-
2022-04-30 15:31:22
坐标变换的艺术—高频注入法公式推导
PMSM无位置传感器技术总体而言可分为两个部分,第一部分获知位置误差信号然后输入位置观测器进行处理,使得位置信号收敛,第二部分是极性判断。本文着重讲解第一部分中位置误差信号的获取,至于后续的观测器、极性判断等环节,以及另外的感应电机的无速度传感器技术会在文末给出学习资料。
PMSM高频模型的由来
PMSM在旋转轴系的电压为
[ u d u q ] = R [ i d i q ] + d d t [ ψ d ψ q ] + ω e [ − ψ q ψ d ] (1) \tag{1} \left[ \begin{array}{c} u_d\\ u_q\\ \end{array} \right] =R\left[ \begin{array}{c} i_d\\ i_q\\ \end{array} \right] +\frac{\mathrm{d}}{\mathrm{d}t}\left[ \begin{array}{c} \psi _d\\ \psi _q\\ \end{array} \right] +\omega _e\left[ \begin{array}{c} -\psi _q\\ \psi _d\\ \end{array} \right] [uduq]=R[idiq]+dtd[ψdψq]+ωe[−ψqψd](1)
在零低速工况,基于一些假设,公式 ( 1 ) (1) (1)被进一步简化,习惯将简化后的方程称之为高频模型。通常,电机的电路模型视为R-L电路,控制回路中注入高频信号,此时电路中占据主导地位的是电感项,又因为电机运行于零低速,因此旋转电压方程中的第一项和第三项可忽略,则PMSM的高频电压模型为
[ u d h u q h ] = d d t [ ψ d ψ q ] = [ L d 0 0 L q ] d d t [ i d h i q h ] (2) \tag{2} \left[ \begin{array}{c} u_{dh}\\ u_{qh}\\ \end{array} \right] =\frac{\mathrm{d}}{\mathrm{d}t}\left[ \begin{array}{c} \psi _d\\ \psi _q\\ \end{array} \right] =\left[ \begin{matrix} L_d& 0\\ 0& L_q\\ \end{matrix} \right] \frac{\mathrm{d}}{\mathrm{d}t}\left[ \begin{array}{c} i_{dh}\\ i_{qh}\\ \end{array} \right] [udhuqh]=dtd[ψdψq]=[Ld00Lq]dtd[idhiqh](2)
高频电压模型是高频注入法的核心所在,由此衍生出了旋转高频注入法、脉振高频注入法(脉振正弦和脉振方波)。公式推导
为了便于公式推导,将式 ( 2 ) (2) (2)转换成电流微分表达式,可得:
d d t [ i d h i q h ] = [ 1 L d 0 0 1 L q ] [ u d h u q h ] (3) \tag{3} \frac{\mathrm{d}}{\mathrm{d}t}\left[ \begin{array}{c} i_{dh}\\ i_{qh}\\ \end{array} \right] =\left[ \begin{matrix} \frac{1}{L_d}& 0\\ 0& \frac{1}{L_q}\\ \end{matrix} \right] \left[ \begin{array}{c} u_{dh}\\ u_{qh}\\ \end{array} \right] dtd[idhiqh]=[Ld100Lq1][udhuqh](3)
所有的高频方波注入法遵循坐标变换理论,各坐标系间的关系如下图所示,估计轴系至旋转轴系的坐标变换矩阵满足
P γ δ / d q = [ cos θ ~ sin θ ~ − sin θ ~ cos θ ~ ] (4) \tag{4} P_{\gamma \delta /dq}=\left[ \begin{matrix} \cos \tilde{\theta}& \sin \tilde{\theta}\\ -\sin \tilde{\theta}& \cos \tilde{\theta}\\ \end{matrix} \right] Pγδ/dq=[cosθ~−sinθ~sinθ~cosθ~](4)静止轴系至旋转轴系的坐标变换矩阵满足
P α β / d q = [ cos θ e sin θ e − sin θ e cos θ e ] (5) \tag{5} P_{\alpha \beta /dq}=\left[ \begin{matrix} \cos \theta _e& \sin \theta _e\\ -\sin \theta _e& \cos \theta _e\\ \end{matrix} \right] Pαβ/dq=[cosθe−sinθesinθecosθe](5)
上述 ( 4 ) (4) (4)、 ( 5 ) (5) (5)是单位正交矩阵,满足
P − 1 = P T (6) \tag{6} P^{-1}=P^T P−1=PT(6)为了读者更好的理解下文各高频注入法的公式推导过程,现将各方法的信号注入、响应信号提取轴系罗列成表,作为推导线索。
算法名称 高频电压信号注入轴系 高频电流提取轴系 旋转高频注入法 两相静止轴系 两相静止轴系 脉振高频正弦注入法 估计轴系 估计轴系 脉振高频方波注入法 估计轴系 静止轴系 旋转高频注入法
旋转高频注入法在静止轴系完成信号注入、响应信号提取过程,依据坐标变换理论,可得:
[ i d h i q h ] = [ cos θ e sin θ e − sin θ e cos θ e ] [ i α i β ] (7) \tag{7} \left[ \begin{array}{c} i_{dh}\\ i_{qh}\\ \end{array} \right] =\left[ \begin{matrix} \cos \theta _e& \sin \theta _e\\ -\sin \theta _e& \cos \theta _e\\ \end{matrix} \right] \left[ \begin{array}{c} i_{\alpha}\\ i_{\beta}\\ \end{array} \right] [idhiqh]=[cosθe−sinθesinθecosθe][iαiβ](7)[ u d h u q h ] = [ cos θ e sin θ e − sin θ e cos θ e ] [ u α u β ] (8) \tag{8} \left[ \begin{array}{c} u_{dh}\\ u_{qh}\\ \end{array} \right] =\left[ \begin{matrix} \cos \theta _e& \sin \theta _e\\ -\sin \theta _e& \cos \theta _e\\ \end{matrix} \right] \left[ \begin{array}{c} u_{\alpha}\\ u_{\beta}\\ \end{array} \right] [udhuqh]=[cosθe−sinθesinθecosθe][uαuβ](8)
结合式 ( 7 ) (7) (7),对式 ( 3 ) (3) (3)中等式左边的微分项化简,可得:
d d t [ i d h i q h ] = d d t { [ cos θ e sin θ e − sin θ e cos θ e ] [ i α i β ] } = [ − sin θ e cos θ e − cos θ e − sin θ e ] ω e [ i α i β ] + [ cos θ e sin θ e − sin θ e cos θ e ] d d t [ i α i β ] (9) \tag{9} \frac{\mathrm{d}}{\mathrm{d}t}\left[ \begin{array}{c} i_{dh}\\ i_{qh}\\ \end{array} \right] =\frac{\mathrm{d}}{\mathrm{d}t}\left\{ \left[ \begin{matrix} \cos \theta _e& \sin \theta _e\\ -\sin \theta _e& \cos \theta _e\\ \end{matrix} \right] \left[ \begin{array}{c} i_{\alpha}\\ i_{\beta}\\ \end{array} \right] \right\} =\left[ \begin{matrix} -\sin \theta _e& \cos \theta _e\\ -\cos \theta _e& -\sin \theta _e\\ \end{matrix} \right] \omega _e\left[ \begin{array}{c} i_{\alpha}\\ i_{\beta}\\ \end{array} \right] +\left[ \begin{matrix} \cos \theta _e& \sin \theta _e\\ -\sin \theta _e& \cos \theta _e\\ \end{matrix} \right] \frac{\mathrm{d}}{\mathrm{d}t}\left[ \begin{array}{c} i_{\alpha}\\ i_{\beta}\\ \end{array} \right] dtd[idhiqh]=dtd{[cosθe−sinθesinθecosθe][iαiβ]}=[−sinθe−cosθecosθe−sinθe]ωe[iαiβ]+[cosθe−sinθesinθecosθe]dtd[iαiβ](9)
分析式 ( 9 ) (9) (9),展开式中的第一项含有速度项,因电机运行于零低速工况,故第一项略去,保留第二项,可得:
d d t [ i d h i q h ] = [ cos θ e sin θ e − sin θ e cos θ e ] d d t [ i α i β ] (10) \tag{10} \frac{\mathrm{d}}{\mathrm{d}t}\left[ \begin{array}{c} i_{dh}\\ i_{qh}\\ \end{array} \right] =\left[ \begin{matrix} \cos \theta _e& \sin \theta _e\\ -\sin \theta _e& \cos \theta _e\\ \end{matrix} \right] \frac{\mathrm{d}}{\mathrm{d}t}\left[ \begin{array}{c} i_{\alpha}\\ i_{\beta}\\ \end{array} \right] dtd[idhiqh]=[cosθe−sinθesinθecosθe]dtd[iαiβ](10)
将 ( 8 ) (8) (8)、 ( 10 ) (10) (10)带入式 ( 3 ) (3) (3),结合式 ( 6 ) (6) (6),式 ( 3 ) (3) (3)可重写为
d d t [ i α h i β h ] = [ cos θ e − sin θ e sin θ e cos θ e ] [ 1 L d 0 0 1 L q ] [ cos θ e sin θ e − sin θ e cos θ e ] [ u α h u β h ] (11) \tag{11} \frac{\mathrm{d}}{\mathrm{d}t}\left[ \begin{array}{c} i_{\alpha h}\\ i_{\beta h}\\ \end{array} \right] =\left[ \begin{matrix} \cos \theta _e& -\sin \theta _e\\ \sin \theta _e& \cos \theta _e\\ \end{matrix} \right] \left[ \begin{matrix} \frac{1}{L_d}& 0\\ 0& \frac{1}{L_q}\\ \end{matrix} \right] \left[ \begin{matrix} \cos \theta _e& \sin \theta _e\\ -\sin \theta _e& \cos \theta _e\\ \end{matrix} \right] \left[ \begin{array}{c} u_{\alpha h}\\ u_{\beta h}\\ \end{array} \right] dtd[iαhiβh]=[cosθesinθe−sinθecosθe][Ld100Lq1][cosθe−sinθesinθecosθe][uαhuβh](11)
对式 ( 11 ) (11) (11)中等式右边的矩阵乘积因子化简,可得:
[ cos θ e − sin θ e sin θ e cos θ e ] [ 1 L d 0 0 1 L q ] [ cos θ e sin θ e − sin θ e cos θ e ] ⇒ [ 1 2 ( 1 L d + 1 L q ) + 1 2 ( 1 L d − 1 L q ) cos 2 θ e 1 2 ( 1 L d − 1 L q ) sin 2 θ e 1 2 ( 1 L d − 1 L q ) sin 2 θ e 1 2 ( 1 L d + 1 L q ) − 1 2 ( 1 L d − 1 L q ) cos 2 θ e ] (12) \tag{12} \begin{aligned} &\left[ \begin{matrix} \cos \theta _e& -\sin \theta _e\\ \sin \theta _e& \cos \theta _e\\ \end{matrix} \right] \left[ \begin{matrix} \frac{1}{L_d}& 0\\ 0& \frac{1}{L_q}\\ \end{matrix} \right] \left[ \begin{matrix} \cos \theta _e& \sin \theta _e\\ -\sin \theta _e& \cos \theta _e\\ \end{matrix} \right] \\ \Rightarrow& \left[ \begin{matrix} \frac{1}{2}\left( \frac{1}{L_d}+\frac{1}{L_q} \right) +\frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \cos 2\theta _e& \frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \sin 2\theta _e\\ \frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \sin 2\theta _e& \frac{1}{2}\left( \frac{1}{L_d}+\frac{1}{L_q} \right) -\frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \cos 2\theta _e\\ \end{matrix} \right] \end{aligned} ⇒[cosθesinθe−sinθecosθe][Ld100Lq1][cosθe−sinθesinθecosθe]⎣⎡21(Ld1+Lq1)+21(Ld1−Lq1)cos2θe21(Ld1−Lq1)sin2θe21(Ld1−Lq1)sin2θe21(Ld1+Lq1)−21(Ld1−Lq1)cos2θe⎦⎤(12)
注入的高频信号满足下式
[ u α h u β h ] = [ V h cos ω h t V h sin ω h t ] (13) \tag{13} \left[ \begin{array}{c} u_{\alpha h}\\ u_{\beta h}\\ \end{array} \right] =\left[ \begin{array}{c} V_h\cos \omega _ht\\ V_h\sin \omega _ht\\ \end{array} \right] [uαhuβh]=[VhcosωhtVhsinωht](13)
将式 ( 12 ) (12) (12)、 ( 13 ) (13) (13)带入式 ( 11 ) (11) (11),可得:
d d t [ i α h i β h ] = [ 1 2 ( 1 L d + 1 L q ) + 1 2 ( 1 L d − 1 L q ) cos 2 θ e 1 2 ( 1 L d − 1 L q ) sin 2 θ e 1 2 ( 1 L d − 1 L q ) sin 2 θ e 1 2 ( 1 L d + 1 L q ) − 1 2 ( 1 L d − 1 L q ) cos 2 θ e ] [ V h cos ω h t V h sin ω h t ] (14) \tag{14} \frac{\mathrm{d}}{\mathrm{d}t}\left[ \begin{array}{c} i_{\alpha h}\\ i_{\beta h}\\ \end{array} \right] =\left[ \begin{matrix} \frac{1}{2}\left( \frac{1}{L_d}+\frac{1}{L_q} \right) +\frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \cos 2\theta _e& \frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \sin 2\theta _e\\ \frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \sin 2\theta _e& \frac{1}{2}\left( \frac{1}{L_d}+\frac{1}{L_q} \right) -\frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \cos 2\theta _e\\ \end{matrix} \right] \left[ \begin{array}{c} V_h\cos \omega _ht\\ V_h\sin \omega _ht\\ \end{array} \right] dtd[iαhiβh]=⎣⎡21(Ld1+Lq1)+21(Ld1−Lq1)cos2θe21(Ld1−Lq1)sin2θe21(Ld1−Lq1)sin2θe21(Ld1+Lq1)−21(Ld1−Lq1)cos2θe⎦⎤[VhcosωhtVhsinωht](14)通过积分运算,两相静止轴系的高频响应电流为:
[ i α h i β h ] = [ 1 2 ( 1 L d + 1 L q ) V h ω h sin ω h t − 1 2 ( 1 L d − 1 L q ) V h ω h sin ( − ω h t + 2 θ e ) − 1 2 ( 1 L d + 1 L q ) V h ω h cos ω h t + 1 2 ( 1 L d − 1 L q ) V h ω h cos ( 2 θ e − ω h t ) ] (15) \tag{15} \left[ \begin{array}{c} i_{\alpha h}\\ i_{\beta h}\\ \end{array} \right] =\left[ \begin{array}{c} \frac{1}{2}\left( \frac{1}{L_d}+\frac{1}{L_q} \right) \frac{V_h}{\omega _h}\sin \omega _ht-\frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \frac{V_h}{\omega _h}\sin \left( -\omega _ht+2\theta _e \right)\\ -\frac{1}{2}\left( \frac{1}{L_d}+\frac{1}{L_q} \right) \frac{V_h}{\omega _h}\cos \omega _ht+\frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \frac{V_h}{\omega _h}\cos \left( 2\theta _e-\omega _ht \right)\\ \end{array} \right] [iαhiβh]=⎣⎡21(Ld1+Lq1)ωhVhsinωht−21(Ld1−Lq1)ωhVhsin(−ωht+2θe)−21(Ld1+Lq1)ωhVhcosωht+21(Ld1−Lq1)ωhVhcos(2θe−ωht)⎦⎤(15)将高频电流变换至高频轴系,可得:
[ i d h ′ i q h ′ ] = [ cos ω h t sin ω h t − sin ω h t cos ω h t ] [ i α h i β h ] (16) \tag{16} \left[ \begin{array}{c} i_{dh}^{'}\\ i_{qh}^{'}\\ \end{array} \right] =\left[ \begin{matrix} \cos \omega _ht& \sin \omega _ht\\ -\sin \omega _ht& \cos \omega _ht\\ \end{matrix} \right] \left[ \begin{array}{c} i_{\alpha h}\\ i_{\beta h}\\ \end{array} \right] [idh′iqh′]=[cosωht−sinωhtsinωhtcosωht][iαhiβh](16)
则高频轴系的响应电流为
[ i d h ′ i q h ′ ] = [ − 1 2 ( 1 L d − 1 L q ) V h ω h sin ( − 2 ω h t + 2 θ e ) − 1 2 ( 1 L d + 1 L q ) V h ω h + 1 2 ( 1 L d − 1 L q ) V h ω h cos ( − 2 ω h t + 2 θ e ) ] (17) \tag{17} \left[ \begin{array}{c} i_{dh}^{'}\\ i_{qh}^{'}\\ \end{array} \right] =\left[ \begin{array}{c} -\frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \frac{V_h}{\omega _h}\sin \left( -2\omega _ht+2\theta _e \right)\\ -\frac{1}{2}\left( \frac{1}{L_d}+\frac{1}{L_q} \right) \frac{V_h}{\omega _h}+\frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \frac{V_h}{\omega _h}\cos \left( -2\omega _ht+2\theta _e \right)\\ \end{array} \right] [idh′iqh′]=⎣⎡−21(Ld1−Lq1)ωhVhsin(−2ωht+2θe)−21(Ld1+Lq1)ωhVh+21(Ld1−Lq1)ωhVhcos(−2ωht+2θe)⎦⎤(17)在高频轴系,使用高通滤波器滤波,然后电流变换至两相静止轴系,可得:
[ i α h ∗ i β h ∗ ] = [ cos ω h t − sin ω h t sin ω h t cos ω h t ] H P F { [ i d h ′ i q h ′ ] } (18) \tag{18} \left[ \begin{array}{c} i_{\alpha h}^{*}\\ i_{\beta h}^{*}\\ \end{array} \right] =\left[ \begin{matrix} \cos \omega _ht& -\sin \omega _ht\\ \sin \omega _ht& \cos \omega _ht\\ \end{matrix} \right] HPF\left\{ \left[ \begin{array}{c} i_{dh}^{'}\\ i_{qh}^{'}\\ \end{array} \right] \right\} [iαh∗iβh∗]=[cosωhtsinωht−sinωhtcosωht]HPF{[idh′iqh′]}(18)
此时,两相静止轴系的高频电流变为
[ i α h ∗ i β h ∗ ] = [ − 1 2 ( 1 L d − 1 L q ) V h ω h sin ( − ω h t + 2 θ e ) 1 2 ( 1 L d − 1 L q ) V h ω h cos ( − ω h t + 2 θ e ) ] (19) \tag{19} \left[ \begin{array}{c} i_{\alpha h}^{*}\\ i_{\beta h}^{*}\\ \end{array} \right] =\left[ \begin{array}{c} -\frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \frac{V_h}{\omega _h}\sin \left( -\omega _ht+2\theta _e \right)\\ \frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \frac{V_h}{\omega _h}\cos \left( -\omega _ht+2\theta _e \right)\\ \end{array} \right] [iαh∗iβh∗]=⎣⎡−21(Ld1−Lq1)ωhVhsin(−ωht+2θe)21(Ld1−Lq1)ωhVhcos(−ωht+2θe)⎦⎤(19)
通过外差法可得位置误差信号
i α h ∗ cos ( − ω h t + 2 θ ^ e ) + i β h ∗ sin ( − ω h t + 2 θ ^ e ) ⇒ − 1 2 ( 1 L d − 1 L q ) V h ω h sin ( − ω h t + 2 θ e ) cos ( − ω h t + 2 θ ^ e ) + 1 2 ( 1 L d − 1 L q ) V h ω h cos ( − ω h t + 2 θ e ) sin ( − ω h t + 2 θ ^ e ) ⇒ − 1 2 ( 1 L d − 1 L q ) V h ω h sin ( 2 θ e − 2 θ ^ e ) ≈ − 1 2 ( 1 L d − 1 L q ) V h ω h ( 2 θ e − 2 θ ^ e ) = ( 1 L q − 1 L d ) V h ω h ( θ e − θ ^ e ) (20) \tag{20} \begin{aligned} &i_{\alpha h}^{*}\cos \left( -\omega _ht+2\hat{\theta}_e \right) +i_{\beta h}^{*}\sin \left( -\omega _ht+2\hat{\theta}_e \right) \\ \Rightarrow& -\frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \frac{V_h}{\omega _h}\sin \left( -\omega _ht+2\theta _e \right) \cos \left( -\omega _ht+2\hat{\theta}_e \right) +\frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \frac{V_h}{\omega _h}\cos \left( -\omega _ht+2\theta _e \right) \sin \left( -\omega _ht+2\hat{\theta}_e \right) \\ \Rightarrow& -\frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \frac{V_h}{\omega _h}\sin \left( 2\theta _e-2\hat{\theta}_e \right) \approx -\frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \frac{V_h}{\omega _h}\left( 2\theta _e-2\hat{\theta}_e \right) =\left( \frac{1}{L_q}-\frac{1}{L_d} \right) \frac{V_h}{\omega _h}\left( \theta _e-\hat{\theta}_e \right) \end{aligned} ⇒⇒iαh∗cos(−ωht+2θ^e)+iβh∗sin(−ωht+2θ^e)−21(Ld1−Lq1)ωhVhsin(−ωht+2θe)cos(−ωht+2θ^e)+21(Ld1−Lq1)ωhVhcos(−ωht+2θe)sin(−ωht+2θ^e)−21(Ld1−Lq1)ωhVhsin(2θe−2θ^e)≈−21(Ld1−Lq1)ωhVh(2θe−2θ^e)=(Lq1−Ld1)ωhVh(θe−θ^e)(20)脉振高频正弦注入法
脉振高频正弦注入法在估计轴系完成信号注入、响应信号提取过程,参考旋转高频注入法
(可结合前文的各轴系的空间关系图理解)
,可得:d d t [ i γ h i δ h ] = [ cos θ ~ − sin θ ~ sin θ ~ cos θ ~ ] [ 1 L d 0 0 1 L q ] [ cos θ ~ sin θ ~ − sin θ ~ cos θ ~ ] [ u γ h u δ h ] (21) \tag{21} \frac{\mathrm{d}}{\mathrm{d}t}\left[ \begin{array}{c} i_{\gamma h}\\ i_{\delta h}\\ \end{array} \right] =\left[ \begin{matrix} \cos \tilde{\theta}& -\sin \tilde{\theta}\\ \sin \tilde{\theta}& \cos \tilde{\theta}\\ \end{matrix} \right] \left[ \begin{matrix} \frac{1}{L_d}& 0\\ 0& \frac{1}{L_q}\\ \end{matrix} \right] \left[ \begin{matrix} \cos \tilde{\theta}& \sin \tilde{\theta}\\ -\sin \tilde{\theta}& \cos \tilde{\theta}\\ \end{matrix} \right] \left[ \begin{array}{c} u_{\gamma h}\\ u_{\delta h}\\ \end{array} \right] dtd[iγhiδh]=[cosθ~sinθ~−sinθ~cosθ~][Ld100Lq1][cosθ~−sinθ~sinθ~cosθ~][uγhuδh](21)
注入的信号满足下式
[ u γ h u δ h ] = [ V h cos ω h t 0 ] (22) \tag{22} \left[ \begin{array}{c} u_{\gamma h}\\ u_{\delta h}\\ \end{array} \right] =\left[ \begin{array}{c} V_h\cos \omega _ht\\ 0\\ \end{array} \right] [uγhuδh]=[Vhcosωht0](22)
将式 ( 22 ) (22) (22)带入 ( 21 ) (21) (21),参考式 ( 14 ) (14) (14),化简结果可写为
d d t [ i γ h i δ h ] = [ 1 2 ( 1 L d + 1 L q ) + 1 2 ( 1 L d − 1 L q ) cos 2 θ ~ 1 2 ( 1 L d − 1 L q ) sin 2 θ ~ 1 2 ( 1 L d − 1 L q ) sin 2 θ ~ 1 2 ( 1 L d + 1 L q ) − 1 2 ( 1 L d − 1 L q ) cos 2 θ ~ ] [ V h cos ω h t 0 ] (23) \tag{23} \frac{\mathrm{d}}{\mathrm{d}t}\left[ \begin{array}{c} i_{\gamma h}\\ i_{\delta h}\\ \end{array} \right] =\left[ \begin{matrix} \frac{1}{2}\left( \frac{1}{L_d}+\frac{1}{L_q} \right) +\frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \cos 2\tilde{\theta}& \frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \sin 2\tilde{\theta}\\ \frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \sin 2\tilde{\theta}& \frac{1}{2}\left( \frac{1}{L_d}+\frac{1}{L_q} \right) -\frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \cos 2\tilde{\theta}\\ \end{matrix} \right] \left[ \begin{array}{c} V_h\cos \omega _ht\\ 0\\ \end{array} \right] dtd[iγhiδh]=⎣⎡21(Ld1+Lq1)+21(Ld1−Lq1)cos2θ~21(Ld1−Lq1)sin2θ~21(Ld1−Lq1)sin2θ~21(Ld1+Lq1)−21(Ld1−Lq1)cos2θ~⎦⎤[Vhcosωht0](23)
高频响应电流为
[ i γ h i δ h ] = [ 1 2 ( 1 L d + 1 L q ) V h ω h sin ω h t + 1 2 ( 1 L d − 1 L q ) cos 2 θ ~ V h ω h sin ω h t 1 2 ( 1 L d − 1 L q ) sin 2 θ ~ V h ω h sin ω h t ] (24) \tag{24} \left[ \begin{array}{c} i_{\gamma h}\\ i_{\delta h}\\ \end{array} \right] =\left[ \begin{array}{c} \frac{1}{2}\left( \frac{1}{L_d}+\frac{1}{L_q} \right) \frac{V_h}{\omega _h}\sin \omega _ht+\frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \cos 2\tilde{\theta}\frac{V_h}{\omega _h}\sin \omega _ht\\ \frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \sin 2\tilde{\theta}\frac{V_h}{\omega _h}\sin \omega _ht\\ \end{array} \right] [iγhiδh]=⎣⎡21(Ld1+Lq1)ωhVhsinωht+21(Ld1−Lq1)cos2θ~ωhVhsinωht21(Ld1−Lq1)sin2θ~ωhVhsinωht⎦⎤(24)分析式 ( 24 ) (24) (24)可知, γ \gamma γ轴的电流分量存在位置误差信号,因此,通过幅值解调技术可得位置误差信号为
L P F ( i δ h × sin ω h t ) = L P F [ 1 2 ( 1 L d − 1 L q ) sin 2 θ ~ V h ω h sin ω h t sin ω h t ] = L P F [ 1 2 ( 1 L d − 1 L q ) sin 2 θ ~ V h ω h 1 − cos 2 ω h t 2 ] = 1 4 ( 1 L d − 1 L q ) V h ω h sin 2 θ ~ ≈ 1 2 ( 1 L d − 1 L q ) V h ω h θ ~ (25) \tag{25} \begin{aligned} LPF\left( i_{\delta h}\times \sin \omega _ht \right) &=LPF\left[ \frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \sin 2\tilde{\theta}\frac{V_h}{\omega _h}\sin \omega _ht\sin \omega _ht \right] \\ &=LPF\left[ \frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \sin 2\tilde{\theta}\frac{V_h}{\omega _h}\frac{1-\cos 2\omega _ht}{2} \right] \\ &=\frac{1}{4}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \frac{V_h}{\omega _h}\sin 2\tilde{\theta}\approx \frac{1}{2}\left( \frac{1}{L_d}-\frac{1}{L_q} \right) \frac{V_h}{\omega _h}\tilde{\theta} \end{aligned} LPF(iδh×sinωht)=LPF[21(Ld1−Lq1)sin2θ~ωhVhsinωhtsinωht]=LPF[21(Ld1−Lq1)sin2θ~ωhVh21−cos2ωht]=41(Ld1−Lq1)ωhVhsin2θ~≈21(Ld1−Lq1)ωhVhθ~(25)脉振高频方波注入法
脉振高频方波注入法在估计轴系注入信号、两相静止轴系提取响应信号,式 ( 3 ) (3) (3)可写为
d d t [ i α h i β h ] = [ cos θ e − sin θ e sin θ e cos θ e ] [ 1 L d 0 0 1 L q ] [ cos θ ~ sin θ ~ − sin θ ~ cos θ ~ ] [ u γ h u δ h ] (26) \tag{26} \frac{\mathrm{d}}{\mathrm{d}t}\left[ \begin{array}{c} i_{\alpha h}\\ i_{\beta h}\\ \end{array} \right] =\left[ \begin{matrix} \cos \theta _e& -\sin \theta _e\\ \sin \theta _e& \cos \theta _e\\ \end{matrix} \right] \left[ \begin{matrix} \frac{1}{L_d}& 0\\ 0& \frac{1}{L_q}\\ \end{matrix} \right] \left[ \begin{matrix} \cos \tilde{\theta}& \sin \tilde{\theta}\\ -\sin \tilde{\theta}& \cos \tilde{\theta}\\ \end{matrix} \right] \left[ \begin{array}{c} u_{\gamma h}\\ u_{\delta h}\\ \end{array} \right] dtd[iαhiβh]=[cosθesinθe−sinθecosθe][Ld100Lq1][cosθ~−sinθ~sinθ~cosθ~][uγhuδh](26)
对上式中的矩阵乘积因子化简,可得:
[ cos θ e − sin θ e sin θ e cos θ e ] [ 1 L d 0 0 1 L q ] [ cos θ ~ sin θ ~ − sin θ ~ cos θ ~ ] ⇒ [ 1 L d cos θ e cos θ ~ + 1 L q sin θ e sin θ ~ 1 L d cos θ e sin θ ~ − 1 L q sin θ e cos θ ~ 1 L d sin θ e cos θ ~ − 1 L q cos θ e sin θ ~ 1 L d sin θ e sin θ ~ + 1 L q cos θ e cos θ ~ ] (27) \tag{27} \begin{aligned} &\left[ \begin{matrix} \cos \theta _e& -\sin \theta _e\\ \sin \theta _e& \cos \theta _e\\ \end{matrix} \right] \left[ \begin{matrix} \frac{1}{L_d}& 0\\ 0& \frac{1}{L_q}\\ \end{matrix} \right] \left[ \begin{matrix} \cos \tilde{\theta}& \sin \tilde{\theta}\\ -\sin \tilde{\theta}& \cos \tilde{\theta}\\ \end{matrix} \right] \\ \Rightarrow& \left[ \begin{matrix} \frac{1}{L_d}\cos \theta _e\cos \tilde{\theta}+\frac{1}{L_q}\sin \theta _e\sin \tilde{\theta}& \frac{1}{L_d}\cos \theta _e\sin \tilde{\theta}-\frac{1}{L_q}\sin \theta _e\cos \tilde{\theta}\\ \frac{1}{L_d}\sin \theta _e\cos \tilde{\theta}-\frac{1}{L_q}\cos \theta _e\sin \tilde{\theta}& \frac{1}{L_d}\sin \theta _e\sin \tilde{\theta}+\frac{1}{L_q}\cos \theta _e\cos \tilde{\theta}\\ \end{matrix} \right] \end{aligned} ⇒[cosθesinθe−sinθecosθe][Ld100Lq1][cosθ~−sinθ~sinθ~cosθ~][Ld1cosθecosθ~+Lq1sinθesinθ~Ld1sinθecosθ~−Lq1cosθesinθ~Ld1cosθesinθ~−Lq1sinθecosθ~Ld1sinθesinθ~+Lq1cosθecosθ~](27)将式 ( 27 ) (27) (27)带入式 ( 26 ) (26) (26),可得:
d d t [ i α h i β h ] = [ 1 L d cos θ e cos θ ~ + 1 L q sin θ e sin θ ~ 1 L d cos θ e sin θ ~ − 1 L q sin θ e cos θ ~ 1 L d sin θ e cos θ ~ − 1 L q cos θ e sin θ ~ 1 L d sin θ e sin θ ~ + 1 L q cos θ e cos θ ~ ] [ u γ h u δ h ] (28) \tag{28} \frac{\mathrm{d}}{\mathrm{d}t}\left[ \begin{array}{c} i_{\alpha h}\\ i_{\beta h}\\ \end{array} \right] =\left[ \begin{matrix} \frac{1}{L_d}\cos \theta _e\cos \tilde{\theta}+\frac{1}{L_q}\sin \theta _e\sin \tilde{\theta}& \frac{1}{L_d}\cos \theta _e\sin \tilde{\theta}-\frac{1}{L_q}\sin \theta _e\cos \tilde{\theta}\\ \frac{1}{L_d}\sin \theta _e\cos \tilde{\theta}-\frac{1}{L_q}\cos \theta _e\sin \tilde{\theta}& \frac{1}{L_d}\sin \theta _e\sin \tilde{\theta}+\frac{1}{L_q}\cos \theta _e\cos \tilde{\theta}\\ \end{matrix} \right] \left[ \begin{array}{c} u_{\gamma h}\\ u_{\delta h}\\ \end{array} \right] dtd[iαhiβh]=[Ld1cosθecosθ~+Lq1sinθesinθ~Ld1sinθecosθ~−Lq1cosθesinθ~Ld1cosθesinθ~−Lq1sinθecosθ~Ld1sinθesinθ~+Lq1cosθecosθ~][uγhuδh](28)对于脉振高频方波注入法,可得电流增量信息为
[ Δ i α h Δ i β h ] = { [ ( 1 L d cos θ e cos θ ~ + 1 L q sin θ e sin θ ~ ) V h T s ( 1 L d sin θ e cos θ ~ − 1 L q cos θ e sin θ ~ ) V h T s ] , V i n > 0 [ − ( 1 L d cos θ e cos θ ~ + 1 L q sin θ e sin θ ~ ) V h T s − ( 1 L d sin θ e cos θ ~ − 1 L q cos θ e sin θ ~ ) V h T s ] , V i n < 0 (29) \tag{29} \left[ \begin{array}{c} \Delta i_{\alpha h}\\ \Delta i_{\beta h}\\ \end{array} \right] =\begin{cases} \left[ \begin{array}{c} \left( \frac{1}{L_d}\cos \theta _e\cos \tilde{\theta}+\frac{1}{L_q}\sin \theta _e\sin \tilde{\theta} \right) V_hT_s\\ \left( \frac{1}{L_d}\sin \theta _e\cos \tilde{\theta}-\frac{1}{L_q}\cos \theta _e\sin \tilde{\theta} \right) V_hT_s\\ \end{array} \right] ,V_{in}>0\\ \left[ \begin{array}{c} -\left( \frac{1}{L_d}\cos \theta _e\cos \tilde{\theta}+\frac{1}{L_q}\sin \theta _e\sin \tilde{\theta} \right) V_hT_s\\ -\left( \frac{1}{L_d}\sin \theta _e\cos \tilde{\theta}-\frac{1}{L_q}\cos \theta _e\sin \tilde{\theta} \right) V_hT_s\\ \end{array} \right] ,V_{in}<0\\ \end{cases} [ΔiαhΔiβh]=⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧⎣⎡(Ld1cosθecosθ~+Lq1sinθesinθ~)VhTs(Ld1sinθecosθ~−Lq1cosθesinθ~)VhTs⎦⎤,Vin>0⎣⎡−(Ld1cosθecosθ~+Lq1sinθesinθ~)VhTs−(Ld1sinθecosθ~−Lq1cosθesinθ~)VhTs⎦⎤,Vin<0(29)符号化处理,即乘以 s i g n ( V i n ) sign(V_{in}) sign(Vin),上式可简化为
[ Δ i α h Δ i β h ] = [ ( 1 L d cos θ e cos θ ~ + 1 L q sin θ e sin θ ~ ) V h T s ( 1 L d sin θ e cos θ ~ − 1 L q cos θ e sin θ ~ ) V h T s ] (30) \tag{30} \left[ \begin{array}{c} \Delta i_{\alpha h}\\ \Delta i_{\beta h}\\ \end{array} \right] =\left[ \begin{array}{c} \left( \frac{1}{L_d}\cos \theta _e\cos \tilde{\theta}+\frac{1}{L_q}\sin \theta _e\sin \tilde{\theta} \right) V_hT_s\\ \left( \frac{1}{L_d}\sin \theta _e\cos \tilde{\theta}-\frac{1}{L_q}\cos \theta _e\sin \tilde{\theta} \right) V_hT_s\\ \end{array} \right] [ΔiαhΔiβh]=⎣⎡(Ld1cosθecosθ~+Lq1sinθesinθ~)VhTs(Ld1sinθecosθ~−Lq1cosθesinθ~)VhTs⎦⎤(30)位置误差足够小时,此时 θ ~ ≈ 0 \tilde{\theta}\approx 0 θ~≈0,可得:
[ Δ i α h Δ i β h ] = [ V h T s 1 L d cos θ e V h T s 1 L d sin θ e ] (31) \tag{31} \left[ \begin{array}{c} \Delta i_{\alpha h}\\ \Delta i_{\beta h}\\ \end{array} \right] =\left[ \begin{array}{c} V_hT_s\frac{1}{L_d}\cos \theta _e\\ V_hT_s\frac{1}{L_d}\sin \theta _e\\ \end{array} \right] [ΔiαhΔiβh]=[VhTsLd1cosθeVhTsLd1sinθe](31)位置误差信号为
− Δ i α h sin θ ^ e + Δ i β h cos θ ^ e ⇒ − V h T s 1 L d cos θ e sin θ ^ e + V h T s 1 L d sin θ e cos θ ^ e ⇒ V h T s 1 L d sin ( θ e − θ ^ e ) ≈ V h T s L d ( θ e − θ ^ e ) (32) \tag{32} \begin{aligned} &-\Delta i_{\alpha h}\sin \hat{\theta}_e+\Delta i_{\beta h}\cos \hat{\theta}_e \\ \Rightarrow& -V_hT_s\frac{1}{L_d}\cos \theta _e\sin \hat{\theta}_e+V_hT_s\frac{1}{L_d}\sin \theta _e\cos \hat{\theta}_e \\ \Rightarrow& V_hT_s\frac{1}{L_d}\sin \left( \theta _e-\hat{\theta}_e \right) \approx \frac{V_hT_s}{L_d}\left( \theta _e-\hat{\theta}_e \right) \end{aligned} ⇒⇒−Δiαhsinθ^e+Δiβhcosθ^e−VhTsLd1cosθesinθ^e+VhTsLd1sinθecosθ^eVhTsLd1sin(θe−θ^e)≈LdVhTs(θe−θ^e)(32)参考文献
【1】袁雷. 现代永磁同步电机控制原理及 MATLAB 仿真[M]. 北京航空航天大学出版社, 2016.
【2】Yoon Y D, Sul S K, Morimoto S, et al. High-bandwidth sensorless algorithm for AC machines based on square-wave-type voltage injection[J]. IEEE transactions on Industry Applications, 2011, 47(3): 1361-1370.
拓展阅读
sensorless control of IM(感应电机)45
Jeong Y, Lorenz R D, Jahns T M, et al. Initial rotor position estimation of an interior permanent-magnet synchronous machine using carrier-frequency injection methods[J]. IEEE Transactions on Industry Applications, 2005, 41(1): 38-45. ↩︎
刘颖, 周波, 李帅, 等. 转子磁钢表贴式永磁同步电机转子初始位置检测[J]. 中国电机工程学报, 2011, 31(18): 48-54. ↩︎
Holtz J. Acquisition of position error and magnet polarity for sensorless control of PM synchronous machines[J]. IEEE Transactions on Industry Applications, 2008, 44(4): 1172-1180. ↩︎
Holtz J. Sensorless control of induction motor drives[J]. Proceedings of the IEEE, 2002, 90(8): 1359-1394. ↩︎
Holtz J. Sensorless control of induction machines—With or without signal injection?[J]. IEEE Transactions on Industrial Electronics, 2006, 53(1): 7-30. ↩︎
更多相关内容 -
脉振高频注入法.zip
2020-11-03 22:53:32基于pll的高频注入法,用于低速/零速无位置传感器的初始位置检测,运行控制,d轴注入高频正弦信号,通过带通滤波器提取高频信号,经过sinwt调制,通过低通滤波器进行位置提取 -
BLDC HFI_传感器_hfi_BLDC_高频注入_senseless
2021-09-11 02:48:15无传感器直流无刷电机矢量控制,采用高频注入,Simulink模型。 -
基于MATLAB的高频注入仿真
2020-12-16 17:45:18基于MATLAB的高频注入仿真 -
永磁同步电机脉振方波高频注入仿真,有两种PLL实现,锁相环有两种
2022-01-24 09:51:51永磁同步电机脉振方波高频注入仿真,有两种PLL实现,锁相环有两种 -
高频注入的ST的电机库源码,hifreqinj_fpu_ctrl.c
2019-09-26 15:21:46高频注入的ST的源码,找的好辛苦啊, -
Simulink_FOC_高频注入仿真.zip
2020-05-06 11:06:16基于Simulink的FOC高频注入仿真实验,可以matlab2016B上直接运行,实验参考分析,观察波形数据。 -
永磁同步电机高频注入无感位置估算
2020-12-27 19:57:32永磁同步电机高频注入无感位置估算 -
高频注入法最好的论文
2018-10-25 15:01:21对高频注入法做了深入分析,从仿真再到实验,都分析的很到位 -
高频注入算法IEEE论文
2018-06-14 16:20:18自动控制理论的大神级存在的人物的无感FOC的高频注入算法详解。 -
MCSDK-FUL最新观测器+高频注入算法可见版本.7z
2019-11-13 23:16:01ST官方德MCSDK MotorControl Workbench 5.3.3full版本,观测器+PLL+HFI高频注入代码可见 -
脉振高频注入法博士论文
2018-09-20 20:34:05脉振高频注入法博士论文,非常详细的介绍了高频注入法,并改进了现有算法,非常有借鉴意义 -
高频注入论文.zip
2019-12-30 09:42:11在FOC中的高频注入算法是基于电机的凸极性,高频注入法对于IPMSM和SMPMSM都是有效的,凸极性使得转子各个方向的等效电感大小不同,d轴正向的等效电感最大,q轴正向的等效电感最小,利用这一点便可有效的辨识转子速度... -
基于旋转高频注入的内置式永磁同步电机初始位置检测算法_李浩源.caj
2020-12-27 20:28:39基于旋转高频注入的内置式永磁同步电机初始位置检测算法_李浩源.caj -
基于高频注入法的永磁同步电动机无传感器矢量控制
2020-07-16 23:33:31该方法基于永磁同步电动机的凸极效应原理,在两相旋转坐标系中注入高频信号来获取无传感器矢量控制时所需转子的精确位置和转速,并在此基础上给出了永磁同步电动机无传感器矢量控制系统。仿真结果表明,该方法能够准确... -
PMSM_HF_无位置控制_无位置_高频注入_无传感_无位置传感器
2021-09-11 05:22:32高频注入法无位置控制,适用于低速时无位置传感器估测转子位置 -
基于高频注入的同步电机转子位置检测
2020-03-11 02:45:06基于高频注入的同步电机转子位置检测,黄坤,邓先明,本文针对同步电机矢量控制系统中机械位置传感器存在的问题,对同步电机的无机械位置传感器控制技术进行了深入研究。在同步电机矢 -
PMSM_HFxuanzhuan_高频注入_电机_高频注入PMSM_无传感器_高频信号注入
2021-09-11 06:16:11基于高频信号注入的三相永磁同步电机无传感器控制。