精华内容
下载资源
问答
  • 2018-09-17 10:53:04

           电脑主板上的扩展插槽曾经多种多样,例如曾经非常流行的组合就是PCI插槽搭配AGP插槽,其中AGP插槽主要用在显卡上,而PCI插槽的用途则更广一些,不仅有用在显卡上,还能用于扩展其它设备,如网卡、声卡、调制解调器等等。然而在一个速率更高、扩展性更强的插槽出现之后,它们就迅速退出舞台,被后者彻底取代。而这种可以在短时间内淘汰前辈的新型插槽,就是现在显卡以及各种扩展卡所用的主流插槽,即PCI-E插槽。

           目前PCI-E插槽已经成为了主板上的主力扩展插槽,除了显卡会用到PCI-E插槽外,诸如独立声卡、独立网卡、USB 3.0/3.1接口扩展卡以及SSD等硬件都可以使用PCI-E插槽,因此现在的主板除非是受到板型或者平台芯片的限制,否则厂商都会给它们装上足够多的PCI-E插槽,以确保产品扩展能力,满足用户使用需求。


    PCIE相关规范

            PCI-E(PCI Express)规范,其由PCI-SIG组织进行制定,该组织组建于1992年,目前成员有包括英特尔、AMD、NVIDIA、惠普、戴尔、高通、联想、IBM等业界老大在内的900多家精英企业,除了现行的PCI-E规范之外,早年的PCI规范以及PCI-X规范也是由该组织制定的。

                                 

           与基于半双工共享并行架构而制定的PCI以及AGP规范不同,PCI-E规范是基于全双工点对点串行架构制定的,而且还支持热拔插,其中全双工代表每个PCI-E通道在同一周期内可以实现数据的双向传输;点对点意味着每个PCI-E设备都是独立连接,不需要向整个总线请求带宽;串行传输则可以让其信号速率轻松达到GT/s(相当于GHz)的级别。

           目前PCI-E规范已经发展出5个大版本,每一次大版本的进化,都能带来相比上一版本近乎于翻倍的带宽。第一个PCI-E的正式规范也就是PCI-E 1.0诞生于2002年,其信号速率为2.5GT/s,采用8b/10b编码方式,单通道单向带宽达到250MB/s,16通道双向带宽为8GB/s。该规范随后还发展出PCI-E 1.0a和PCI-E 1.1版本,虽然细节上有不少改进但是带宽并没有改变。

           PCI-E 2.0规范则在2007年正式发布,其相比于PCI-E 1.x规范最大的变化是信号速率翻倍至5GT/s,因此其带宽也跟随着一起翻倍,单通道单向带宽为500MB/s,16通道双向带宽为16GB/s。此外PCI-E 2.0规范还将对应插槽的供电能力翻倍至最高150W的水平,但出于对兼容性以及主板供电压力等多方面的考虑,最终无论主板厂商、显卡厂商又或者其它PCI-E设备的厂商,在产品开发时都是按照PCI-E 1.0规范的供电要求也就是75W执行的,供电需求高于75W者一律配置外接供电,这个行业规则一直沿用至今。

           PCI-E 3.0规范则是目前的主流,其于2010年正式发布,相比PCI-E 2.x规范不仅信号速率提升至8GT/s,而且编码方式也改成了更高效的128b/130b模式,因此单通道单向带宽依然实现了接近翻倍的提升,达到985MB/s的水平,16通道双向带宽高达31.5GB/s。

                 

           PCI-E 4.0和PCI-E 5.0则是属于未来的规范,前者在今年10月底才推出了正式版,其再一次实现了信号速率的翻倍,16通道双向带宽达到63GB/s的水平;而后者则计划到2019年方能公布正式版规范,能带来的依然是翻倍的信号速率和翻倍的带宽,16通道双向带宽达到126GB/s。然而基于PCI-E 4.0规范的设备目前依然处于开发和测试阶段,预计要到2018年的年底方能进入消费级市场,PCI-E 5.0规范的推广恐怕最快也要到2020年才能开始了。


    PCIE接口

    当然PCI-E插槽也不是仅有一种,按照PCI-SIG提供的规范,PCI-E插槽有x1,x2,x4,x8,x12,x16和x32共计7种版本,对应1/2/4/8/12/16/32通道,其中PCI-E x32由于体积问题,仅应用在某些特殊场合中,对应的量产产品几乎为零;PCI-E x12则主要用在服务器领域,基本不会出现在消费级平台上;PCI-E x2则主要用于内部的接口而非扩展插槽,即便是部分有提供该接口的主板,其PCI-E x2也基本是以M.2接口的形式出现,而非PCI-E插槽的形式。因此目前主板上主流的PCI-E插槽,基本就集中在PCI-E x1/x4/x8/x16四种。

             

     1. PCIE x16

           PCI-E x16插槽全长89mm,拥有164根针脚,分为前后两组,位于前面较短的插槽有22根针脚,主要用于供电,后面一组较长的插槽142根,主要用于数据传输。这样设计让PCI-E x16插槽拥有了极佳的兼容性,可以向下兼容x1/x4/x8级别的设备,在加上其16通道所带来的高带宽,因此PCI-E x16插槽可以说是PCI-E插槽在消费级领域中的完全体,其多数用于安装数据吞吐量很大的产品,如显卡以及RAID阵列卡等。

           由于PCI-E x16插槽常用于显卡,因此其基本由CPU直接引出,这样显卡与CPU之间的数据交换就可以实现最低的延迟,让系统的性能可以得到充分的发挥。最靠近CPU的PCI-E x16插槽最适合安装显卡。

                   

     2. PCIE x8

           PCI-E x8插槽全长56mm,拥有98根针脚,相比于PCI-E x16主要是数据针脚减少至76根,供电针脚并无变化。不过我们很少在主板上看见真正的PCI-E x8插槽,因为它通常会以PCI-E x16插槽的形式出现,但数据针脚只有一半是有效的,也就是说实际带宽只有真正的PCI-E x16插槽的一半。

           为了安装显卡,PCI-E x8插槽很多时候会以PCI-E x16插槽的形式登场。实际上把PCI-E x8插槽做成PCI-E x16的样子是有原因的,因为PCI-E x8就是为了搭建多显卡平台而生的,为了让采用PCI-E x16接口的显卡顺利安装到PCI-E x8接口上,后者自然需要把自己“伪装”成PCI-E x16插槽。当然也有部分PCI-E x8插槽会在后部开一小口,让显卡能够安装,但这样的接口往往需要定制,成本并不比PCI-E x16插槽低,且视觉上冲击力也不够,因此直接采用PCI-E x16插槽来做PCI-E x8插槽自然也是情理之中。

           那么我们该如何区分真正的PCI-E x16插槽和PCI-E x8模式的PCI-E x16插槽呢?可以观察主板布线,后者的后半段往往是没有线路连接的,甚至没有针脚焊接。不过这并不是最快速的方法,实际上除了旗舰级的平台如X299能提供多条真正的PCI-E x16插槽外,主流级平台包括新近发布的Z370平台都只会提供一条真正的PCI-E x16插槽,就是最靠近CPU的那条。而第二条和第三条PCI-E x16插槽,则多数是PCI-E x8甚至是x4级别的。

     3. PCIE  x4

           PCI-E x4插槽的长度为39mm,同样是在PCI-E x16插槽的基础上,以减少数据针脚的方式实现,主要用于PCI-E SSD,或者是通过PCI-E转接卡安装M.2 SSD等方面。PCI-E x4插槽通常由主板芯片扩展而来,不过随着CPU内部PCI-E通道数的增多,现在有部分高端主板可以开始提供直连CPU的PCI-E x4插槽,用于安装PCI-E SSD时理论上可以提供更好的性能,例如4K QD性能相比使用主板芯片的PCI-E x4插槽时会有一定的提升。

           PCI-E x4插槽的长度为39mm,同样是在PCI-E x16插槽的基础上,以减少数据针脚的方式实现,主要用于PCI-E SSD,或者是通过PCI-E转接卡安装M.2 SSD等方面。PCI-E x4插槽通常由主板芯片扩展而来,不过随着CPU内部PCI-E通道数的增多,现在有部分高端主板可以开始提供直连CPU的PCI-E x4插槽,用于安装PCI-E SSD时理论上可以提供更好的性能,例如4K QD性能相比使用主板芯片的PCI-E x4插槽时会有一定的提升。

           与PCI-E x8插槽相似,PCI-E x4插槽现在也是很少以真身示人,更多地是以“速率为PCI-E x4级别的PCI-E x16插槽”的形式登场,又或者是扩展为M.2接口,用于安装M.2 SSD、M.2无线网卡或者其它M.2接口设备,其余扩展卡则留给PCI-E x1插槽负责。

     4. PCI-E x1

           PCI-E x1插槽的长度是最短的,仅有25mm,相比PCI-E x16插槽,其数据针脚大幅度减少至14个。PCI-E x1插槽的带宽通常由主板芯片提供,面向的产品比较广泛,独立网卡、独立声卡、USB 3.0/3.1扩展卡等都会用到PCI-E x1插槽,你甚至可以通过转接线给PCI-E x1插槽装上显卡,用来挖矿或者实现多屏输出。

           此外PCI-E x1插槽还存在着另外一个形态,一般称为Mini PCI-E插槽,常见于Mini-ITX主板以及笔记本电脑上,多数用来扩展无线网卡,但由于其在物理结构上与mSATA插槽相同,因此也有不少主板会通过跳线或者BIOS设定让Mini PCI-E接口在PCI-E模式或者SATA模式中切换,以实现一口两用的效果。

           不过Mini PCI-E插槽由于带宽上的限制,最终并未有得到广泛的普及,它和mSATA接口在面临M.2接口的进攻时都选择了迅速撤退,如今其地位和作用都已经被M.2接口取代,基本上已经告别主流。

    更多相关内容
  • PCIPCI-x,PCI-E兼容以及他们之间的区别详细图解。
  • marvell_yukon 88E8075PCI-E驱动,marvell_yukon系列网卡驱动,marvell_yukon 88E8075PCI-E驱动
  • MINIPCI-E插座封装.PCBLIB

    2021-05-14 16:43:22
    MINI PCIE插座封装DXP,4G模块插座封装,DXP直接使用,EC20,ME909s
  • PCI-E转COM口卡驱动【PCIE-DH382_2S(Ver.B)】
  • 完整的 Mini PCI-E 转 PCIE、USB 的电路图,3.3V 转 5V/1A 12V/200mA 的电路图,自己翻译的中文指引
  • 此款驱动是节奏坦克小夜曲pci-e声卡驱动官方最新版,如果说Serenade III是诸事历练后的完美演绎,而Serenade PCI-E则是前者青出于蓝而胜于蓝的传承接班人。完善到位的配置使他继续领衔与HIFier PCI系列当中最高规格...
  • PCI E 5.0 密码 卡性能参数表 产品型号 PCI E 5.0 商密 型号 SJK1861 G SM1 加解密 1 2 Gbps SM4 加解密 1 7Gbps A ES 加解密 9 .4Gbps 3 DES 加解密 5 .7Gbps SM2 生密钥 55000 次 秒 ...
  • USB 3.0 PCI-E卡驱动

    2017-06-24 19:12:20
    USB 3.0 PCI-E卡驱动
  • mini PCI-E Altium Designer PCB 库和mini PCI-E 插座Altium Designer PCB 库
  • 这个是黑苹果的网卡驱动包,我在网上找了好久才找到的希望对你有帮助 这个是黑苹果的网卡驱动包,我在网上找了好久才找到的希望对你有帮助
  • 渔翁PCI-E 5.0密码卡是山东渔翁信息技术股份有限公司独立研发的高速加解密设备,在速度 和性能上可满足用户对信息安全的需求。密码卡可广泛应用于各种具有PCI-E插槽的兼容PC机或 服务器上,确保数据在传输存储中的...
  • 小夜曲PCI-E win10 64bit驱动程序 只能用于pcie版本的小夜曲声卡 来自官网,官网下载很慢,做个备份吧
  • 网卡:Realtek 8821CE Wireless LAN 802.11ac PCI-E NIC-CSDN下载
  • 简要介绍了Linux操作系统和PCI-Express(PCI-E)总线的特点以及Linux设备驱动的作用。以PEX8311时统卡为例,阐述了Linux系统下PCI-E驱动程序开发的流程和技巧,并通过DMA模式测试了驱动程序的可行性。
  • PCI-e中文指导手册.pdf

    2021-09-05 14:34:19
    Introduction_to_PCI_Express_A_Hardware_and_Software_Developer_s_Guide 中文翻译
  • Qualcomm Atheros AR8151 PCI-E Gigabit Ethernet Controller (NDIS 6.20)_2.1.0.21_2015-08-14 23 22 48.zip
  • PCIPCI-X_PCI-E兼容及区别详细图解
  • PCI-E显卡接口的维修

    2013-11-11 12:30:57
    PCI-E显卡的维修资料,是修理PCI-E显卡的很好的参考资料哦
  • PCI-E 16X 的接口定义

    2015-05-09 15:36:16
    很不错的pci-e 16x针脚说明,我核对过很多资料应该没错的,给需要的朋友用!
  • 30771(PCI-E网卡驱动)

    2018-07-25 10:06:08
    绿联 PCI-E网卡台式机主机小机箱外置网卡,2u服务器高速电脑有线内置千兆 千兆高速 上网不卡顿,采用瑞昱芯片,兼容性强。 产品型号:30771 兼容系统:linux、mac、vista、win7、win8.1、win10、win98/me/xp
  • TL WN781N驱动解决您的TP-LINK WN781N无线PCI-E网卡找不到驱动问题,TL WN781N体积小,安装方便,配合941n完美搭配,上网速度很快,购买了TL WN781N的朋友赶紧下载驱动吧。TP-LINK WN781N特色1、11n技术,150m无线...
  • PCI-E转打印机并口驱动适合系统:XP_Vista_Win7
  • PCI-E技术笔记

    2021-03-21 19:51:48
    目录PCIPCIXPCIECPCIPCI-E介绍PCI-E基础端对端数据传输总线信号PCI-E总线的层次结构事务层数据链路层物理层PCI-E速率计算参考文献 PCI PCI,外设组件互连标准(Peripheral Component Interconnection),是一种由...

    PCI

    PCI,外设组件互连标准(Peripheral Component Interconnection),是一种由英特尔(Intel)公司1991年推出的用于定义局部总线的标准。此标准允许在计算机内安装多达10个遵从PCI标准的扩展卡。最早提出的PCI总线工作在33MHz频率之下,传输带宽达到133MB/s(33MHz * 32bit/s),基本上满足了当时处理器的发展需要。随着对更高性能的要求,1993年又提出了64bit的PCI总线,后来又提出把PCI 总线的频率提升到66MHz。目前(注:此文写的时间比较早)广泛采用的是32-bit、33MHz的PCI 总线,64bit的PCI插槽更多是应用于服务器产品。

    从结构上看,PCI是在CPU和原来的系统总线之间插入的一级总线,具体由一个桥接电路实现对这一层的管理,并实现上下之间的接口以协调数据的传送。管理器提供信号缓冲,能在高时钟频率下保持高性能,同时为显卡,声卡,网卡,MODEM等设备提供连接接口,工作频率为33MHz/66MHz。

    PCI总线系统要求有一个PCI控制卡,它必须安装在一个PCI插槽内。这种插槽是目前主板带有最多数量的插槽类型,在当前流行的台式机主板上,ATX结构的主板一般带有5~6个PCI插槽,而小一点的MATX主板也都带有2~3个PCI插槽。根据实现方式不同,PCI控制器可以与CPU一次交换32位或64位数据,它允许智能PCI辅助适配器利用一种总线主控技术与CPU并行地执行任务。PCI允许多路复用技术,即允许一个以上的电子信号同时存在于总线之上。

    由于PCI 总线只有133MB/s的带宽,对声卡、网卡、视频卡等绝大多数输入/输出设备显得绰绰有余,但对性能日益强大的显卡则无法满足其需求。

    Intel在2001年春季的IDF上,正式公布了旨在取代PCI总线的第三代I/O技术,该规范由Intel支持的AWG(Arapahoe Working Group)负责制定。2002年4月17日,AWG正式宣布3GIO1.0规范草稿制定完毕,并移交PCI-SIG(PCI特别兴趣小组,PCI-Special Interest Group)进行审核。开始的时候大家都以为它会被命名为Serial PCI(受到串行ATA的影响),但最后却被正式命名为PCI Express,Express意思是高速、特别快的意思。

    2002年7月23日,PCI-SIG 正式公布了PCI Express 1.0规范,并于2007年初推出2.0规范(Spec 2.0),将传输率由PCI Express 1.1的2.5GB/s提升到5GB/s。

    PCIX

    PCI-X接口是并连的PCI总线的更新版本,仍采用传统的总线技术,不过有更多数量的接线针脚,同时,如前所述的所有的连接装置会共享所有可用的频宽。

    与原先PCI接口所不同的是:一改过去的32位,PCI-X采用64位宽度来传送数据,所以频宽自动就倍增两倍,而扩充槽的长度当然就不可避免的加大了,除此之外,其余的包括传输通讯协议、讯号和标准的接头格式都一并兼容,好处是3.3V的32位的PCI适配卡可以用在PCI-X扩充槽上,当然如果你愿意,也可以将64位PCI-X适配卡接在32位PCI扩充槽上,不过,频宽速度将会大减。

    这个总线宽度倍增的改良版本对一些专业储存控制器,例如SCSI、iSCSI、光纤信道(Fibre Channel)、10GBit以太网和InfiniBand等其他传输装置,仍然无法提供足够的频宽,因此引进PCI-SIG接口以提供数个不同速度等级,可以从PCI-X 66一路上到PCI-X 533规格,以下表列这些技术细节:
    在这里插入图片描述

    PCIE

    PCI-Express是最新的总线和接口标准,它原来的名称为“3GIO”,是由英特尔提出的,很明显英特尔的意思是它代表着下一代I/O接口标准。交由PCI-SIG(PCI特殊兴趣组织)认证发布后才改名为“PCI-Express”。这个新标准将全面取代PCI和AGP,最终实现总线标准的统一。

    它的主要优势就是数据传输速率高,目前最高可达到10GB/s以上,而且还有相当大的发展潜力。PCI Express也有多种规格,从PCI Express 1X到PCI Express 16X,能满足现在和将来一定时间内出现的低速设备和高速设备的需求。能支持PCI Express的主要是英特尔的i915和i925系列芯片组。当然要实现全面取代PCI和AGP也需要一个相当长的过程,就象当初PCI取代ISA一样,都会有个过渡的过程。

    CPCI

    Compact PCI(Compact Peripheral Component Interconnect)简称CPCI,中文又称紧凑型PCI,是国际工业计算机制造者联合会(PCI Industrial Computer Manufacturer’s Group,简称PICMG)于1994提出来的一种总线接口标准。是以PCI电气规范为标准的高性能工业用总线。CPCI的CPU及外设同标准PCI是相同的,并且CPCI系统使用与传统PCI系统相同的芯片、防火墙和相关软件。从根本上说,它们是一致的,因此操作系统、驱动和应用程序都感觉不到两者的区别,将一个标准PCI插卡转化成CPCI插卡几乎不需重新设计,只要物理上重新分配一下即可。为了将PCI SIG的PCI总线规范用在工业控制计算机系统,1995年11月PICMIG颁布了CPCI规范1.0版,以后相继推出了PCI-PCI Bridge规范、Computer Telephony TDM规范和User-defined I/O pin assignment规范。简言之CPCI总线 = PCI总线的电气规范 + 标准针孔连接器+ 欧洲卡规范

    CPCI的出现不仅让诸如CPU、硬盘等许多原先基于PC的技术和成熟产品能够延续应用,也由于在接口等地方做了重大改进,使得采用CPCI技术的服务器、工控电脑等拥有了高可靠性、高密度的优点。CPCI是基于PCI电气规范开发的高性能工业总线,适用于3U和6U高度的电路插板设计。CPCI电路插板从前方插入机柜,I/O数据的出口可以是前面板上的接口或者机柜的背板。它的出现解决了多年来电信系统工程师与设备制造商面临的棘手问题,比如传统电信设备总线VME与工业标准PCI总线不兼容问题。

    CPCI技术是在PCI技术基础之上经过改造而成,其特点具体有三个方面:

    一、是继续采用PCI局部总线技术;
    二、抛弃IPC传统机械结构,改用经过20年实践检验了的高可靠欧洲卡结构,改善了散热条件、提高了抗振动冲击能力、符合电磁兼容性要求;
    三、抛弃IPC的金手指式互连方式,改用2mm密度的针孔连接器,具有气密性、防腐性,进一步提高了可靠性,并增加了负载能力。

    CPCI规范自制定以来,已历经多个版本。最新的PICMG 3.0所规范的CPCI技术架构在一个更加开放、标准的平台上,有利于各类系统集成商、设备供应商提供更加便捷快速的增值服务,为用户提供更高性价比的产品和解决方案。PICMG 3.0标准是一个全新的技术,与PICMG 2.x完全不同,特别在速度上与PICMG 2.x相比,PICMG 3.0速度每秒可达2Tb。PICMG 3.0主要将应用在高带宽电信传输上,以适应未来电信的发展,PICMG 2.x则仍是目前CPCI的主流,并将在很长时间内主宰CPCI的应用。

    CPCI具有可热插拔(Hot Swap)、高开放性、高可靠性。CPCI技术中最突出、最具吸引力的特点是热插拔。

    PCI-E介绍

    在这里插入图片描述
    图中的PCI-E的传输速率指的是实际的有效传输速率,为RAW Data速率的80%,因为PCI-E(Gen1&Gen2,Gen3中使用了新的方式,即128b/130b)中使用了8b/10b编解码技术。

    PCI-Express总线的Spec中明确规定了PCI-Express的缩写为PCIe,但很多情况下,大家为了方便常把它缩写为PCI-E。

    PCI-E接口根据总线位宽不同而有所差异,一个PCI Express连接可以被配置成x1, x2, x4, x8, x12, x16和x32的数据带宽。 (x2 and x12 link widths are optional) PCI-E 各种位宽Device可以自由搭配使用,比如x1 的卡可以插到x8的插槽中使用, x8 的卡可以插到x16的插槽中使用,升级方便。

    在这里插入图片描述

    常见的PCI-E设备如下图所示:
    在这里插入图片描述

    目前PCI-E已经更新到第四代(即PCI-E 4.0,Gen4),很快Gen5也会到来:
    在这里插入图片描述
    由于PCI-E是从PCI/PCI-X继承发展而来,PCI-E在应用层(软件上)几乎是全完兼容PCI/PCI-X设备的。在硬件层面上,可以借助PCI-E to PCI/PCI-X桥来与其完成对接。

    在这里插入图片描述

    1、PCI-E x16插槽全长89mm,有164根针脚,靠主板外侧端有一卡口,将16x分为前后两组,较短的插槽有22根针脚,主要用于供电,较长的插槽142根,主要用于数据传输,具有16通道所带来的高带宽。

    PCI-E x16插槽,主要用于显卡以及RAID阵列卡等,这个插槽拥有优良的兼容性,可以向下兼容x1/x4/x8级别的设备。可以说是PCI-E x16插槽是PCI-E的万能插槽。

    由于PCI-E x16插槽常用于显卡,与cpu处理器直接相通,在物理位置上直接靠近cpu,这样显卡与处理器之间的数据交换就可以减少延迟,让系统的性能可以得到充分的发挥。

    2、PCI-E x8插槽全长56mm,有98根针脚,与PCI-E x16比较,主要是数据针脚减少至76根,短的供电针脚仍然是22针脚。

    为了兼容性,PCI-E x8插槽通常加工成PCI-E x16插槽的形式,但数据针脚只有一半是有效的,也就是说实际带宽只有真正的PCI-E x16插槽的一半。可以观察主板布线,x8的后半段没有线路连接,甚至针脚也没有焊接。

    实际上除了旗舰级的主板,能提供多条真正的PCI-E x16插槽外,主流级主板,只会提供一条真正的PCI-E x16插槽,就是最靠近cpu的那条。而第二条和第三条PCI-E x16插槽,则多数是PCI-E x8甚至是x4级别的。

    3、PCI-E x4插槽的长度为39mm,同样是在PCI-E x16插槽的基础上,以减少数据针脚的方式实现,主要用于PCI-E SSD固态硬盘,或者是通过PCI-E转接卡安装的M.2 SSD固态硬盘。

    PCI-E x4插槽通常由主板芯片扩展而来,不过随着cpu内部PCI-E通道数的增多,现在有部分高端主板可以开始提供直连cpu的PCI-E x4插槽,用于安装PCI-E SSD固态硬盘。

    主板上为什么找不到PCI-E x4插槽?其实它是以M.2接口的形式出现的。

    不过与PCI-E x8插槽一样,PCI-E x4插槽为了兼容性,现在多数也是做成PCI-E x16插槽的形式,或是扩展为M.2接口,用于安装M.2 SSD、M.2无线网卡或者其它M.2接口设备,其余扩展卡则留给PCI-E x1插槽负责。

    4、PCI-E x1插槽的长度是最短的,仅有25mm,相比PCI-E x16插槽,其数据针脚是大幅度减少至14个。PCI-E x1插槽的带宽通常由主板芯片提供,主要用途是独立网卡、独立声卡、USB 3.0/3.1扩展卡等都会用到PCI-E x1插槽,甚至可以通过转接线给PCI-E x1插槽装上显卡,用来挖矿或者实现多屏输出。

    X1是用来替代原来的PCI设备的。

    PCI-E基础

    PCIe总线使用端到端的连接方式,在一条PCIe链路的两端只能各连接一个设备,这两个设备互为是数据发送端和数据接收端。PCIe总线除了总线链路外,还具有多个层次,发送端发送数据时将通过这些层次,而接收端接收数据时也使用这些层次。

    端对端数据传输

    PCIe链路使用“端到端的数据传送方式”,发送端和接收端中都含有TX(发送逻辑)和RX(接收逻辑),其结构如图所示。
    在这里插入图片描述

    在PCIe总线的物理链路的一个数据通路(Lane)中,由两组差分信号,共4根信号线组成。其中发送端的TX部件与接收端的RX部件使用一组差分信号连接,一个PCIe链路可以由多个Lane组成。

    高速差分信号电气规范要求其发送端串接一个电容,以进行AC耦合。PCIe链路使用差分信号进行数据传送,一个差分信号由D+和D-两根信号组成,信号接收端通过比较这两个信号的差值,判断发送端发送的是逻辑“1”还是逻辑“0”。

    PCIe链路可以由多条Lane组成,目前PCIe链路可以支持1、2、4、8、12、16和32个Lane,即×1、×2、×4、×8、×12、×16和×32宽度的PCIe链路。每一个Lane上使用的总线频率与PCIe总线使用的版本相关。

    第1个PCIe总线规范为V1.0,之后依次为V1.0a,V1.1,V2.0和V2.1。目前PCIe总线的最新规范为V2.1,而V3.0正在开发过程中,预计在2010年发布。不同的PCIe总线规范所定义的总线频率和链路编码方式并不相同,如表所示。
    在这里插入图片描述
    PCIe总线V1.x和V2.0规范在物理层中使用8/10b编码,即在PCIe链路上的10 bit中含有8 bit的有效数据;而V3.0规范使用128/130b编码方式,即在PCIe链路上的130 bit中含有128 bit的有效数据。

    以V2.x规范为例,不同宽度PCIe链路所能提供的峰值带宽,如表所示。
    在这里插入图片描述

    在PCIe总线中,使用GT(Gigatransfer)计算PCIe链路的峰值带宽。GT是在PCIe链路上传递的峰值带宽,其计算公式为总线频率×数据位宽×2。

    PCIe链路使用串行方式进行数据传送,然而在芯片内部,数据总线仍然是并行的,因此PCIe链路接口需要进行串并转换,这种串并转换将产生较大的延时。除此之外PCIe总线的数据报文需要经过事务层、数据链路层和物理层,这些数据报文在穿越这些层次时,也将带来延时。

    在基于PCIe总线的设备中,×1的PCIe链路最为常见,而×12的PCIe链路极少出现,×4和×8的PCIe设备也不多见。Intel通常在ICH中集成了多个×1的PCIe链路用来连接低速外设,而在MCH中集成了一个×16的PCIe链路用于连接显卡控制器。而PowerPC处理器通常能够支持×8、×4、×2和×1的PCIe链路。

    PCIe总线物理链路间的数据传送使用基于时钟的同步传送机制,但是在物理链路上并没有时钟线,PCIe总线的接收端含有时钟恢复模块CDR(Clock Data Recovery),CDR将从接收报文中提取接收时钟,从而进行同步数据传递。

    在一个PCIe设备中除了需要从报文中提取时钟外,还使用了REFCLK+和REFCLK-信号对作为本地参考时钟

    总线信号

    PCIe设备使用两种电源信号供电,分别是VccVaux,其额定电压为3.3V。其中Vcc为主电源,PCIe设备使用的主要逻辑模块均使用Vcc供电,而一些与电源管理相关的逻辑使用Vaux供电。在PCIe设备中,一些特殊的寄存器通常使用Vaux供电,如Sticky Register,此时即使PCIe设备的Vcc被移除,这些与电源管理相关的逻辑状态和这些特殊寄存器的内容也不会发生改变。

    在PCIe总线中,使用Vaux的主要原因是为了降低功耗和缩短系统恢复时间。因为Vaux在多数情况下并不会被移除,因此当PCIe设备的Vcc恢复后,该设备不用重新恢复使用Vaux供电的逻辑,从而设备可以很快地恢复到正常工作状状态。

    PCIe链路的最大宽度为×32,但是在实际应用中,×32的链路宽度极少使用。在一个处理器系统中,一般提供×16的PCIe插槽,并使用PETp015、PETn015和PERp015、PERn015共64根信号线组成32对差分信号,其中16对PETxx信号用于发送链路,另外16对PERxx信号用于接收链路。除此之外PCIe总线还使用了下列辅助信号。

    1 PERST#信号
    该信号为全局复位信号,由处理器系统提供,处理器系统需要为PCIe插槽和PCIe设备提供该复位信号。PCIe设备使用该信号复位内部逻辑。PCIe总线定义了多种复位方式,其中Cold Reset和Warm Reset这两种复位方式的实现与该信号有关。

    2 REFCLK+和REFCLK-信号
    在一个处理器系统中,可能含有许多PCIe设备。PCIe设备与PCIe插槽都具有REFCLK+和REFCLK-信号,其中PCIe插槽使用这组信号与处理器系统同步。

    在一个处理器系统中,通常采用专用逻辑向PCIe插槽提供REFCLK+和REFCLK-信号,如图所示。其中100Mhz的时钟源由晶振提供,并经过差分时钟驱动器生成多个同相位的时钟源,与PCIe插槽一一对应连接。

    在这里插入图片描述
    当PCIe设备作为Add-In卡连接在PCIe插槽时,可以直接使用PCIe插槽提供的REFCLK+和REFCLK-信号,也可以使用独立的参考时钟,只要这个参考时钟在100MHz±300ppm范围内即可。内置的PCIe设备与Add-In卡在处理REFCLK+和REFCLK-信号时使用的方法类似,但是PCIe设备可以使用独立的参考时钟,而不使用REFCLK+和REFCLK-信号。

    在一个处理器系统中,如果使用PCIe链路进行机箱到机箱间的互连,因为参考时钟可以异步设置,机箱到机箱之间进行数据传送时仅需要差分信号线即可,而不需要参考时钟,从而减少了链接线材。

    3 WAKE#信号
    当PCIe设备进入休眠状态,主电源已经停止供电时,PCIe设备使用该信号向处理器系统提交唤醒请求,使处理器系统重新为该PCIe设备提供主电源Vcc。

    在PCIe总线中,WAKE#信号是可选的,因此使用WAKE#信号唤醒PCIe设备的机制也是可选的。值得注意的是产生该信号的硬件逻辑必须使用辅助电源Vaux供电。

    **WAKE#**是一个Open Drain信号,一个处理器的所有PCIe设备可以将WAKE#信号进行线与后,统一发送给处理器系统的电源控制器。当某个PCIe设备需要被唤醒时,该设备首先置WAKE#信号有效,然后在经过一段延时之后,处理器系统开始为该设备提供主电源Vcc,并使用PERST#信号对该设备进行复位操作。此时WAKE#信号需要始终保持为低,当主电源Vcc上电完成之后,PERST#信号也将置为无效并结束复位,WAKE#信号也将随之置为无效,结束整个唤醒过程。

    PCIe设备除了可以使用WAKE#信号实现唤醒功能外,还可以使用Beacon信号实现唤醒功能。与WAKE#信号实现唤醒功能不同,Beacon使用In-band信号,即差分信号D+和D-实现唤醒功能。

    Beacon信号DC平衡,由一组通过D+和D-信号生成的脉冲信号组成。这些脉冲信号宽度的最小值为2ns,最大值为16us。当PCIe设备准备退出L2状态(该状态为PCIe设备使用的一种低功耗状态)时,可以使用Beacon信号,提交唤醒请求。

    4 SMCLK和SMDAT信号
    SMCLK和SMDAT信号与x86处理器的SMBus(System Mangement Bus)相关。SMBus于1995年由Intel提出,SMBus由SMCLK和SMDAT信号组成。SMBus源于I2C总线,但是与I2C总线存在一些差异。

    SMBus的最高总线频率为100KHz,而I2C总线可以支持400KHz和2MHz的总线频率。此外SMBus上的从设备具有超时功能,当从设备发现主设备发出的时钟信号保持低电平超过35ms时,将引发从设备的超时复位。在正常情况下,SMBus的主设备使用的总线频率最低为10KHz,以避免从设备在正常使用过程中出现超时。

    在SMbus中,如果主设备需要复位从设备时,可以使用这种超时机制。而I2C总线只能使用硬件信号才能实现这种复位操作,在I2C总线中,如果从设备出现错误时,单纯通过主设备是无法复位从设备的。

    SMBus在x86处理器系统中得到了大规模普及,其主要作用是管理处理器系统的外部设备,并收集外设的运行信息,特别是一些与智能电源管理相关的信息。PCI和PCIe插槽也为SMBus预留了接口,以便于PCI/PCIe设备与处理器系统进行交互。

    5 JTAG信号
    JTAG(Joint Test Action Group)是一种国际标准测试协议,与IEEE 1149.1兼容,主要用于芯片内部测试。目前绝大多数器件都支持JTAG测试标准。JTAG信号由TRST#、TCK、TDI、TDO和TMS信号组成。其中TRST#为复位信号;TCK为时钟信号;TDI和TDO分别与数据输入和数据输出对应;而TMS信号为模式选择。

    6 PRSNT1#和PRSNT2#信号
    PRSNT1#和PRSNT2#信号与PCIe设备的热插拔相关。在基于PCIe总线的Add-in卡中,PRSNT1#和PRSNT2#信号直接相连,而在处理器主板中,PRSNT1#信号接地,而PRSNT2#信号通过上拉电阻接为高。PCIe设备的热插拔结构如图所示。

    在这里插入图片描述
    当Add-In卡没有插入时,处理器主板的PRSNT2#信号由上拉电阻接为高,而当Add-In卡插入时主板的PRSNT2#信号将与PRSNT1#信号通过Add-In卡连通,此时PRSNT2#信号为低。处理器主板的热插拔控制逻辑将捕获这个“低电平”,得知Add-In卡已经插入,从而触发系统软件进行相应地处理。

    PRSNT1#和PRSNT2#信号使用的金手指长度是其他信号的一半。因此当PCIe设备插入插槽时,PRSNT1#和PRSNT2#信号在其他金手指与PCIe插槽完全接触,并经过一段延时后,才能与插槽完全接触;当PCIe设备从PCIe插槽中拔出时,这两个信号首先与PCIe插槽断连,再经过一段延时后,其他信号才能与插槽断连。

    PCI-E总线的层次结构

    PCIe总线采用了串行连接方式,并使用数据包(Packet)进行数据传输,采用这种结构有效去除了在PCI总线中存在的一些边带信号,如INTx和PME#等信号。在PCIe总线中,数据报文在接收和发送过程中,需要通过多个层次,包括事务层、数据链路层和物理层。

    在这里插入图片描述
    PCIe总线的层次组成结构与网络中的层次结构有类似之处,但是PCIe总线的各个层次都是使用硬件逻辑实现的。在PCIe体系结构中,数据报文首先在设备的核心层(Device Core)中产生,然后再经过该设备的事务层(Transaction Layer)、数据链路层(Data Link Layer)和物理层(Physical Layer),最终发送出去。而接收端的数据也需要通过物理层、数据链路和事务层,并最终到达Device Core。

    事务层

    事务层定义了PCIe总线使用总线事务,其中多数总线事务与PCI总线兼容。这些总线事务可以通过Switch等设备传送到其他PCIe设备或者RC。RC也可以使用这些总线事务访问PCIe设备。

    事务层接收来自PCIe设备核心层的数据,并将其封装为TLP(Transaction Layer Packet)后,发向数据链路层。此外事务层还可以从数据链路层中接收数据报文,然后转发至PCIe设备的核心层。

    事务层的一个重要工作是处理PCIe总线的“序”。在PCIe总线中,“序”的概念非常重要,也较难理解。在PCIe总线中,事务层传递报文时可以乱序,这为PCIe设备的设计制造了不小的麻烦。事务层还使用流量控制机制保证PCIe链路的使用效率。

    数据链路层

    数据链路层保证来自发送端事务层的报文可以可靠、完整地发送到接收端的数据链路层。来自事务层的报文在通过数据链路层时,将被添加Sequence Number前缀和CRC后缀。数据链路层使用ACK/NAK协议保证报文的可靠传递。

    PCIe总线的数据链路层还定义了多种DLLP(Data Link Layer Packet),DLLP产生于数据链路层,终止于数据链路层。值得注意的是,TLP与DLLP并不相同,DLLP并不是由TLP加上Sequence Number前缀和CRC后缀组成的。

    物理层

    物理层是PCIe总线的最底层,将PCIe设备连接在一起。PCIe总线的物理电气特性决定了PCIe链路只能使用端到端的连接方式。PCIe总线的物理层为PCIe设备间的数据通信提供传送介质,为数据传送提供可靠的物理环境。

    物理层是PCIe体系结构最重要,也是最难以实现的组成部分。PCIe总线的物理层定义了LTSSM(Link Training and Status State Machine)状态机,PCIe链路使用该状态机管理链路状态,并进行链路训练、链路恢复和电源管理。

    PCI-E速率计算

    在这里插入图片描述

    在这里插入图片描述
    传输速率为每秒传输量GT/s,而不是每秒位数Gbps,因为传输量包括不提供额外吞吐量的开销位; 比如 PCIe 1.x和PCIe 2.x使用8b / 10b编码方案,导致占用了20% (= 2/10)的原始信道带宽。

    GT/s —— Giga transation per second (千兆传输/秒),即每一秒内传输的次数。重点在于描述物理层通信协议的速率属性,可以不和链路宽度等关联。
    Gbps —— Giga Bits Per Second (千兆位/秒)。

    GT/s 与Gbps 之间不存在成比例的换算关系。

    PCIe 吞吐量(可用带宽)计算方法:

    吞吐量 = 传输速率 * 编码方案

    例如:PCI-e2.0 协议支持 5.0 GT/s,即每一条Lane 上支持每秒钟内传输 5G个Bit;但这并不意味着 PCIe 2.0协议的每一条Lane支持 5Gbps 的速率。

    为什么这么说呢?因为PCIe 2.0 的物理层协议中使用的是 8b/10b 的编码方案。 即每传输8个Bit,需要发送10个Bit;这多出的2个Bit并不是对上层有意义的信息。

    那么, PCIe 2.0协议的每一条Lane支持 5 * 8 / 10 = 4 Gbps = 500 MB/s 的速率

    以一个PCIe 2.0 x8的通道为例,x8的可用带宽为 4 * 8 = 32 Gbps = 4 GB/s

    同理,

    PCI-e3.0 协议支持 8.0 GT/s, 即每一条Lane 上支持每秒钟内传输 8G个Bit。

    而PCIe 3.0 的物理层协议中使用的是 128b/130b 的编码方案。 即每传输128个Bit,需要发送130个Bit。

    那么, PCIe 3.0协议的每一条Lane支持 8 * 128 / 130 = 7.877 Gbps = 984.6 MB/s 的速率。

    一个PCIe 3.0 x16的通道,x16 的可用带宽为 7.877 * 16 = 126.031 Gbps = 15.754 GB/s

    参考文献

    文献1.
    文献2
    文献3
    文献4

    展开全文
  • 绍了PCIPCI-x,PCI-E兼容以及他们之间的区别详细图解
  • Mini PCI-E转USB转换板

    2016-08-04 09:29:41
    Mini PCI-E转USB转换板
  • miniPCI-E 模块和底座接口封装,两个都有,有的资源里面只有卡PCB,或只有底座接口封装,这个是验证过的
  • 花了好大劲弄好的PCIE封装,在网上找了半天找不到正确的,给大家分享一下。支持Altium Designer。
  • 瑞昱 Semiconductor RTL8168/8111 PCI-E Gigabit Ethernet NIC 网卡驱动
  • MINI PCI-E引脚定义

    2017-08-10 13:41:06
    MINI PCI-E的52个引脚定义

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 45,805
精华内容 18,322
关键字:

PCI-E