uart 订阅
通用异步收发传输器(Universal Asynchronous Receiver/Transmitter),通常称作UART。它将要传输的资料在串行通信与并行通信之间加以转换。作为把并行输入信号转成串行输出信号的芯片,UART通常被集成于其他通讯接口的连结上。具体实物表现为独立的模块化芯片,或作为集成于微处理器中的周边设备。一般是RS-232C规格的,与类似Maxim的MAX232之类的标准信号幅度变换芯片进行搭配,作为连接外部设备的接口。在UART上追加同步方式的序列信号变换电路的产品,被称为USART(Universal Synchronous Asynchronous Receiver Transmitter)。 展开全文
通用异步收发传输器(Universal Asynchronous Receiver/Transmitter),通常称作UART。它将要传输的资料在串行通信与并行通信之间加以转换。作为把并行输入信号转成串行输出信号的芯片,UART通常被集成于其他通讯接口的连结上。具体实物表现为独立的模块化芯片,或作为集成于微处理器中的周边设备。一般是RS-232C规格的,与类似Maxim的MAX232之类的标准信号幅度变换芯片进行搭配,作为连接外部设备的接口。在UART上追加同步方式的序列信号变换电路的产品,被称为USART(Universal Synchronous Asynchronous Receiver Transmitter)。
信息
外文名
Universal Asynchronous Receiver/Transmitter
定    义
异步收发传输器
原    理
串并转换和并串转换
中文名
通用异步收发传输器
学    科
通信工程
应    用
通信领域
UART定义
UART是一种通用串行数据总线,用于异步通信。该总线双向通信,可以实现全双工传输和接收。在嵌入式设计中,UART用于主机与辅助设备通信,如汽车音响与外接AP之间的通信,与PC机通信包括与监控调试器和其它器件,如EEPROM通信。 [1] 
收起全文
精华内容
下载资源
问答
  • UART

    千次阅读 多人点赞 2019-05-07 21:46:40
    UART基础知识 1、UART原理说明 发送数据时,CPU将并行数据写入UARTUART按照一定的格式在一根电线上串行发出;接收数据时,UART检测另一根电线上的信号,串行收集然后放在缓冲区中,CPU即可读取UART获得这些...

     

     

    UART基础知识

    1UART原理说明

     

    发送数据时,CPU将并行数据写入UARTUART按照一定的格式在一根电线上串行发出;接收数据时,UART检测另一根电线上的信号,串行收集然后放在缓冲区中,CPU即可读取UART获得这些数据。UART之间以全双工方式传输数据,最精确的连线方法只有3根电线:TxD用于发送数据,RxD用于接收数据,Gnd用于给双发提供参考电平,连线如下:

     

     

    UART使用标准的TTL/CMOS逻辑电平(0~5v0~3.3v0~2.5v0~1.8v)来表示数据,高电平表示1,低电平表示0。为了增强数据的抗干扰能力、提高传输长度,通常将TTL/CMOD逻辑电平转换为RS-232逻辑电平,3~12v表示0-3~-12v表示1

     

    TxDRxD数据线以位为最小单位传输数据,而帧由具有完整意义的、不可分割的若干位组成,它包含开始位、数据位、校验位(需要的话)和停止位。发送数据之前,UART之间要约定好数据的传输速率(即每位所占据的时间,其倒数称为波特率)、数据的传输格式(即有多少个数据位、是否使用校验位、是奇校验还是偶校验、有多少个停止位)。

    数据传输流程如下:

    1)平时数据线处于空闲状态(1状态)

    2)当要发送数据时,UART改变TxD数据线的状态(变为0状态)并维持1位的时间,这样接收方检测到开始位后,在等待1.5位的时间就开始一位一位地检测数据线的状态得到所传输的数据。

    3UART一帧中可以有5678位的数据,发送方一位一位地改变数据线的状态将他们发送出去,首先发送最低位。

    4)如果使用校验功能,UART在发送完数据后,还要发送1位校验位。有两种校验方法:奇校验、偶校验——数据位连同校验位中,1的数据等于奇数或偶数。

    5)最后,发送停止位,数据线恢复到空闲状态(1状态)。停止位的长度有3种:1位、1.5位、2位。

     

    下图演示了UART使用7个数据位、偶校验、2个停止位的格式传输字符‘A’(二进制值为0b1000001)时,TTL/COM逻辑电平和RS-232逻辑电平对应的波形

    TTL/COM逻辑电平

     

    RS-232逻辑电平

     

     

    2s3c2440 UART特性

    1)工作模式

    s3c2440中,UART有三个独立的通道,UART0UART1UART2,每个通道都可以工作于中断模式和DMA模式。关于这两种模式我们有必要说一下

    <1>中断模式:

    这就是说,当要收发数据时会向CPU发出中断请求,由CPU完成收发的工作

    <2>DMA模式:

    这就是说,当要收发数据发出DMA请求,然后DMACPU发出总线请求,CPU将总线交给DMA之后,由DMA控制数据的收发工作。

     

    2)数据收发方式

    <1>使用FIFO

    在发送端,首先检查对方是否请求发送以及FIFO是否已满,只有当对方有发送请求且FIFO未满的情况下,才会向FIFO写入数据,当FIFO数据达到一定数量是,就会进行中断请求或DMA请求,将数据通过移位寄存器发送出去。在接收端,通过移位寄存器将数据存入FIFO中。

    在接收端,首先检查FIFO是否已满,如果FIFO未满,则可以发出请求发送信号。

     

    <2>不使用FIFO

    在发送端首先检查发送缓冲器是否为空以及是否有发送请求,如果发送缓冲区为空,就会向发送缓冲区写入数据,然后产生中断请求或DMA请求,将数据发送到接收端。当接收端的接收缓冲区接收到数据后,先读取数据,然后再次请求发送数据。

     

    3s3c2410 UART的使用方法

    1)将所涉及到的UART通道管脚设为UART功能

    2UBRDIVn寄存器:设置波特率

    3ULCONn寄存器:设置传输格式

    4UCONn寄存器:选择UART时钟源、设置UART中断方式等

    5UFCONn寄存器和UFSTATn寄存器:用来设置是否使用FIFO,设置各个FIFO的触发阀值

    6UMCONn寄存器和UMSTATn寄存器:用于流量控制

     

     

     

     

     

     

     

    展开全文
  • uart

    2017-03-18 23:14:49
    #include "S3C2451_uart.h" #include "S3C2451_vector.h" #include #include ...UART_MemMapPtr const UART_BASE_PTR[4] = {UART0_BASE_PTR,UART1_BASE_PTR,UART2_BASE_PTR,UART3_BASE_PTR};   v

    #include "S3C2451_uart.h"

    #include "S3C2451_vector.h"

    #include <stdarg.h>

    #include <stdio.h>

    #include <string.h>

     

    UART_MemMapPtr const UART_BASE_PTR[4] = {UART0_BASE_PTR,UART1_BASE_PTR,UART2_BASE_PTR,UART3_BASE_PTR};

     

    void UART_Init(UART_Typedef uartx,UART_Init_Typedef uart_init_struct)

    {

    UART_BASE_PTR[uartx]->ULCON &= ~(0x3F);

    //wordwidth

    UART_BASE_PTR[uartx]->ULCON |= uart_init_struct.wordwidth;

    //stop

    UART_BASE_PTR[uartx]->ULCON |= (uart_init_struct.stop<<2);

    //parity

    UART_BASE_PTR[uartx]->ULCON |= (uart_init_struct.parity<<3);

    //baud

    if( 9600 == uart_init_struct.baudrate)

    {

    UART_BASE_PTR[uartx]->UBRDIV = 10;

    UART_BASE_PTR[uartx]->UDIVSLOT = 0xeeeee;

    }else if(115200 == uart_init_struct.baudrate)

    {

    UART_BASE_PTR[uartx]->UBRDIV = 34; //pclk=66.5Mhz

    UART_BASE_PTR[uartx]->UDIVSLOT = 0xDFDD;

    }

    UART_BASE_PTR[uartx]->UCON &= ~(0x0f);

    //enable tx

    if((uart_init_struct.mode&UART_Mode_TX) == UART_Mode_TX)

    {

    UART_BASE_PTR[uartx]->UCON |= (1<<2);

    }

    //enable rx

    if((uart_init_struct.mode&UART_Mode_RX) == UART_Mode_RX)

    {

    UART_BASE_PTR[uartx]->UCON |= 1;

    }

     

    }

     

    void UART_SendData(UART_Typedef uartx,U8 data)

    {

    UART_BASE_PTR[uartx]->UTXH = data;

    while(!(UART_BASE_PTR[uartx]->UTRSTAT&0x04));

    }

     

    void UART_SendDataBuf(UART_Typedef uartx,U8 *data,U32 len)

    {

    unsigned char i;

    for(i=0;i<len;i++){

    UART_SendData(uartx,data[i]);

    }

    }

     

    void UART_SendString(UART_Typedef uartx,U8 *s)

    {

    U32 len = strlen((char*)s);

    UART_SendDataBuf(uartx,s,len);

    }

     

    void UART_Printf(char *fmt,...)

    {

    va_list ap;

    char string[1024];

     

    va_start(ap,fmt);

    vsprintf(string,fmt,ap);

    va_end(ap);

     

    UART_SendString(UART0,(U8 *)string);

    }

     

    U8 UART_ReceiveData(UART_Typedef uartx)

    {

    //while(!(UART_BASE_PTR[uartx]->UTRSTAT&0x01));

    return (UART_BASE_PTR[uartx]->URXH);

    }

     

    void UART_IRQService_Init(UART_Typedef uartx,U32 addr)

    {

    switch(uartx)

    {

    case UART0:

    pISR_UART0 = addr;

    break;

    case UART1:

    pISR_UART1 = addr;

    break;

    case UART2:

    pISR_UART2 = addr;

    break;

    case UART3:

    pISR_UART3 = addr;

    break;

    }

    }

     

     

    展开全文
  • UART

    2008-11-12 21:26:00
    UART: Universal Asynchronous Receiver/Transmitter,通用异步接收/发送装置,UART是一个并行输入成为串行输出的芯片,通常集成在主板上,多数是16550AFN芯片。因为计算机内部采用并行数据数据,不能直接把数据发到...


      UART: Universal Asynchronous Receiver/Transmitter,通用异步接收/发送装置,UART是一个并行输入成为串行输出的芯片,通常集成在主板上,多数是16550AFN芯片。因为计算机内 部采用并行数据数据,不能直接把数据发到Modem,必须经过UART整理才能进行异步传输,其过程为:CPU先把准备写入串行设备的数据放到UART的 寄存器(临时内存块)中,再通过FIFO(First Input First Output,先入先出队列)传送到串行设备,若是没有FIFO,信息将变得杂乱无章,不可能传送到Modem。
      它是用于控制计算机与串行设备的芯片。有一点要注意的是,它提供了RS-232C数据终端设备 接口,这样计算机就可以和调制解调器或其它使用RS-232C接口的串行设备通信了。作为接口的一部分,UART还提供以下功能:将由计算机内部传送过来 的并行数据转换为输出的串行数据流。将计算机外部来的串行数据转换为字节,供计算机内部使用并行数据的器件使用。在输出的串行数据流中加入奇偶校验位,并 对从外部接收的数据流进行奇偶校验。在输出数据流中加入启停标记,并从接收数据流中删除启停标记。处理由键盘或鼠标发出的中断信号(键盘和鼠标也是串行设 备)。可以处理计算机与外部串行设备的同步管理问题。有一些比较高档的UART还提供输入输出数据的缓冲区,现在比较新的UART是16550,它可以在 计算机需要处理数据前在其缓冲区内存储16字节数据,而通常的UART是8250。现在如果您购买一个内置的调制解调器,此调制解调器内部通常就会有 16550 UART。
    展开全文
  • 【STM32】HAL库 STM32CubeMX教程四---UART串口通信详解

    万次阅读 多人点赞 2019-08-11 08:57:51
    今天我们学习STM32CubeMX串口的操作,以及HAL库串口的配置,我们会详细的讲解各个模块的使用和具体功能,并且基于HAL库实现Printf函数功能重定向,UART中断接收,本系列教程将HAL库与STM32CubeMX结合在一起讲解,使...

    前言: 

    今天我们学习STM32CubeMX串口的操作,以及HAL库串口的配置,我们会详细的讲解各个模块的使用和具体功能,并且基于HAL库实现Printf函数功能重定向,UART中断接收,本系列教程将HAL库与STM32CubeMX结合在一起讲解,使您可以更快速的学会各个模块的使用

     

    所用工具

    1、芯片: STM32F407ZET6

    2、STM32CubeMx软件

    3、IDE: MDK-Keil软件

    4、STM32F1xx/STM32F4xxHAL库 

    5、串口: 使用USART1 PA9,PA10

    知识概括:

    通过本篇博客您将学到:

    STM32CubeMX创建串口例程

    HAL库UATR函数库

    重定义printf函数

    HAL库,UART中断接收

    HAL库UATR接收与发送例程

    工程创建

     

    1设置RCC

    • 设置高速外部时钟HSE 选择外部时钟源

    2设置串口

    • 1点击USATR1   
    • 2设置MODE为异步通信(Asynchronous)       
    • 3基础参数:波特率为115200 Bits/s。传输数据长度为8 Bit。奇偶检验无,停止位1      接收和发送都使能 
    • 4GPIO引脚设置 USART1_RX/USART_TX
    • 5 NVIC Settings 一栏使能接收中断

    3设置时钟

    我的是  外部晶振为8MHz 

    • 1选择外部时钟HSE 8MHz   
    • 2PLL锁相环倍频72倍
    • 3系统时钟来源选择为PLL
    • 4设置APB1分频器为 /2

    32的时钟树框图  如果不懂的话请看《【STM32】系统时钟RCC详解(超详细,超全面)》

     

    4项目文件设置

    • 1 设置项目名称
    • 2 设置存储路径
    • 3 选择所用IDE

    5创建工程文件

    然后点击GENERATE CODE  创建工程

    配置下载工具

    新建的工程所有配置都是默认的  我们需要自行选择下载模式,勾选上下载后复位运行

    HAL库UART函数库介绍

     

      UART结构体定义

    UART_HandleTypeDef huart1;

    UART的名称定义,这个结构体中存放了UART所有用到的功能,后面的别名就是我们所用的uart串口的别名,默认为huart1

    可以自行修改

    1、串口发送/接收函数

    • HAL_UART_Transmit();串口发送数据,使用超时管理机制 
    • HAL_UART_Receive();串口接收数据,使用超时管理机制
    • HAL_UART_Transmit_IT();串口中断模式发送  
    • HAL_UART_Receive_IT();串口中断模式接收
    • HAL_UART_Transmit_DMA();串口DMA模式发送
    • HAL_UART_Transmit_DMA();串口DMA模式接收

    这几个函数的参数基本都是一样的,我们挑两个讲解一下

    串口发送数据:

    HAL_UART_Transmit(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout)

    功能:串口发送指定长度的数据。如果超时没发送完成,则不再发送,返回超时标志(HAL_TIMEOUT)。

    参数:

    • UART_HandleTypeDef *huart      UATR的别名    如 :   UART_HandleTypeDef huart1;   别名就是huart1  
    • *pData      需要发送的数据 
    • Size    发送的字节数
    • Timeout   最大发送时间,发送数据超过该时间退出发送   
    举例:   HAL_UART_Transmit(&huart1, (uint8_t *)ZZX, 3, 0xffff);   //串口发送三个字节数据,最大传输时间0xffff

    中断接收数据:

    HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)

    功能:串口中断接收,以中断方式接收指定长度数据。
    大致过程是,设置数据存放位置,接收数据长度,然后使能串口接收中断。接收到数据时,会触发串口中断。
    再然后,串口中断函数处理,直到接收到指定长度数据,而后关闭中断,进入中断接收回调函数,不再触发接收中断。(只触发一次中断)

    参数:

    • UART_HandleTypeDef *huart      UATR的别名    如 :   UART_HandleTypeDef huart1;   别名就是huart1  
    • *pData      接收到的数据存放地址
    • Size    接收的字节数
    举例:    HAL_UART_Receive_IT(&huart1,(uint8_t *)&value,1);   //中断接收一个字符,存储到value中

    2、串口中断函数

     

    • HAL_UART_IRQHandler(UART_HandleTypeDef *huart);  //串口中断处理函数
    • HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart);  //串口发送中断回调函数
    • HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart);  //串口发送一半中断回调函数(用的较少)
    • HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart);  //串口接收中断回调函数
    • HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart);//串口接收一半回调函数(用的较少)
    • HAL_UART_ErrorCallback();串口接收错误函数

    串口接收中断回调函数:

    HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart);  

    功能:HAL库的中断进行完之后,并不会直接退出,而是会进入中断回调函数中,用户可以在其中设置代码,

               串口中断接收完成之后,会进入该函数,该函数为空函数,用户需自行修改,

    参数:

    • UART_HandleTypeDef *huart      UATR的别名    如 :   UART_HandleTypeDef huart1;   别名就是huart1  
    举例:   HAL_UART_RxCpltCallback(&huart1){           //用户设定的代码               }

    串口中断处理函数

    HAL_UART_IRQHandler(UART_HandleTypeDef *huart);  

    功能:对接收到的数据进行判断和处理  判断是发送中断还是接收中断,然后进行数据的发送和接收,在中断服务函数中使用

     

    如果接收数据,则会进行接收中断处理函数

     /* UART in mode Receiver ---------------------------------------------------*/
      if((tmp_flag != RESET) && (tmp_it_source != RESET))
      { 
        UART_Receive_IT(huart);
      }
    

    如果发送数据,则会进行发送中断处理函数

      /* UART in mode Transmitter ------------------------------------------------*/
      if (((isrflags & USART_SR_TXE) != RESET) && ((cr1its & USART_CR1_TXEIE) != RESET))
      {
        UART_Transmit_IT(huart);
        return;
      }

    3串口查询函数

      HAL_UART_GetState();  判断UART的接收是否结束,或者发送数据是否忙碌

      举例:     

    while(HAL_UART_GetState(&huart4) == HAL_UART_STATE_BUSY_TX)   //检测UART发送结束

     

    USART接收与发送

     

    重新定义printf函数

    • 在 stm32f4xx_hal.c中包含#include <stdio.h>
    #include "stm32f4xx_hal.h"
    #include <stdio.h>
    extern UART_HandleTypeDef huart1;   //声明串口
    • 在 stm32f4xx_hal.c 中重写fget和fput函数
    • /**
        * 函数功能: 重定向c库函数printf到DEBUG_USARTx
        * 输入参数: 无
        * 返 回 值: 无
        * 说    明:无
        */
      int fputc(int ch, FILE *f)
      {
        HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, 0xffff);
        return ch;
      }
      
      /**
        * 函数功能: 重定向c库函数getchar,scanf到DEBUG_USARTx
        * 输入参数: 无
        * 返 回 值: 无
        * 说    明:无
        */
      int fgetc(FILE *f)
      {
        uint8_t ch = 0;
        HAL_UART_Receive(&huart1, &ch, 1, 0xffff);
        return ch;
      }
      
      在main.c中添加
     #define RXBUFFERSIZE  256
    char RxBuffer[RXBUFFERSIZE]; 
    
      while (1)
      {
        /* USER CODE END WHILE */
    			printf("Z小旋测试\n");
    			HAL_Delay(1000);
        /* USER CODE BEGIN 3 */
      }

    之后便可以使用Printf函数和Scanf,getchar函数

    UART接收中断

    因为中断接收函数只能触发一次接收中断,所以我们需要在中断回调函数中再调用一次中断接收函数

    具体流程:

    1、初始化串口

    2、在main中第一次调用接收中断函数

    3、进入接收中断,接收完数据  进入中断回调函数

    4、修改HAL_UART_RxCpltCallback中断回调函数,处理接收的数据,

    5  回调函数中要调用一次HAL_UART_Receive_IT函数,使得程序可以重新触发接收中断

    函数流程图:

    HAL_UART_Receive_IT(中断接收函数   ->  USART2_IRQHandler(void)(中断服务函数)    ->    HAL_UART_IRQHandler(UART_HandleTypeDef *huart)(中断处理函数)    ->    UART_Receive_IT(UART_HandleTypeDef *huart) (接收函数)   ->    HAL_UART_RxCpltCallback(huart);(中断回调函数)

    HAL_UART_RxCpltCallback函数就是用户要重写在main.c里的回调函数。

    代码实现:

        并在main.c中添加下列定义:

    #include <string.h>
    
    #define RXBUFFERSIZE  256     //最大接收字节数
    char RxBuffer[RXBUFFERSIZE];   //接收数据
    uint8_t aRxBuffer;			//接收中断缓冲
    uint8_t Uart1_Rx_Cnt = 0;		//接收缓冲计数
    

    在main()主函数中,调用一次接收中断函数

    /* USER CODE BEGIN 2 */
    	HAL_UART_Receive_IT(&huart1, (uint8_t *)&aRxBuffer, 1);
    /* USER CODE END 2 */
    

    在main.c下方添加中断回调函数

    /* USER CODE BEGIN 4 */
    
    void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
    {
      /* Prevent unused argument(s) compilation warning */
      UNUSED(huart);
      /* NOTE: This function Should not be modified, when the callback is needed,
               the HAL_UART_TxCpltCallback could be implemented in the user file
       */
     
    	if(Uart1_Rx_Cnt >= 255)  //溢出判断
    	{
    		Uart1_Rx_Cnt = 0;
    		memset(RxBuffer,0x00,sizeof(RxBuffer));
    		HAL_UART_Transmit(&huart1, (uint8_t *)"数据溢出", 10,0xFFFF); 	
            
    	}
    	else
    	{
    		RxBuffer[Uart1_Rx_Cnt++] = aRxBuffer;   //接收数据转存
    	
    		if((RxBuffer[Uart1_Rx_Cnt-1] == 0x0A)&&(RxBuffer[Uart1_Rx_Cnt-2] == 0x0D)) //判断结束位
    		{
    			HAL_UART_Transmit(&huart1, (uint8_t *)&RxBuffer, Uart1_Rx_Cnt,0xFFFF); //将收到的信息发送出去
                while(HAL_UART_GetState(&huart1) == HAL_UART_STATE_BUSY_TX);//检测UART发送结束
    			Uart1_Rx_Cnt = 0;
    			memset(RxBuffer,0x00,sizeof(RxBuffer)); //清空数组
    		}
    	}
    	
    	HAL_UART_Receive_IT(&huart1, (uint8_t *)&aRxBuffer, 1);   //再开启接收中断
    }
    /* USER CODE END 4 */
    

    发送数据被正常返回

     

     

    展开全文

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 27,246
精华内容 10,898
关键字:

uart