精华内容
下载资源
问答
  • 常用的拉普拉斯变换
    千次阅读
    2021-03-24 09:37:54

    常用的拉普拉斯变换

    在这里插入图片描述

    更多相关内容
  • 使用两种方法执行拉普拉斯变换的反演:(1) Zakian 方法和 (2) 傅立叶级数近似。 结果与解析解一致。 Zakian 方法提出了超越函数的问题。 在处理振荡函数时,傅立叶级数给出了更好的结果。 在此链接中可以使用 ...
  • 傅立叶变换拉普拉斯变换与小波变换手写公式推导笔记
  • 拉普拉斯变换是工程数学中常用的一种积分变换,又名拉氏变换。拉氏变换是一个线性变换,可将一个有引数实数t(t≥ 0)的函数转换为一个引数为复数s的函数。拉氏变换英文名为Laplace Transform,为法国著名数学家...
  • 傅里叶变换拉普拉斯变换、Z变换公式和性质表格汇总。傅里叶变换拉普拉斯变换、Z变换公式和性质表格汇总。傅里叶变换拉普拉斯变换、Z变换公式和性质表格汇总。傅里叶变换拉普拉斯变换、Z变换公式和性质表格...
  • 拉普拉斯变换的定义 几种典型信号的拉氏变换 拉氏变换的积分下限 拉氏变换的基本性质 拉氏反变换 微分方程的求解 拉氏变换求解微分方程的一般步骤 拉氏变换求解微分方程的一般步骤
  • 拉普拉斯变换

    千次阅读 2021-02-25 18:00:24
    另外可参考视频【中文翻译配音】3D动画详细解释傅里叶与拉普拉斯变换! 以及 珂学原理」No. 26「拉普拉斯变换了什么 以及 傅里叶变换的直观解释 拉普拉斯变换和傅里叶变换的联系 首先,列出傅里叶变换的公式: F(ω)...

    阅读本文之前,建议先阅读我的另一篇文章《傅里叶级数与傅里叶变换公式推导》,这是本文的基础。

    另外可参考视频【中文翻译配音】3D动画详细解释傅里叶与拉普拉斯变换! 以及 珂学原理」No. 26「拉普拉斯变换了什么 以及 傅里叶变换的直观解释

    拉普拉斯变换和傅里叶变换的联系

    首先,列出傅里叶变换的公式:
    F ( ω ) = ∫ − ∞ ∞ f ( t ) e − i ω t d t F(ω) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t}dt F(ω)=f(t)eiωtdt
    变换条件:狄利克雷条件,通俗来说,没办法表示一些持续递增的函数,因此会导致 ∫ − ∞ ∞ f ( t ) e − i ω t d t \int_{-\infty}^{\infty} f(t) e^{-i\omega t}dt f(t)eiωtdt的结果趋于无穷。

    这时,我们对 f ( t ) f(t) f(t)先进行处理,乘上一个衰减因子 e − σ t ( σ > 0 ) e^{-\sigma t}(\sigma>0) eσt(σ>0),使其在无穷远处衰减为0。式子变为:
    F ( ω ) = ∫ − ∞ ∞ f ( t ) e − ( i ω + σ ) t d t F(ω) = \int_{-\infty}^{\infty} f(t) e^{-(i\omega+\sigma) t}dt F(ω)=f(t)e(iω+σ)tdt

    L ( s ) = ∫ 0 ∞ f ( t ) e − s t d t L(s) = \int_{0}^{\infty} f(t) e^{-st}dt L(s)=0f(t)estdt

    这里我们在工程上只考虑t=0之后的信号变换,因此积分下限为0。并且可以理解为把原函数分解为了 e σ t sin ⁡ ω x e^{\sigma t}\sin\omega x eσtsinωx e σ t sin ⁡ ω x e^{\sigma t}\sin\omega x eσtsinωx的形式,这样就能解决函数无穷远处无穷大的问题。即傅里叶变换是一个正弦扫描器,而拉普拉斯变换是一个正弦和指数扫描器。

    因此,拉普拉斯的函数是一个复平面函数,是三维的:
    在这里插入图片描述

    其中截取其中的 σ = 0 \sigma = 0 σ=0的平面就是傅里叶变换的函数。


    拉普拉斯变换的收敛域

    收敛域的定义:在收敛域中,存在 σ \sigma σ,使得 f ( t ) e − σ t f(t)e^{-\sigma t} f(t)eσt为收敛函数,从使得 ∫ − ∞ ∞ f ( t ) e − ( i ω + σ ) t \int_{-\infty}^{\infty} f(t) e^{-(i\omega+\sigma) t} f(t)e(iω+σ)t收敛。

    也就是说,当 σ \sigma σ足够大使得 f ( t ) e − σ t f(t)e^{-\sigma t} f(t)eσt在无穷远处收敛为0时,此处为收敛域,当 σ \sigma σ小于某一个阈值时为发散域。

    在这里插入图片描述

    通常我们非常关注拉普拉斯变换的极点,这时拉普拉斯变换的作用就体现出来了。很多系统,例如RLC电路,弹簧上的质量,以及普遍的控制系统会产生正弦和指数输出,因此需要比傅里叶变换更强大的工具去分析它们。极点的实部就代表了函数包含的指数项,虚部代表函数包含的三角函数项的频率。在自动控制系统中,出现了虚轴往右的极点,即代表有不衰减甚至增大的信号,系统不稳定。

    拉普拉斯变换的应用

    常用拉普拉斯变换公式

    L ( e − a t ) = ∫ 0 ∞ e − a t e − s t d t = − 1 a + s e − ( a + s ) t ∣ 0 ∞ = 1 a + s \mathscr{L}(e^{-at}) = \int_{0}^{\infty} e^{-at} e^{-st}dt = -\frac 1 {a+s}e^{-(a+s)t}|_0^{\infty} = \frac 1 {a+s} L(eat)=0eatestdt=a+s1e(a+s)t0=a+s1

    L ( u ( t ) ) = 1 s \mathscr{L}(u(t)) = \frac 1 s L(u(t))=s1

    L ( δ ( t ) ) = ∫ 0 + ∞ δ ( t ) e − s t d t = 1 \mathscr{L}(\delta(t)) = \int_0^{+\infty} \delta(t)e^{-st}dt = 1 L(δ(t))=0+δ(t)estdt=1

    L ( t ) = 1 s 2 \mathscr{L}(t) = \frac 1 {s^2} L(t)=s21

    L ( t 2 2 ) = 1 s 2 \mathscr{L}(\frac {t^2} 2) = \frac 1 {s^2} L(2t2)=s21

    L ( t n n ! ) = 1 s n + 1 \mathscr{L}(\frac {t^n} {n!}) = \frac 1 {s^{n+1}} L(n!tn)=sn+11

    L ( t e − a t ) = 1 ( s + a ) 2 \mathscr{L}(te^{-at}) = \frac 1 {(s+a)^2} L(teat)=(s+a)21

    L ( s i n ω t ) = ω s 2 + ω 2 \mathscr{L}(sinωt) = \frac ω {s^2+ω^2} L(sinωt)=s2+ω2ω

    L ( c o s ω t ) = s s 2 + ω 2 \mathscr{L}(cosωt) = \frac s {s^2+ω^2} L(cosωt)=s2+ω2s

    L ( e − a t s i n ω t ) = ω ( s + a ) 2 + ω 2 \mathscr{L}(e^{-at}sinωt) = \frac ω {(s+a)^2+ω^2} L(eatsinωt)=(s+a)2+ω2ω

    L ( e − a t c o s ω t ) = s + a ( s + a ) 2 + ω 2 \mathscr{L}(e^{-at}cosωt) = \frac {s+a} {(s+a)^2+ω^2} L(eatcosωt)=(s+a)2+ω2s+a

    性质

    拉普拉斯变换是线性变换,也就是说符合叠加原理:
    L ( a f ( t ) + b g ( t ) ) = a F ( s ) + b G ( s ) \mathscr{L}(af(t) + bg(t)) = aF(s)+bG(s) L(af(t)+bg(t))=aF(s)+bG(s)
    求导:
    L ( f ′ ( t ) ) = ∫ 0 + ∞ f ′ ( t ) e − s t d t = f ( t ) e − s t ∣ 0 + ∞ − ∫ 0 + ∞ f ( t ) ( − s e − s t ) d t = s F ( s ) − f ( 0 ) = s F ( s ) \mathscr{L}(f'(t))= \int_0^{+\infty}f'(t)e^{-st}dt = f(t)e^{-st}|_0^{+\infty} -\int_0^{+\infty}f(t)(-se^{-st})dt = sF(s)-f(0)=sF(s) L(f(t))=0+f(t)estdt=f(t)est0+0+f(t)(sest)dt=sF(s)f(0)=sF(s)
    同理,积分:
    L ( ∫ 0 t f ( t ) d t ) = F ( s ) s \mathscr{L}(\int_0^t f(t)dt) = \frac {F(s)} s L(0tf(t)dt)=sF(s)
    卷积:
    L ( f ( t ) ⊗ g ( t ) ) = F ( s ) G ( s ) \mathscr{L}(f(t)\otimes g(t)) = F(s)G(s) L(f(t)g(t))=F(s)G(s)
    这些在解微分方程(描述动态世界的数学手段)等方面大大简化了运算,因此拉普拉斯变换是方便快捷的分析工具。

    拉普拉斯逆变换

    公式:
    L − 1 ( F ( s ) ) = 1 2 π i ∫ c − j ∞ c + j ∞ F ( s ) e s t d s L^{-1}(F(s)) = \frac 1 {2\pi i}\int_{c-j\infty}^{c+j\infty}F(s)e^{st}ds L1(F(s))=2πi1cjc+jF(s)estds
    但这个公式在我们的学习过程中并不常用,通常可以用我们上面的常用拉普拉斯变换公式来推导出逆变换结果。

    展开全文
  • 拉普拉斯变换的求逆是求解复杂线性系统的一个非常重要的过程。 函数 f(t)=INVLAP(F(s)) 提供了一种简单、有效和合理准确的方法来获得结果。 它基于论文: J. Valsa 和 L. Brancik:拉普拉斯变换数值反演的近似公式,...
  • 本文介绍了在实际工程中常用到的傅里叶变换和Z变换之间的关系、各自的意义等内容。
  • 对于电路,传统所应用的方法是根据电路定律和元件的电压、电流关系建立的描述电路的方程,建立的方程式以时间为自变量的线性常微分方程,然后对常微分方程求解,即可得电路变量在时域的解答。
  • 控制工程基础:2.3 拉普拉斯变换及其逆变换.ppt
  • % 示例 1 f1 = @(t) t.^2; Lapf1 = @(s) LapTrans(f1,s); sc = 1:0.1:10; sp = 1:10; yc = 2./sc.^3; yp = arrayfun(Lapf1, sp); 图1) 情节(sc,yc,'r',sp,yp,'*');... title('数字拉普拉斯变换(sin
  • 来自拉普拉斯变换的 INVLAPFUN 时间函数。 FUN = INVLAPFUN(B,A) 返回一个函数句柄,用于评估与拉普拉斯变换 B(s)/A(s) 关联的时间函数 FUN(t),其中 B 和 A 是包含多项式系数的相应行向量。 FUN = INVLAPFUN(TF) ...
  • 交互式应用程序,展示了脉冲信号拉普拉斯变换的 3D 可视化及其与傅立叶变换的关系。 脉冲信号的宽度和切口在 s 平面上的轨迹可以改变。 可以从不同的视角查看拉普拉斯变换 X(s) 的幅度。 需要 R2014b 或更新版本。 ...
  • 在本程序中,使用三种方法来解决热传导问题。...我们使用 pdepe,基于拉普拉斯变换解析反演的短时间解,最后是基于拉普拉斯变换反演的傅立叶级数近似方法的数值解。 所有结果都被绘制出来并表现出完美的一致性。
  • 分段函数的拉普拉斯变换
  • 傅里叶变换拉普拉斯变换

    千次阅读 2020-07-22 16:25:39
    三、拉普拉斯变换(原来就是那么回事)拉普拉斯变换可以说是现代工程学使用最广泛的数学工具,它通过数学变换将微积分方程转化成代数方程,为求解连续空间连续时间的方程提供了可能。但是,一般的教材一上来就是...

    拉普拉斯变换可以说是现代工程学使用最广泛的数学工具,它通过数学变换将微积分方程转化成代数方程,为求解连续空间连续时间的方程提供了可能。但是,一般的教材一上来就是拉普拉斯变换的数学定义,对于其历史和代表的深刻含义没有任何介绍,导致很多人一直头疼不已。今天,我们尝试一下从不同的角度来看看拉普拉斯变换到底是怎么回事?先从一个人说起:奥列弗.赫维赛德,一位在科学史地位被严重低估的人。


    一、奥列弗. 赫维赛德是何许人也

    奥列弗. 赫维赛德(Oliver Heaviside)是维多利亚时期英国人,出身于极度贫穷的家庭,听力部分残疾,还得过猩红热,从未上过大学,完全靠自学和兴趣掌握了高等科学和数学。

    <
    图片来自:https://en.wikipedia.org/wiki/Oliver_Heaviside

    很多人熟悉赫维赛德是因为MATLAB有一个赫维赛德(Heaviside)函数,它大概长这个样子,可以看成一个阶跃函数,这个函数因为和狄拉克(Dirac)函数之间的千丝万缕的关系而显得尤为重要。

    我们现在说赫维赛德,当然不是因为这个函数,而是因为我们叹为观止、惊为天人,怎么夸都不过分的麦克斯韦方程组,麦克斯韦本人并没有见过这个方程组,它在一定程度上应该叫“赫维赛德方程组”。

    这四个公式简直太对称了!而且它们的含义也很清晰:变化的电场产生磁场,变化的磁场产生电场,电磁波也就是电场和磁场此消彼长、相互转化、向前传播的形式。多亏了赫维赛德,麦克斯韦的理论才得以在十九世纪结束之前就真正站稳了脚跟并发扬光大。可以毫不谦虚的说:宇宙间任何的电磁现象,皆可由麦克斯韦方程组解释,包括光。也正是因为这个方程组完美统一了整个电磁场,让爱因斯坦始终想要以同样的方式统一引力场,并将宏观与微观的两种力放在同一组式子中:即著名的“大一统理论”,不幸的是麦克斯韦成功了,而爱因斯坦没有。

    麦克斯韦早在1873年便出版了跨时代巨著《电磁通论》,可惜的是,他英年早逝,他的方程组在生前并没有得到科学界的关注,其中一个很重要的原因是他的理论描述复杂得令人吃惊,他最初提出的电磁理论公式包含了二十个方程,直接导致了他的理论在首次发表后的10多年时间内,几乎无人问津。

    赫维赛德最伟大的贡献是简化了麦克斯韦的原始方程组,通过他天才般的洞察力,挖掘出了蕴含在麦克斯韦方程内部的深刻意义,从而使简化后麦克斯韦方程组呈现出无与伦比的对称性,成为历史上是最漂亮的方程式(没有唯一)。

    而我们今天要说的,是赫维赛德的第二个重要贡献:运算微积分。学过电磁学的人都知道,在历史上人们发现好多定理公式,都是用微积分的形式表达的。1880年-1887年之间,赫维赛德在从事电磁场研究的同时,为求解微积分方程,在他的分析计算中引入了微分算子的概念,这个方法牛逼在什么地方呢?——它可以将常微分方程转换为普通代数方程。天才与普通人的区别就是人家是靠“直觉”来解决问题的。赫维赛德是怎么解微分方程的呢?他把微分、积分运算用一个简单的算子来代替。

    ——微分算子用 [公式] 来表示,

    [公式]

    ——高阶微分算子为,

    [公式]

    ——积分算子符号用 [公式] 表示,

    [公式]

    也就是说,在某种算子下,积分和微分对应的是倒数关系,至于算子 [公式] 代表什么,赫维赛德也没有多解释,在缺乏严密数学基础的情况下,人家直接放在文章就用了,还发表了。比如常见的一个二阶常微分方程,

    [公式]

    用赫维赛德的微分算子变换一下,就变成了代数表达式,

    [公式]

    赫维赛德之所以这么做,是因为他的“物理直觉”告诉他这么做,就是这么硬。这显然是一种开外挂的行为,因此也受到当时的主流数学家们们的攻讦,他们认为赫维赛德就是十足的“民科”,文章没什么理论依据,自己在那空想呢。当然,赫维赛德也不是弱鸡,科学家怼起人来,也是毫不含糊:“因为我不能理解消化过程就拒绝晚餐吗?不,只要我满意这个结果。

    好了,扯了那么远,有童鞋已经不耐心了:这些和拉普拉斯变换有什么关系?谜底就是:赫维赛德的微积分算子,就是拉普拉斯变换的前身。

    赫维赛德的算子验算虽然缺乏严密的数学基础,往往能给出重要且正确的结果,方法确实有效,无法驳倒。于是在世纪之交,数学家们开始尝试随算子理论进行严格化。后来,人在在70年前法国数学家拉普拉斯的一本有关概率论的著作上,找到了这种算法的依据,但是这本书上提出的并不是现在我们看到的拉普拉斯变换,而是著名的Z变换。什么?拉普拉斯变换不是拉普拉斯提出的?随着二战后拉普拉斯变换的广泛使用,赫维赛德算子的作用被弱化了,但是不可否认的是,这是这种“不正规”,仅靠“天才的直觉”而发明的方法,促成了现在拉普拉斯分析法。


    二、傅里叶变换(轻量版拉普拉斯变换)

    在说拉普拉斯变换以前,我们要先提一下傅里叶变换,这可以看成是轻量版的拉普拉斯变换。傅里叶变换说的是什么事?说的是自然界的很多现象,都可以用三角函数进行分解。


    图片来源:www.bolvan.ph.utexas.edu


    古巴比伦科学家在很早就用了三角函数和逼近的方法,对天体运动进行观测和预报,1748年,大神欧拉用类似的方法分析可弦的振动(大神就是高产,哪哪都有他的身影),1753年伯努利提出任意物理弦的振动都可以可以表达为三角函数的和,但是他没给出证明(注意,伯努利是一个家族,3代人中产生了8位科学家,后裔有不少于120位被人们系统地追溯过)。1807年,傅里叶于年在法国科学学会上提交了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的观点:任何连续周期信号可以由一组适当的正弦曲线组合而成。傅里叶没有做出严格的数学论证。这篇论文的审稿人中,有历史上著名的数学家拉格朗日和拉普拉斯,当拉普拉斯和其它审稿人投票通过并要发表这篇论文时,拉格朗日坚决反对,认为傅里叶的方法无法表示带有棱角的信号。法国科学学会屈服于拉格朗日的威望,拒绝了傅里叶的工作。1822年,傅里叶变换随其著作《热的解析》发表,但已经是15年之后了。1829年,狄利赫里通过推导其适用范围,完善了傅里叶变换。

    我们知道,三角函数可以通过欧拉公式与复指数函数联系起来,

    [公式]

    也就是说,复指数函数是与正弦函数、余弦函数紧密相关的,那是不是某些信号也能通过复指数函数进行分解呢?我们不妨先来研究一下 [公式] 有什么特殊的性质。在(https://zhuanlan.zhihu.com/p/40317763, https://zhuanlan.zhihu.com/p/40396861,https://zhuanlan.zhihu.com/p/40302967)三篇文章中,我们得出了以下结论:自然常数 [公式] 可以描述事物的连续变化,虚数单位 [公式] 可以描述旋转,复指数函数 [公式] 代表一个连续旋转的圆。(这一点不太理解的,可阅读上面三篇文章,里面有详细介绍)。

    当频率为 [公式] 时,



    [公式] 时,




    clc;clear;
    h = animatedline;
    xl=xlabel('cos(\omegat)');% 
    yl=ylabel('sin(\omegat)');% 
    grid on;
    title('\omega = 1rad/s   Made by J Pan')
    axis([-1,1,-1,1]);
    axis square;
    N = 100;
    t=linspace(0,2*pi,N);
    w=1;
    x=cos(w*t);
    y=sin(w*t);
    a = tic; % start timer
    for k = 1:N
        addpoints(h,x(k),y(k));
        hold on
        quiver(0,0,x(k)*1.1,y(k)*1.1)
        b = toc(a); % check timer
        if b > (1/90)
            drawnow % update screen every 1/30 seconds
            a = tic; % reset timer after updating
        end
    end

    因此,[公式] 可以看成是一组连续旋转的曲线,幅值永远为1,频率一直在变。这些旋转的曲线能干什么?


    图片来源网络


    你能想象到很多曲线,都可以用这些不同频率,连续旋转的圆,通过线性叠加得到,而傅里叶定律,就是对这个结论的数学描述,傅里叶定律说:只要一个函数满足如狄利赫里条件,都能分解为复指数函数之和,哪怕是如拉格朗日提到的带有棱角的方波函数。狄利赫里条件为:

    (1) 函数在任意有限区间内连续,或只有有限个第一类间断点

    (2)在一个周期内,函数有有限个极大值或极小值;

    (3) [公式] 在绝对可积,即 [公式]

    当满足狄利赫里条件时,傅里叶变换及其逆变换为:

    [公式]

    [公式]

    于是就可以很好的解释拉格朗日和傅里叶之间的争论了——拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号,棱角处会有很小高频波动(吉布斯现象)。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅里叶也是对的。一个从数学家的角度,一个从工程师的角度


    三、拉普拉斯变换(原来就是那么回事)

    傅里叶变换能帮我们解决很多问题,一经问世后便受到广大工程师们的喜爱,因为它给人们提供了一扇不同的窗户来观察世界,从这个窗户来看,很多事情往往变得简单多了。但是,别忘了,傅里叶变换有一个很大局限性,那就是信号必须满足狄利赫里条件才行,特别是那个绝对可积的条件,一下子就拦截掉了一大批函数。比如函数 [公式] 就无法进行傅里叶变换。这点难度当然拿不到聪明的数学家们,他们想到了一个绝佳的主意:把不满足绝对的可积的函数乘以一个快速衰减的函数,这样在趋于 [公式] 时原函数也衰减到零了,从而满足绝对可积。

    图片来自:https://www.zhihu.com/question/22102732/answer/369089156

    数学描述是:

    [公式]

    为保证 [公式] 一直为衰减函数,我们把 [公式]定义域缩减到正半轴,这样可以进行傅里叶变换就变成了:

    [公式]

    如果假设:

    [公式]

    那么就得到:

    [公式]

    这就是拉普拉斯变换

    我知道大部分人前面的数学推导没什么兴趣,接下来就是放彩蛋的时刻了,很多童鞋会说不管傅里叶变换或者拉普拉斯变换是什么细节,你能说点有意思的,让人能记忆深刻的信息吗?

    我前面的专栏文章说了, [公式] 代表按不同频率旋转的单位圆,那是在复平面来看的,想象力丰富的同学可以脑补一下,如果把时间轴也加上, [公式] 长什么样子呢?那就是螺旋曲线!



    clc;clear;
    h = animatedline;
    h1=gcf;
    view(3);
    xl=xlabel('cos(\omegat)');% 
    yl=ylabel('sin(\omegat)');% 
    zl=zlabel('t');% 
    set(xl,'Rotation',30);% 
    set(yl,'Rotation',-30);%
    grid on;
    title('\omega = 1rad/s   Made by J Pan')
    axis([-1,1,-1,1,0,4*pi])
    N = 200;
    t=linspace(0,4*pi,N);
    w=1;
    x=cos(w*t);
    y=sin(w*t);
    a = tic; % start timer
    for k = 1:N
        addpoints(h,x(k),y(k),t(k));
        hold on
        line([0 x(k)],[0 y(k)],[t(k) t(k)],'Color','red')
        b = toc(a); % check timer
        if b > (1/90)
            drawnow % update screen every 1/30 seconds
            a = tic; % reset timer after updating
        end
    end

    从其他不同的平面看,螺旋曲线就是正弦或者余弦曲线。


    下面我们再来看看 [公式] 长什么样子:



    clc;clear;
    h = animatedline;
    h1=gcf;
    view(3);
    xl=xlabel('cos(\omegat)');% 
    yl=ylabel('sin(\omegat)');% 
    zl=zlabel('t');% 
    set(xl,'Rotation',30);% 
    set(yl,'Rotation',-30);%
    grid on;
    title('\omega = 1rad/s   Made by J Pan')
    axis([-1,1,-1,1,0,4*pi])
    N = 200;
    t=linspace(0,4*pi,N);
    w=1;sig=-0.2;
    x=exp(sig*t).*cos(w*t);
    y=exp(sig*t).*sin(w*t);
    a = tic; % start timer
    for k = 1:N
        addpoints(h,x(k),y(k),t(k));
        hold on
        line([0 x(k)],[0 y(k)],[t(k) t(k)],'Color','red')
        b = toc(a); % check timer
        if b > (1/90)
            drawnow % update screen every 1/30 seconds
            a = tic; % reset timer after updating
        end
    end

    螺旋曲线和衰减函数的乘积:一个半径不断减小的螺旋曲线。从不同的平面看,就是不断衰减的正弦或者余弦曲线,从复平面来看,是一个半径不断减小的圆。

    总结一下:傅里叶变换是将函数分解到频率不同、幅值恒为1的单位圆上;拉普拉斯变换是将函数分解到频率幅值都在变化的圆上。因为拉普拉斯变换的基有两个变量,因此更灵活,适用范围更广。

    最后的彩蛋:拉普拉斯变换变换和赫维赛德的微积分算子有什么关系?为什么说微分算子是拉普拉斯变换的前身?其实很简单。

    对于微分运算:

    [公式] ,令 [公式] ,则 [公式] ;

    对于积分运算:

    [公式] ,令 [公式] ,则 [公式] ;

    是不是和赫维赛德微分算子长得很像?

    From: https://zhuanlan.zhihu.com/p/40783304

    展开全文
  • 由于其隐式不适定性,拉普拉斯变换的数值反演是一个长期存在的问题。 这些函数实现了最著名的数值反演算法之一,即 Weeks 方法。 这里特别新颖的是使用图形处理单元 [GPU] 计算来加速该方法。 为了帮助用户,提供了...
  • 本文主要讲了一下关于拉普拉斯变换的应用在电路设计,一起来学习一下
  • 拉普拉斯变换法在求解非稳态热传导问题中的应用,许彬,John C. Chai,在结构化网格中,用基元中心有限容积法和全隐时间格式求解非稳态热传导问题,并通过拉普拉斯变化法求解该问题,得到带有误差函数�
  • 拉普拉斯变换和Z变换

    2021-10-10 11:45:17
    文章目录拉普拉斯变换 摘自 《The Scientist and Engineer’s Guide to Digital Signal Processing》 信号处理中常采用卷积和傅里叶分析两种方法来分析线性系统,从它的脉冲响应或频率响应两个方面去理解线性系统...

    摘自 《The Scientist and Engineer’s Guide to Digital Signal Processing》

    信号处理中常采用卷积和傅里叶分析两种方法来分析线性系统,从它的脉冲响应或频率响应两个方面去理解线性系统。但是考虑到脉冲响应和频率响应几乎可以是任何形状或形式,这两种方法对于分析线性系统而言有点过于通用了。在工程应用中,许多线性系统的解是与微分方程的解相一致的,这意味着它们的脉冲响应只能由指数和正弦组成。

    拉普拉斯变换

    理解公式

    为了便于理解,可以将拉普拉斯变换解释为两阶段过程(先是指数曲线相乘,然后进行傅里叶变换),但是需要明确,拉普拉斯变换实际是一个单一的变换,而不是一步一步的过程。

    在这里插入图片描述

    图例

    在这里插入图片描述

    在这里插入图片描述

    判断系统 稳定 与否

    在这里插入图片描述

    使用不同的衰减因子来“探测”波形

    拉普拉斯变换可以看作是“探测”具有各种指数衰减正弦曲线的系统脉冲响应,产生抵消的探测波形称为极点和零点。
    在这里插入图片描述

    零点、极点的重要性

    极点和零点很重要是因为它们提供了s平面中任意点的值的简明表示,也就是说,我们只需使用几个参数就可以完全描述系统的特性。

    在这里插入图片描述
    在这里插入图片描述

    Z变换

    S平面与Z平面

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    展开全文
  • 信号与系统 MATLAB 拉普拉斯变换拉普拉斯分析 1.所用matlab函数 2.从傅里叶变换拉普拉斯变换 3.双边拉普拉斯收敛域 4.单边拉普拉斯 5.零极点分布系统特性 6.系统稳定性

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 18,571
精华内容 7,428
关键字:

拉普拉斯变化