般的关怀,在孙老师身上不仅学习到了对学术严谨的态度,更被孙老师亲切无私的个人魅力所感染。
    
      还要感谢我的同学和其他所有的老师,他们严谨的学术态度,宽容待人严于律己的处世风范都使我受益良多。
    
    展开全文
  • 将待开发的软件系统模块化,可以分批次地提交软件产品,使用户可以及时了解软件项目的进展 以组件为单位进行开发 降低了软件开发的风险 。一个开发周期内的错误不会影响到整个软件系统 开发顺序灵活。开发人员...
  • 企业介绍,项目背景介绍,项目盈利模式,核心竞争力,业务创新模式,项目建设进展,组织方式,技术路线,资金使用情况,经济产业化指标,经济效益,社会效益,XXXX年发展规划,适合企业项目进展汇报,工作汇报的ppt...
  • NLP:《NLP_2019_Highlights》2019年自然语言处理领域重要进展及其解读 NLP_2019_Highlights 2019 was an impressive year for the field of natural language processing (NLP). In this report, I want to ...
  • 我国煤系气成藏与开发地质研究近期核心进展体现在三个方面:揭示了煤系气六大基本地质特点,发现了煤系气成藏作用“深度效应”,初步建立了煤系气勘查-开发工程一体化地质技术系列。同时,近年来勘探开发实践展示出...
  • 基于MATLAB的语音信号处理

    万次阅读 多人点赞 2018-07-15 01:21:20
    的特点,即在总体上,语音信号的特征是随着时间而变化的,但在一段较短的时间间隔内,语音信号保持平稳。  在频域内,语音信号的频谱分量主要集中在300 ~3400Hz的范围内。利用这个特点,可以按8kHz的采样率对语音...
  • 原发性脑胶质瘤基因研究进展,杨利,邹莹洁,胶质细胞瘤是最常见的原发性中枢神经系统肿瘤,好发于颅内。侵袭性高、易复发、总体预后差,有待进一步治疗方案。同时随着个体化
  • 首先系统总结了可持续逆向物流网络研究的总体现状,并对经济、环境、社会目标测度指标与方法、数学模型的决策变量、目标函数与约束条件、不确定因素考虑及处理方法、问题求解方法与工具以及研究应用情况进行概述....
  • 神经网络算法

    千次阅读 2015-10-23 14:38:18
    此模型沿用至今,并且直接影响着这一领域研究的进展。因而,他们两人可称为 人工神经网络 研究的先驱。 1945 年 冯 · 诺依曼 领导的设计小组试制成功存储程序式电子计算机,标志着电子计算机时代的开始。 1948 ...
  • 综述了我国煤层气开发历程和现状,概括总结了煤层气钻完井技术、压裂增产技术、排采技术、数值模拟技术等方面取得的进展和发展趋势:井型多样化、复杂结构化;压裂规模化;排采智能化;钻完井压裂用液多元化。同时,提出了...
  • 在5G网络中,由于5G信号的高频段特征,基站覆盖范围大大减小,需要布设的基站数量急剧增加,为了保证覆盖能力,并降低总体的成本和功耗,基站正在向小型化、密集化、无源化方向发展。而光纤信能共传技术为实现新一代...
  • 计算机图形学导论

    千次阅读 多人点赞 2018-10-12 22:42:46
    除此之外,真实感图形学和实体造型技术的产生也是 70 年代计算机图形学的两个重要进展。 20 世纪 80 年代以后:出现了带有光栅扫描显示器的微型计算机和图形工作站,极大的推动了计算机图形学的发展,如 ...
  • 混杂系统的研究进展

    2021-01-15 10:06:41
    混杂系统理论和应用是近年来的一个研究热点. 在介绍混杂系统概念的基础上, 对混杂系统研究中的常用 模型进行分类比较, 并对混杂系统的性质分析和混杂控制设计中的主要内容和主要...的研究方向做了总体展望.</p>
  • 乳腺癌最新研究进展(2021年版)

    千次阅读 2021-02-03 13:14:21
    尽管在过去的二十年里,乳腺癌的总体死亡率逐年下降,但其仍是美国女性癌症死亡的第二大主要原因。根据美国国家癌 Nat Commun:亚洲乳腺癌的分子表征揭示疾病的人群特异性 2020-12-25 乳腺癌是一种异质性疾病,一般...
  • 中国土地利用总体规划实施评价研究综述,董光龙,郑新奇,研究目的:综述中国土地利用总体规划实施评价研究进展,总结目前研究中存在的问题并指出进一步研究的方向。研究方法:文献综述法
  • 尽管溶栓等药物治疗、支架的植入和心脏移植等方面取得了很大的进展,但前两种方法并不能有效治疗所有心脏疾病或改善预后,而心脏移植还会有排斥反应的风险。 尽管现代医学的发展和医疗设备的开发能有效延缓疾病的...
  • 与之相比, 以直接抽运为代表的新型中红外固体激光器在总体设计原理和激光器结构上都更为简单。目前, 随着相关晶体材料和对应抽运源的逐步成熟, 直接抽运中红外激光器迅速发展。总结了以Fe∶ZnSe、Ho∶BYF和Dy∶PGS三...
  • 5g移动通信技术基本介绍,了解5G标准进展 了解5G核心指标 了解5G关键无线技术 了解5G网络结构和网络技术 了解5G特色业务应用
  • 本篇提前看重点关注 ICLR 2020 中关于联邦学习(Federated Learning)的最新研究进展。 2020 年的 ICLR 会议原计划于4 月 26 日至 4 月 30 日在埃塞俄比亚首都亚的斯亚贝巴举行,这本是首次在非洲举办的顶级...
  • 农业机器人技术能反映一个国家的农业机械化水平, 而农业机械化水平又是一个国家...总体上, 中国农业机器人仍存在成本偏高、使 用率偏低、智能系统还不完善等问题, 今后需进一步向高效化、智能化、精准化等方向发展。
  • 本文报道六路亚毫微秒钕玻璃激光系统近年研究进展概况。该系统经改进、提高后其输出脉宽分四档可调;~100ps、~250ps、~400ps及~1ns;输出波形基本可控制为光滑波形或调制波形;输出光谱宽度可调区为≤1或20~30;在...
  • 简要介绍了NG-PON2技术的总体要求,详细分析了以时分波分复用(TWDM)PON和点对点(PtP) WDM为核心的NG-PON2的架构以及重用ODN原则下多种技术的混合组网问题,重点讨论了NG-PON2的主要技术特性以及NG-PON2系统的...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 27,255
精华内容 10,902
关键字:

总体进展