精华内容
下载资源
问答
  • 旅行商

    千次阅读 2012-07-31 22:14:05
    旅行商 Time Limit: 1000 ms Case Time Limit:1000 ms Memory Limit: 64 MB Total Submission: 238 Submission Accepted: 67 Description 旅行商问题描述如下:在一个无向图中,找到符合条件的最小长度回路,...

    旅行商

    Time Limit: 1000 ms   Case Time Limit:1000 ms   Memory Limit: 64 MB
    Total Submission: 238   Submission Accepted: 67

    Description

    旅行商问题描述如下:在一个无向图中,找到符合条件的最小长度回路,这个回路经过每一个结点一次。

    Input

    第一行:一个正整数N,1<=N<=15
    第2至1+N行:整数临接矩阵,第i行第j列代表从结点i到结点j的路程,i=j时路程为0,其他情况1<=路程<100

    Output

    第一行:一个整数,旅行商问题的最优回路长度

    Sample Input

    Original

    Transformed

    3

    0 17 81

    17 0 62

    81 62 0

    Sample Output

    Original

    Transformed

    160


    状态压缩DP,调试了一个多小时,后来发现if((i&cur)==0)和 if(i&cur==0)不一样,原来==的优先级比&高哭

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    using namespace std;
    #define N 1<<15
    #define INF 99999999
    int dp[N][15];
    int start[N][15];
    int map[20][20];
    int main()
    {
    	int n,i,j,k;
    	int upper,cur,min,curtemp,temp;
    	while(scanf("%d",&n)!=EOF)
    	{
    		for(i=0;i<n;i++)
    		for(j=0;j<n;j++)
    		scanf("%d",&map[i][j]);
    		upper=(1<<n)-1;
    		for(i=0;i<=upper;i++)
    		for(j=0;j<n;j++)
    		dp[i][j]=INF;
    		for(i=0;i<n;i++)
    		{
    			dp[0][i]=0;
    			start[0][i]=i;
    		}
    		for(i=0;i<upper;i++)
    		{
    			for(j=0;j<n;j++)
    			{
    				for(k=0;k<n;k++)
    				{
    					cur=1<<k;
    					if((i&cur)==0)
    					{
    						curtemp=i|cur;
    						if(dp[i][j]+map[j][k]<dp[curtemp][k])
    						{
    							dp[curtemp][k]=dp[i][j]+map[j][k];
    							start[curtemp][k]=start[i][j];
    						}
    					}
    				}
    
    			}
    		}
    		min=INF;
    		for(i=0;i<n;i++)
    		{
    			temp=start[upper][i];
    			if(dp[upper][i]+map[i][temp]<min)
    			min=dp[upper][i]+map[i][temp];
    		}
    		printf("%d\n",min);
    	}
    	return 0;
    }
    



    展开全文
  • 遗传算法 求解旅行商 TSP 问题,matlab代码

    万次阅读 多人点赞 2016-11-02 01:24:11
    学习启发式算法时,旅行商问题是一个经典的例子。其中,遗传算法可以用来求解该问题。遗传算法是一种进化算法,由于其启发式算法的属性,并不能保证得到最优解。求解效果与初始种群选取,编码方法,选择方法,交叉...

    学习启发式算法时,旅行商问题是一个经典的例子。其中,遗传算法可以用来求解该问题。遗传算法是一种进化算法,由于其启发式算法的属性,并不能保证得到最优解。求解效果与初始种群选取,编码方法,选择方法,交叉变异规则有关。

    上课时,老师不知从哪里找了一个非常粗糙的程序,自己将不少错误修正,增加了一些注释方便理解,并增加了一些代码使程序更完美。该代码可以动态显示每一代的路线,非常直观! (备注:对于一般的 TSP 问题,发现通过将其构造成整数规划问题,利用数学规划求解软件 Gurobi 中的 Callback 方法求解,即使大规模问题 (75 个城市)也可以在 1 秒钟内得到最优解。就没必要用启发式算法了。参看网址:https://www.gurobi.com/resource/traveling-salesman-problem/ )

    本程序的显示效果:

     

     

    代码:

    function GaTSPChen
    
    % mainly amended by Chen Zhen, 2012~2016
    
    CityNum = 30; % 城市数目,可以选 10, 30, 50, 75
    [dislist, Clist] = tsp(CityNum); % dislist 为城市之间相互的距离,Clist 为各城市的坐标
    
    inn = 30; % 初始种群大小
    gnMax = 500;  % 最大代数
    crossProb = 0.8; % 交叉概率
    muteProb = 0.8; % 变异概率
    
    % 随机产生初始种群
    population = zeros(inn, CityNum); % population 为初始种群,包括多条染色体
    for i = 1 : inn
        population(i,:) = randperm(CityNum);
    end
    [~, cumulativeProbs] = calPopulationValue(population, dislist); % 计算种群每条染色体的累计概率
    
    generationNum = 1;
    generationMeanValue = zeros(generationNum, 1); % 每一代的平均距离
    generationMaxValue = zeros(generationNum, 1);  % 每一代的最短距离
    bestRoute = zeros(inn, CityNum); % 最佳路径
    newPopulation = zeros(inn, CityNum); % 新的种群
    while generationNum < gnMax + 1
       for j = 1 : 2 : inn
          selectedChromos = select(cumulativeProbs);  % 选择操作,选出两条需要交叉编译的染色体,即父亲母亲
          crossedChromos = cross(population, selectedChromos, crossProb);  % 交叉操作,返回交叉后的染色体
          newPopulation(j, :) = mut(crossedChromos(1, :),muteProb);  % 对交叉后的染色体进行变异操作
          newPopulation(j + 1, :) = mut(crossedChromos(2, :), muteProb); % 对交叉后的染色体进行变异操作
       end
       population = newPopulation;  %产生了新的种群
       [populationValue, cumulativeProbs] = calPopulationValue(population, dislist);  % 计算新种群的适应度
       % 记录当前代最好和平均的适应度
       [fmax, nmax] = max(populationValue); % 因为计算适应度时取距离的倒数,这里面取最大的倒数,即最短的距离
       generationMeanValue(generationNum) = 1 / mean(populationValue); 
       generationMaxValue(generationNum) = 1 / fmax;   
       bestChromo = population(nmax, :);  % 前代最佳染色体,即对应的路径
       bestRoute(generationNum, :) = bestChromo; % 记录每一代的最佳染色体
       drawTSP(Clist, bestChromo, generationMaxValue(generationNum), generationNum, 0);
       generationNum = generationNum + 1;
    end
    [bestValue,index] = min(generationMaxValue);
    drawTSP(Clist, bestRoute(index, :), bestValue, index,1);
    
    figure(2);
    plot(generationMaxValue, 'r');  
    hold on;
    plot(generationMeanValue, 'b'); 
    grid;
    title('搜索过程');
    legend('最优解', '平均解');
    fprintf('遗传算法得到的最短距离: %.2f\n', bestValue);
    fprintf('遗传算法得到的最短路线');
    disp(bestRoute(index, :));
    end
    
    %------------------------------------------------
    % 计算所有染色体的适应度
    function [chromoValues, cumulativeProbs] = calPopulationValue(s, dislist)
    inn = size(s, 1);  % 读取种群大小
    chromoValues = zeros(inn, 1);
    for i = 1 : inn
        chromoValues(i) = CalDist(dislist, s(i, :));  % 计算每条染色体的适应度
    end
    chromoValues = 1./chromoValues'; % 因为让距离越小,选取的概率越高,所以取距离倒数
    
    % 根据个体的适应度计算其被选择的概率
    fsum = 0;
    for i = 1 : inn
        % 乘以15次方的原因是让好的个体被选取的概率更大(因为适应度取距离的倒数,若不乘次方,则个体相互之间的适应度差别不大),换成一个较大的数也行
        fsum = fsum + chromoValues(i)^15;   
    end
    
    % 计算单个概率
    probs = zeros(inn, 1);
    for i = 1: inn
        probs(i) = chromoValues(i)^15 / fsum;
    end
    
    % 计算累积概率
    cumulativeProbs = zeros(inn,1);
    cumulativeProbs(1) = probs(1);
    for i = 2 : inn
        cumulativeProbs(i) = cumulativeProbs(i - 1) + probs(i);
    end
    cumulativeProbs = cumulativeProbs';
    end
    
    %--------------------------------------------------
    %“选择”操作,返回所选择染色体在种群中对应的位置
    % cumulatedPro 所有染色体的累计概率
    function selectedChromoNums = select(cumulatedPro)
    selectedChromoNums = zeros(2, 1);
    % 从种群中选择两个个体,最好不要两次选择同一个个体
    for i = 1 : 2
       r = rand;  % 产生一个随机数
       prand = cumulatedPro - r;
       j = 1;
       while prand(j) < 0
           j = j + 1;
       end
       selectedChromoNums(i) = j; % 选中个体的序号
       if i == 2 && j == selectedChromoNums(i - 1)    % 若相同就再选一次
           r = rand;  % 产生一个随机数
           prand = cumulatedPro - r;
           j = 1;
           while prand(j) < 0
               j = j + 1;
           end
       end
    end
    end
    
    %------------------------------------------------
    % “交叉”操作
    function crossedChromos = cross(population, selectedChromoNums, crossProb)
    length = size(population, 2); % 染色体的长度
    crossProbc = crossMuteOrNot(crossProb);  %根据交叉概率决定是否进行交叉操作,1则是,0则否
    crossedChromos(1,:) = population(selectedChromoNums(1), :);
    crossedChromos(2,:) = population(selectedChromoNums(2), :);
    if crossProbc == 1
       c1 = round(rand * (length - 2)) + 1;  %在[1,bn - 1]范围内随机产生一个交叉位 c1
       c2 = round(rand * (length - 2)) + 1;  %在[1,bn - 1]范围内随机产生一个交叉位 c2
       chb1 = min(c1, c2);
       chb2 = max(c1,c2);
       middle = crossedChromos(1,chb1+1:chb2); % 两条染色体 chb1 到 chb2 之间互换位置
       crossedChromos(1,chb1 + 1 : chb2)= crossedChromos(2, chb1 + 1 : chb2);
       crossedChromos(2,chb1 + 1 : chb2)= middle;
       for i = 1 : chb1 % 看交叉后,染色体上是否有相同编码的情况(路径上重复出现两个城市)。若有,则该编码不参与交叉
           while find(crossedChromos(1,chb1 + 1: chb2) == crossedChromos(1, i))
               location = find(crossedChromos(1,chb1 + 1: chb2) == crossedChromos(1, i));
               y = crossedChromos(2,chb1 + location);
               crossedChromos(1, i) = y;
           end
           while find(crossedChromos(2,chb1 + 1 : chb2) == crossedChromos(2, i))
               location = find(crossedChromos(2, chb1 + 1 : chb2) == crossedChromos(2, i));
               y = crossedChromos(1, chb1 + location);
               crossedChromos(2, i) = y;
           end
       end
       for i = chb2 + 1 : length
           while find(crossedChromos(1, 1 : chb2) == crossedChromos(1, i))
               location = logical(crossedChromos(1, 1 : chb2) == crossedChromos(1, i));
               y = crossedChromos(2, location);
               crossedChromos(1, i) = y;
           end
           while find(crossedChromos(2, 1 : chb2) == crossedChromos(2, i))
               location = logical(crossedChromos(2, 1 : chb2) == crossedChromos(2, i));
               y = crossedChromos(1, location);
               crossedChromos(2, i) = y;
           end
       end
    end
    end
    
    %--------------------------------------------------
    %“变异”操作
    % choromo 为一条染色体
    function snnew = mut(chromo,muteProb)
    length = size(chromo, 2); % 染色体的的长度
    snnew = chromo;
    muteProbm = crossMuteOrNot(muteProb);  % 根据变异概率决定是否进行变异操作,1则是,0则否
    if muteProbm == 1
        c1 = round(rand*(length - 2)) + 1;  % 在 [1, bn - 1]范围内随机产生一个变异位
        c2 = round(rand*(length - 2)) + 1;  % 在 [1, bn - 1]范围内随机产生一个变异位
        chb1 = min(c1, c2);
        chb2 = max(c1, c2);
        x = chromo(chb1 + 1 : chb2);
        snnew(chb1 + 1 : chb2) = fliplr(x); % 变异,则将两个变异位置的染色体倒转
    end
    end
    
    % 根据变异或交叉概率,返回一个 0 或 1 的数
    function crossProbc = crossMuteOrNot(crossMuteProb)
    test(1: 100) = 0;
    l = round(100 * crossMuteProb);
    test(1 : l) = 1;
    n = round(rand * 99) + 1;
    crossProbc = test(n);
    end
    
    %------------------------------------------------
    % 计算一条染色体的适应度
    % dislist 为所有城市相互之间的距离矩阵
    % chromo 为一条染色体,即一条路径
    function chromoValue = CalDist(dislist, chromo)
    DistanV = 0;
    n = size(chromo, 2); % 染色体的长度
    for i = 1 : (n - 1)
        DistanV = DistanV + dislist(chromo(i), chromo(i + 1));
    end
    DistanV = DistanV + dislist(chromo(n), chromo(1));
    chromoValue = DistanV;
    end
    
    %------------------------------------------------
    % 画图
    % Clist 为城市坐标
    % route 为一条路径
    function drawTSP(Clist, route, generationValue, generationNum,isBestGeneration)
    CityNum = size(Clist, 1);
    for i = 1 : CityNum - 1
        plot([Clist(route(i), 1),Clist(route(i + 1), 1)], [Clist(route(i),2),Clist(route(i+1),2)],'ms-','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g');
        text(Clist(route(i), 1),Clist(route(i), 2), ['  ', int2str(route(i))]);
        text(Clist(route(i+1), 1),Clist(route(i + 1), 2), ['  ', int2str(route(i+1))]);
        hold on;
    end
    plot([Clist(route(CityNum), 1), Clist(route(1), 1)], [Clist(route(CityNum), 2), Clist(route(1), 2)],'ms-','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g');
    title([num2str(CityNum),'城市TSP']);
    if isBestGeneration == 0 && CityNum ~= 10
        text(5, 5, ['第 ',int2str(generationNum),' 代','  最短距离为 ', num2str(generationValue)]);
    else
        text(5, 5, ['最终搜索结果:最短距离 ',num2str(generationValue),', 在第 ',num2str(generationNum),' 代达到']);
    end
    if CityNum == 10  % 因为文字显示位置不一样,所以将城市数目为 10 时单独编写
        if isBestGeneration == 0
            text(0, 0, ['第 ',int2str(generationNum),' 代','  最短距离为 ', num2str(generationValue)]);
        else
            text(0, 0, ['最终搜索结果:最短距离 ',num2str(generationValue),', 在第 ', num2str(generationNum),' 代达到']);
        end
    end
    hold off;
    pause(0.005);
    end
    
    %------------------------------------------------
    %城市位置坐标
    function [DLn, cityn] = tsp(n)
    DLn = zeros(n, n);
    if n == 10
        city10 = [0.4 0.4439;0.2439 0.1463;0.1707 0.2293;0.2293 0.761;0.5171 0.9414;
            0.8732 0.6536;0.6878 0.5219;0.8488 0.3609;0.6683 0.2536;0.6195 0.2634];%10 cities d'=2.691
        for i = 1 : 10
            for j = 1 : 10
                DLn(i, j) = ((city10(i,1)-city10(j,1))^2 + (city10(i,2)-city10(j,2))^2)^0.5;
            end
        end
        cityn = city10;
    end
    if n == 30
        city30 = [41 94;37 84;54 67;25 62;7 64;2 99;68 58;71 44;54 62;83 69;64 60;18 54;22 60;
            83 46;91 38;25 38;24 42;58 69;71 71;74 78;87 76;18 40;13 40;82 7;62 32;58 35;45 21;41 26;44 35;4 50]; % 30 cities d' = 423.741 by D B Fogel
        for i = 1 : 30
            for j = 1 : 30
                DLn(i,j) = ((city30(i,1)-city30(j,1))^2+(city30(i,2)-city30(j,2))^2)^0.5;
            end
        end
        cityn = city30;
    end
    
    if n == 50
        city50 = [31 32;32 39;40 30;37 69;27 68;37 52;38 46;31 62;30 48;21 47;25 55;16 57;
            17 63;42 41;17 33;25 32;5 64;8 52;12 42;7 38;5 25; 10 77;45 35;42 57;32 22;
            27 23;56 37;52 41;49 49;58 48;57 58;39 10;46 10;59 15;51 21;48 28;52 33;
            58 27;61 33;62 63;20 26;5 6;13 13;21 10;30 15;36 16;62 42;63 69;52 64;43 67];%50 cities d'=427.855 by D B Fogel
        for i = 1 : 50
            for j = 1:50
                DLn(i, j) = ((city50(i,1) - city50(j,1))^2 + (city50(i,2) - city50(j,2))^2)^0.5;
            end
        end
        cityn = city50;
    end
    
    if n == 75
        city75 = [48 21;52 26;55 50;50 50;41 46;51 42;55 45;38 33;33 34;45 35;40 37;50 30;
            55 34;54 38;26 13;15 5;21 48;29 39;33 44;15 19;16 19;12 17;50 40;22 53;21 36;
            20 30;26 29;40 20;36 26;62 48;67 41;62 35;65 27;62 24;55 20;35 51;30 50;
            45 42;21 45;36 6;6 25;11 28;26 59;30 60;22 22;27 24;30 20;35 16;54 10;50 15;
            44 13;35 60;40 60;40 66;31 76;47 66;50 70;57 72;55 65;2 38;7 43;9 56;15 56;
            10 70;17 64;55 57;62 57;70 64;64 4;59 5;50 4;60 15;66 14;66 8;43 26]; % 75 cities d'=549.18 by D B Fogel
        for i = 1 : 75
            for j = 1 : 75
                DLn(i,j) = ((city75(i,1)-city75(j,1))^2 + (city75(i,2)-city75(j,2))^2)^0.5;
            end
        end
        cityn = city75;
    end
    end
    

     

     

     

     

    展开全文
  • 利用模拟退火算法解决TSP旅行商问题,matlab编写
  • 解决旅行商问题,“旅行商问题”(Traveling Salesman Problem
  • 求解旅行商问题的改进人工鱼群算法学习资料
  • 使用蚁群算法解决旅行商问题,求路径最短问题
  • 旅行指南连锁酒店网页模板
  • 创意环球旅行指南书籍矢量适用于旅行插画设计的EPS格式素材
  • 徒步旅行指南响应式网页模板
  • 远足旅行指南响应式网页模板
  • 景点旅行指南响应式网页模板
  • 本文件给出了一种用遗传算法求解旅行商问题的源代码,可以避免陷入局部最优解。
  • 旅行商问题求解,程序无误,可以完美的完成运行
  • 旅行商问题,旅行商问题算法,matlab源码
  • TSP旅行商问题

    2018-04-20 22:34:00
    旅行商问题,针对多旅行商多城市问题进行求解,可用于任务分配等整数规划问题求解。
  • 旅行商问题matlab实现

    2020-04-27 16:05:40
    旅行商问题matlab实现
  • Matlab多旅行商实验

    2018-04-17 11:41:33
    Matlab多旅行商实验 Matlab多旅行商实验 Matlab多旅行商实验
  • 自驾游旅行指南响应式网页模板
  • 蓝色旅行指南查询响应式网页模板
  • 旅行商问题

    2014-06-20 10:06:40
    有完整的代码和详细的注释,还有完美的文档,解决了旅行商问题
  • 遗传算法实现旅行商问题,遗传算法实现旅行商问题遗传算法实现旅行商问题遗传算法实现旅行商问题遗传算法实现旅行商问题遗传算法实现旅行商问题
  • 免疫算法求解旅行商问题,目前程序已经通过程序仿真验证通过。
  • 广义旅行商问题求解

    2019-05-06 23:22:34
    将实际应用问题抽象为广义旅行商问题,然后利用智能化算法求解。
  • 旅行商问题算法演示

    2018-10-17 20:43:03
    一个旅行商问题算法的可视化演示程序。使用的实现语言是C++
  • 旅行商问题概述

    2012-10-15 21:58:07
    旅行商问题概述,旅行商问题各种求解方法,应用。

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 29,518
精华内容 11,807
关键字:

旅行商