精华内容
下载资源
问答
  • Java设计模式-工厂模式
    千次阅读 多人点赞
    2021-08-06 09:27:36

    Java设计模式-工厂模式

    什么是工厂模式?

    工厂模式(Factory Pattern)是 Java 中最常用的设计模式之一。这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式。
    在工厂模式中,我们在创建对象时不会对客户端暴露创建逻辑,并且是通过使用一个共同的接口来指向新创建的对象。

    简单编写一个类:

    1、简单工厂模式

    interface IFruit{
    	public void eat();	//吃水果
    }
    class Apple implements IFruit{
    	public void eat(){
    		System.out.println("削皮吃苹果!");
    	}
    }
    class Orange implements IFruit{
    	public void eat(){
    		System.out.println("剥皮吃橘子!");
    	}
    }
    public class Factory{
    	public static void main(String args[]){
    		IFruit fruit = new Apple();
    		//削皮吃苹果!
    		fruit.eat();
    	}
    }
    

    本程序非常简单就是通过接口的子类为接口对象实例化,但是本操作存在什么样的问题呢?

    之前一直在强调,主方法或者是主类是一个客户端,客户端的操作应该越简单越好。但是在现在的程序之中,有一个最大的问题:客户端之中,一个接口和一个固定的子类绑在一起了。

    在本程序之中,最大的问题在于耦合上,发现在主方法之中一个接口和一个子类紧密耦合在一起,这种方法比较直接,可以简单的理解为:A→B,但是这种紧密的方式不方便于维护,所以后来使用了A→B→C,中间经历了一个过渡,这样一来B去改变,C去改变,但是A不需要改变,就好比JAVA的JVM一样:程序→JVM→操作系统。

    2、普通工厂模式

    UML图:

    源代码:

    ProjectFactory.java

    public interface ProjectFactory {
    	Project getname();
    }
    

    BlueFactory.java(ConcreteFactory1)

    public class BlueFactory implements ProjectFactory{
    
    	@Override
    	public Project getname() {
    		// TODO Auto-generated method stub
    		return new Bluepen();
    	}
    
    }
    

    RedFactory.java(ConcreteFactory2)

    public class RedFactory implements ProjectFactory{
    
    	@Override
    	public Project getname() {
    		// TODO Auto-generated method stub
    		return new redPen();
    	}
    
    }
    

    Project.java(产品类)

    public interface Project {
    	void name();
    }
    

    Bluepen.java(ConcreteProject1)

    public class Bluepen implements Project{
    
    	@Override
    	public void name() {
    		// TODO Auto-generated method stub
    		System.out.println("这是一个蓝色的笔");
    	}
    
    }
    

    RedFactory.java(ConcreteProject2)

    public class RedFactory implements ProjectFactory{
    
    	@Override
    	public Project getname() {
    		// TODO Auto-generated method stub
    		return new redPen();
    	}
    
    }
    

    测试类

    public class Client {
    	public static void main(String[] args) {
    		Project pen = new RedFactory().getname();
    		pen.name();
    		Project pen1 = new BlueFactory().getname();
    		pen1.name();
    	}
    }
    

    运行结果:

    image-20210805205221818

    这个时候发现客户端不在和一个具体的子类耦合在一起了,就算以后增加了新的子类,那么也只需要修改Factory类即可。

    总结:

    1. 以后如果是自己编写的接口如果想要取得接口的 实例化对象,第一反应写工厂类
    2. 简单工厂和工厂方法模式的不同在于前者生成产生产品的行为封装在一个方法中,根据参数的类型进行实例化,同时不存在抽象接口。而后者则增加了抽象工厂,通过实现不同的工厂方法来创建不同的产品,一个方法通常对应一个产品,这种方式相较于前者扩展性更高,在需求增加时完全符合开闭原则和依赖倒置原则

    使用场景:

    消费者不关心它所要创建对象的类(产品类)的时候。

    消费者知道它所要创建对象的类(产品类),但不关心如何创建的时候。

    例如:hibernate里通过sessionFactory创建session、通过代理方式生成ws客户端时,通过工厂构建报文中格式化数据的对象。

    3、抽象工厂模式

    定义:为创建一组相关或相互依赖的对象提供一个接口,而且无需指定他们的具体类。

    抽象工厂模式与工厂方法模式的区别

    ​ 抽象工厂模式是工厂方法模式的升级版本,他用来创建一组相关或者相互依赖的对象。他与工厂方法模式的区别就在于,工厂方法模式针对的是一个产品等级结构;而抽象工厂模式则是针对的多个产品等级结构。在编程中,通常一个产品结构,表现为一个接口或者抽象类,也就是说,工厂方法模式提供的所有产品都是衍生自同一个接口或抽象类,而抽象工厂模式所提供的产品则是衍生自不同的接口或抽象类。

    ​ 在抽象工厂模式中,有一个产品族的概念:所谓的产品族,是指位于不同产品等级结构中功能相关联的产品组成的家族。抽象工厂模式所提供的一系列产品就组成一个产品族;而工厂方法提供的一系列产品称为一个等级结构。.

    如果工厂的产品全部属于同一个等级结构,则属于工厂方法模式;如果工厂的产品来自多个等级结构,则属于抽象工厂模式。

    UML图:

    image-20210805210243478

    源代码:

    Factory.java(抽象工厂)

    public interface Factory {
    	PhoneProject projectPhone();
    	LaptopProject projectLaptop();
    }
    

    HuaWeiFactory.java(华为具体工厂)

    public class HuaWeiFactory implements Factory{
    
    	@Override
    	public PhoneProject projectPhone() {
    		// TODO Auto-generated method stub
    		return new HuaWeiPhone();
    	}
    
    	@Override
    	public LaptopProject projectLaptop() {
    		// TODO Auto-generated method stub
    		return new HuaWeiLaptop();
    	}
    
    }
    

    XiaomiFactory.java(小米具体工厂)

    public class XiaomiFactory implements Factory{
    
    	@Override
    	public PhoneProject projectPhone() {
    		// TODO Auto-generated method stub
    		return new XiaomiPhone();
    	}
    
    	@Override
    	public LaptopProject projectLaptop() {
    		// TODO Auto-generated method stub
    		return new XiaomiLaptop();
    	}
    
    }
    

    LaptopProject.java(笔记本产品)

    public interface LaptopProject {
    	void getId();
    	void printInfo();
    }
    

    HuaWeiLaptop.java(华为笔记本)

    public class HuaWeiLaptop implements LaptopProject{
    
    	@Override
    	public void getId() {
    		// TODO Auto-generated method stub
    		System.out.println("编号"+123);
    	}
    
    	@Override
    	public void printInfo() {
    		// TODO Auto-generated method stub
    		System.out.println("生产了华为电脑");
    	}
    
    }
    

    XiaomiLaptop.java(小米笔记本)

    public class XiaomiLaptop implements LaptopProject{
    
    	@Override
    	public void getId() {
    		// TODO Auto-generated method stub
    		System.out.println("编号"+213);
    	}
    
    	@Override
    	public void printInfo() {
    		// TODO Auto-generated method stub
    		System.out.println("生产小米电脑");
    	}
    
    }
    

    PhoneProject.java(手机产品)

    public interface PhoneProject {
    	void getId();
    	void printInfo();
    }
    

    HuaWeiPhone.java(华为手机)

    public class HuaWeiPhone implements PhoneProject{
    
    	@Override
    	public void getId() {
    		// TODO Auto-generated method stub
    		System.out.println("编号:"+123412);
    	}
    
    	@Override
    	public void printInfo() {
    		// TODO Auto-generated method stub
    		System.out.println("生产华为手机");
    	}
    
    }
    
    

    XiaomiPhone.java(小米手机)

    public class XiaomiPhone implements PhoneProject{
    
    	@Override
    	public void getId() {
    		// TODO Auto-generated method stub
    		System.out.println("编号:"+123412);
    	}
    
    	@Override
    	public void printInfo() {
    		// TODO Auto-generated method stub
    		System.out.println("生产了小米手机!!");
    	}
    }
    
    

    测试类:

    public class Client {
    	public static void main(String[] args) {
    		PhoneProject huawei = new HuaWeiFactory().projectPhone();
    		huawei.printInfo();
    		huawei.getId();
    		
    		PhoneProject xiaomi = new XiaomiFactory().projectPhone();
    		xiaomi.printInfo();
    		LaptopProject huawei1 = new HuaWeiFactory().projectLaptop();
    		huawei1.printInfo();
    	}
    }
    

    运行结果:

    image-20210805211054410

    总结:

    抽象工厂模式是工厂方法模式的升级版,后者面向单个产品,而前者面向的的是一个产品族。根据官方定义:为创建一组相关/互相依赖的对象提供一个接口而无需指定它们的具体类。
    比如一个汽车工厂要生成骑车,而每种汽车都有车门、车轮胎等一系列产品,这意味着每增加一款汽车就需要增加一个新的工厂来提供新产品的实现。这时候就可以使用抽象工厂模式来进行设计。抽象工厂模式适用于一系列产品族。

    优点:

    1. 抽象厂模式将产品族的依赖与约束关系放到抽象工厂中,便于管理。
    2. 职责解耦,用户不需要关心一堆自己不关心的细节,由抽象厂来负责组件的创建
    3. 切换产品族容易,只需要增加一个具体工厂实现,客户端选择另-个套餐就可以了

    缺点:

    1. 抽象工厂模式类增加的速度很快,有一个产品族就需要增加一一个具体工厂实现,比较繁琐
    2. 产品族难以扩展产品。当产品族中增加一个产品时,抽象工厂接口中需要增加一个函数,对应的所有具体工厂实现都需要修改,修改放大严重。
    3. 抽象厂并未完全屏蔽创建细节,给出的都是组件。对于这种情况可以结合工厂模式或简单工厂模式-起使用。

    使用场景:

    大家应该已经发现了,其实抽象工厂模式如果只有一个组件的话,其实是退化到工厂方法模式,也就是没有了产品族的概念,只剩一一个产品了,因此简单工厂,厂方法,抽象工厂这三者之间是有内在联系的,区别只产品的复杂度。抽象工厂的本质是选择产品族,因此大家可以根据这个特征来识别是否可以应用抽象厂。

    更多相关内容
  • 主要介绍了Java设计模式之解释器模式(Interpreter模式)介绍,Interpreter定义:定义语言的文法,并且建立一个解释器来解释该语言中的句子,需要的朋友可以参考下
  • 行为型模式,共十一种:策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。 其实还有两类:并发型模式和线程池模式
  • java23种设计模式+23个实例demo: 关于代码的几点说明: 1. 代码为根据个人对Design Pattern的学习理解写出, 2. 每个Pattern均是一个目录,其目录名即是Pattern的名字, 所有代码用JDeveloper 9i 和JBuilder 6.0编写...
  • 主要介绍了Java虚拟机JVM的client模式和Server模式两者的区别和联系
  • Java常见设计模式总结

    万次阅读 多人点赞 2021-09-18 17:18:54
    设计模式是一套经过反复使用的代码设计经验,目的是为了重用代码、让代码更容易被他人理解、保证代码可靠性。设计模式于己于人于系统都是多赢的,它使得代码编写真正工程化,它是软件工程的基石,如同大厦的一块块...

     一、设计模式总述:

    1、什么是设计模式:

            设计模式是一套经过反复使用的代码设计经验,目的是为了重用代码、让代码更容易被他人理解、保证代码可靠性。 设计模式于己于人于系统都是多赢的,它使得代码编写真正工程化,它是软件工程的基石,如同大厦的一块块砖石一样。项目中合理的运用设计模式可以完美的解决很多问题,每种模式在现实中都有相应的原理来与之对应,每种模式描述了一个在我们周围不断重复发生的问题,以及该问题的核心解决方案,这也是它能被广泛应用的原因。总体来说,设计模式分为三大类:

    • 创建型模式:共5种:工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式
    • 结构型模式:共7种:适配器模式、装饰器模式、代理模式、桥接模式、外观模式、组合模式、享元模式
    • 行为型模式:共11种:策略模式、模板方法模式、观察者模式、责任链模式、访问者模式、中介者模式、迭代器模式、命令模式、状态模式、备忘录模式、解释器模式

    其实还有两类:并发型模式和线程池模式,用一个图片来整体描述一下:

    2、设计模式的六大原则:

    (1)开闭原则 (Open Close Principle) :

            开闭原则指的是对扩展开放,对修改关闭。在对程序进行扩展的时候,不能去修改原有的代码,想要达到这样的效果,我们就需要使用接口或者抽象类

    (2)依赖倒转原则 (Dependence Inversion Principle):

            依赖倒置原则是开闭原则的基础,指的是针对接口编程,依赖于抽象而不依赖于具体

    (3)里氏替换原则 (Liskov Substitution Principle) :

            里氏替换原则是继承与复用的基石,只有当子类可以替换掉基类,且系统的功能不受影响时,基类才能被复用,而子类也能够在基础类上增加新的行为。所以里氏替换原则指的是任何基类可以出现的地方,子类一定可以出现。

            里氏替换原则是对 “开闭原则” 的补充,实现 “开闭原则” 的关键步骤就是抽象化,而基类与子类的继承关系就是抽象化的具体实现,所以里氏替换原则是对实现抽象化的具体步骤的规范。

    (4)接口隔离原则 (Interface Segregation Principle):

            使用多个隔离的接口,比使用单个接口要好,降低接口之间的耦合度与依赖,方便升级和维护方便

    (5)迪米特原则 (Demeter Principle):

            迪米特原则,也叫最少知道原则,指的是一个类应当尽量减少与其他实体进行相互作用,使得系统功能模块相对独立,降低耦合关系。该原则的初衷是降低类的耦合,虽然可以避免与非直接的类通信,但是要通信,就必然会通过一个“中介”来发生关系,过分的使用迪米特原则,会产生大量的中介和传递类,导致系统复杂度变大,所以采用迪米特法则时要反复权衡,既要做到结构清晰,又要高内聚低耦合。

    (6)合成复用原则 (Composite Reuse Principle):

            尽量使用组合/聚合的方式,而不是使用继承。

    二、Java的23种设计模式:

            接下来我们详细介绍Java中23种设计模式的概念,应用场景等情况,并结合他们的特点及设计模式的原则进行分析

    1、创建型-工厂方法模式:

    工厂方法模式分为三种:

    (1)简单工厂模式:

    建立一个工厂类,并定义一个接口对实现了同一接口的产品类进行创建。首先看下关系图:

    (2)工厂方法模式:

    工厂方法模式是对简单工厂模式的改进,简单工厂的缺陷在于不符合“开闭原则”,每次添加新产品类就需要修改工厂类,不利于系统的扩展维护。而工厂方法将工厂抽象化,并定义一个创建对象的接口。每增加新产品,只需增加该产品以及对应的具体实现工厂类,由具体工厂类决定要实例化的产品是哪个,将对象的创建与实例化延迟到子类,这样工厂的设计就符合“开闭原则”了,扩展时不必去修改原来的代码。UML关系图如下:

     (3)静态工厂方法模式:

    静态工厂模式是将工厂方法模式里的方法置为静态的,不需要创建实例,直接调用即可。

    工厂方法模式详情文章:Java设计模式之创建型:工厂模式详解(简单工厂+工厂方法+抽象工厂)

    2、创建型-抽象工厂模式:

            抽象工厂模式主要用于创建相关对象的家族。当一个产品族中需要被设计在一起工作时,通过抽象工厂模式,能够保证客户端始终只使用同一个产品族中的对象;并且通过隔离具体类的生成,使得客户端不需要明确指定具体生成类;所有的具体工厂都实现了抽象工厂中定义的公共接口,因此只需要改变具体工厂的实例,就可以在某种程度上改变整个软件系统的行为。

            但该模式的缺点在于添加新的行为时比较麻烦,如果需要添加一个新产品族对象时,需要更改接口及其下所有子类,这必然会带来很大的麻烦。

            UML结构图如下:

    抽象工厂模式详情:Java设计模式之创建型:工厂模式详解(简单工厂+工厂方法+抽象工厂)

    3、创建型-建造者模式:

             建造者模式将复杂产品的创建步骤分解在在不同的方法中,使得创建过程更加清晰,从而更精确控制复杂对象的产生过程;通过隔离复杂对象的构建与使用,也就是将产品的创建与产品本身分离开来,使得同样的构建过程可以创建不同的对象;并且每个具体建造者都相互独立,因此可以很方便地替换具体建造者或增加新的具体建造者,用户使用不同的具体建造者即可得到不同的产品对象。UML结构图如下:

     建造者模式详情:Java设计模式之创建型:建造者模式

    4、创建型-单例模式:

            单例模式可以确保系统中某个类只有一个实例,该类自行实例化并向整个系统提供这个实例的公共访问点,除了该公共访问点,不能通过其他途径访问该实例。单例模式的优点在于:

    • 系统中只存在一个共用的实例对象,无需频繁创建和销毁对象,节约了系统资源,提高系统的性能
    • 可以严格控制客户怎么样以及何时访问单例对象。

    单例模式的写法有好几种,主要有三种:懒汉式单例、饿汉式单例、登记式单例。

    单例模式详情:Java设计模式之创建型:单例模式

    5、创建型-原型模式:

            原型模式也是用于对象的创建,通过将一个对象作为原型,对其进行复制克隆,产生一个与源对象类似的新对象。UML类图如下:

     在 Java 中,原型模式的核心是就是原型类 Prototype,Prototype 类需要具备以下两个条件:

    • 实现 Cloneable 接口:
    • 重写 Object 类中的 clone() 方法,用于返回对象的拷贝;

    Object 类中的 clone() 方法默认是浅拷贝,如果想要深拷贝对象,则需要在 clone() 方法中自定义自己的复制逻辑。

    • 浅复制:将一个对象复制后,基本数据类型的变量会重新创建,而引用类型指向的还是原对象所指向的内存地址。
    • 深复制:将一个对象复制后,不论是基本数据类型还有引用类型,都是重新创建的。

            使用原型模式进行创建对象不仅简化对象的创建步骤,还比 new 方式创建对象的性能要好的多,因为 Object 类的 clone() 方法是一个本地方法,直接操作内存中的二进制流,特别是复制大对象时,性能的差别非常明显;

    原型模式详情:Java设计模式之创建型:原型模式

            

            上面我们介绍了5种创建型模式,下面我们就开始介绍下7种结构型模式:适配器模式、装饰模式、代理模式、外观模式、桥接模式、组合模式、享元模式。其中对象的适配器模式是各种模式的起源,如下图:

    6、结构型-适配器模式:

            适配器模式主要用于将一个类或者接口转化成客户端希望的格式,使得原本不兼容的类可以在一起工作,将目标类和适配者类解耦;同时也符合“开闭原则”,可以在不修改原代码的基础上增加新的适配器类;将具体的实现封装在适配者类中,对于客户端类来说是透明的,而且提高了适配者的复用性,但是缺点在于更换适配器的实现过程比较复杂。

            所以,适配器模式比较适合以下场景:

    • (1)系统需要使用现有的类,而这些类的接口不符合系统的接口。
    • (2)使用第三方组件,组件接口定义和自己定义的不同,不希望修改自己的接口,但是要使用第三方组件接口的功能。

    下面有个非常形象的例子很好地说明了什么是适配器模式:

    适配器模式的主要实现有三种:类的适配器模式、对象的适配器模式、接口的适配器模式。三者的使用场景如下:

    • 类的适配器模式:当希望将一个类转换成满足另一个新接口的类时,可以使用类的适配器模式,创建一个新类,继承原有的类,实现新的接口即可。
    • 对象的适配器模式:当希望将一个对象转换成满足另一个新接口的对象时,可以创建一个Wrapper类,持有原类的一个实例,在Wrapper类的方法中,调用实例的方法就行。
    • 接口的适配器模式:当不希望实现一个接口中所有的方法时,可以创建一个抽象类Wrapper,实现所有方法,我们写别的类的时候,继承抽象类即可。

    适配器模式详情:Java设计模式之结构型:适配器模式

    7、结构型-装饰器模式:

            装饰器模式可以动态给对象添加一些额外的职责从而实现功能的拓展,在运行时选择不同的装饰器,从而实现不同的行为;比使用继承更加灵活,通过对不同的装饰类进行排列组合,创造出很多不同行为,得到功能更为强大的对象;符合“开闭原则”,被装饰类与装饰类独立变化,用户可以根据需要增加新的装饰类和被装饰类,在使用时再对其进行组合,原有代码无须改变。装饰器模式的UML结构图如下:

            但是装饰器模式也存在缺点,首先会产生很多的小对象,增加了系统的复杂性,第二是排错比较困难,对于多次装饰的对象,调试时寻找错误可能需要逐级排查,较为烦琐。

    装饰器模式详情:Java设计模式之结构型:装饰器模式

    8、结构型-代理模式:

            代理模式的设计动机是通过代理对象来访问真实对象,通过建立一个对象代理类,由代理对象控制原对象的引用,从而实现对真实对象的操作。在代理模式中,代理对象主要起到一个中介的作用,用于协调与连接调用者(即客户端)和被调用者(即目标对象),在一定程度上降低了系统的耦合度,同时也保护了目标对象。但缺点是在调用者与被调用者之间增加了代理对象,可能会造成请求的处理速度变慢。UML结构图如下:

    代理模式详情:Java设计模式之结构型:代理模式

    9、结构型-桥接模式:

            桥接模式将系统的抽象部分与实现部分分离解耦,使他们可以独立的变化。为了达到让抽象部分和实现部分独立变化的目的,桥接模式使用组合关系来代替继承关系,抽象部分拥有实现部分的接口对象,从而能够通过这个接口对象来调用具体实现部分的功能。也就是说,桥接模式中的桥接是一个单方向的关系,只能够抽象部分去使用实现部分的对象,而不能反过来。 

            桥接模式符合“开闭原则”,提高了系统的可拓展性,在两个变化维度中任意扩展一个维度,都不需要修改原来的系统;并且实现细节对客户不透明,可以隐藏实现细节。但是由于聚合关系建立在抽象层,要求开发者针对抽象进行编程,这增加系统的理解和设计难度。桥接模式的UML结构图如下:

            就像在Java中我们使用 JDBC 连接数据库时,在各个数据库之间进行切换,基本不需要动太多的代码,原因就是使用了桥接模式,JDBC 提供统一接口,每个数据库提供各自的实现,然后由桥接类创建一个连接数据库的驱动,使用某一个数据库的时候只需要切换一下就行。JDBC 的结构图如下:

             在 JDBC 中,桥接模式的实现化角色 (Implementor) 为的 Driver 接口,具体实现化 (Concrete Implementor) 角色对应 MysqlDriver、OracleDriver 和 MariadbDriver,扩展抽象化 (Refined Abstraction) 角色对应 DriverManager,不具有抽象化 (Abstraction) 角色作为扩展抽象化角色的父类。

    桥接模式详情:Java设计模式之结构型:桥接模式

    10、结构型-外观模式:

            外观模式通过对客户端提供一个统一的接口,用于访问子系统中的一群接口。使用外观模式有以下几点好处:

    (1)更加易用:使得子系统更加易用,客户端不再需要了解子系统内部的实现,也不需要跟众多子系统内部的模块进行交互,只需要跟外观类交互就可以了;

    (2)松散耦合:将客户端与子系统解耦,让子系统内部的模块能更容易扩展和维护。

    (3)更好的划分访问层次:通过合理使用 Facade,可以更好地划分访问的层次,有些方法是对系统外的,有些方法是系统内部使用的。把需要暴露给外部的功能集中到门面中,这样既方便客户端使用,也很好地隐藏了内部的细节。

            但是如果外观模式对子系统类做太多的限制则减少了可变性和灵活性,所以外观模式适用于为复杂子系统提供一个简单接口,提高系统的易用性场景 以及 引入外观模式将子系统与客户端进行解耦,提高子系统的独立性和可移植性。

            外观模式的UML结构图如下:

    外观模式详情: Java设计模式之结构型:外观模式

    11、结构型-组合模式:

            组合模式将叶子对象和容器对象进行递归组合,形成树形结构以表示“部分-整体”的层次结构,使得用户对单个对象和组合对象的使用具有一致性,能够像处理叶子对象一样来处理组合对象,无需进行区分,从而使用户程序能够与复杂元素的内部结构进行解耦。

            组合模式最关键的地方是叶子对象和组合对象实现了相同的抽象构建类,它既可表示叶子对象,也可表示容器对象,客户仅仅需要针对这个抽象构建类进行编程,这就是组合模式能够将叶子节点和对象节点进行一致处理的原因。组合模式的UML结构图如下:

    组合模式详情: Java设计模式之结构型:组合模式

    12、结构型-享元模式:

            享元模式通过共享技术有效地支持细粒度、状态变化小的对象复用,当系统中存在有多个相同的对象,那么只共享一份,不必每个都去实例化一个对象,极大地减少系统中对象的数量,从而节省资源。

            享元模式的核心是享元工厂类,享元工厂类维护了一个对象存储池,当客户端需要对象时,首先从享元池中获取,如果享元池中存在对象实例则直接返回,如果享元池中不存在,则创建一个新的享元对象实例返回给用户,并在享元池中保存该新增对象,这点有些单例的意思。

            工厂类通常会使用集合类型来保存对象,如 HashMap、Hashtable、Vector 等等,在 Java 中,数据库连接池、线程池等都是用享元模式的应用。

            享元模式的UML结构图如下:

             Java 中,String 类型就是使用享元模式,String 对象是 final 类型,对象一旦创建就不可改变。而 Java 的字符串常量都是存在字符串常量池中的,JVM 会确保一个字符串常量在常量池中只有一个拷贝。

            而且提到共享池,我们也很容易联想到 Java 里面的JDBC连接池,通过连接池的管理,实现了数据库连接的共享,不需要每一次都重新创建连接,节省了数据库重新创建的开销,提升了系统的性能!

    享元模式详情:Java设计模式之结构型:享元模式

            前面我们介绍了7种结构型设计模式,接下来我们介绍一下11种行为型设计模式:策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。先来张图,看看这11中模式的关系:

     13、行为型-策略模式:

            将类中经常改变或者可能改变的部分提取为作为一个抽象策略接口类,然后在类中包含这个对象的实例,这样类实例在运行时就可以随意调用实现了这个接口的类的行为。

            比如定义一系列的算法,把每一个算法封装起来,并且使它们可相互替换,使得算法可独立于使用它的客户而变化,这就是策略模式。UML结构图如下:

            策略模式的优点在于可以动态改变对象的行为;但缺点是会产生很多策略类,并且策略模式的决定权在用户,系统只是提供不同算法的实现,所以客户端必须知道所有的策略类,并自行决定使用哪一个策略类; 

            策略模式适用用于以下几种场景:

    • (1)应用程序需要实现特定的功能服务,而该程序有多种实现方式使用,所以需要动态地在几种算法中选择一种
    • (2)一个类定义了多种行为算法,并且这些行为在类的操作中以多个条件语句的形式出现,就可以将相关的条件分支移入它们各自的Strategy类中以代替这些条件语句。

    策略模式详情:Java设计模式之行为型:策略模式

    14、行为型-模板方法:

            模板方法是基于继承实现的,在抽象父类中声明一个模板方法,并在模板方法中定义算法的执行步骤(即算法骨架)。在模板方法模式中,可以将子类共性的部分放在父类中实现,而特性的部分延迟到子类中实现,只需将特性部分在父类中声明成抽象方法即可,使得子类可以在不改变算法结构的情况下,重新定义算法中的某些步骤,不同的子类可以以不同的方式来实现这些逻辑。

            模板方法模式的优点在于符合“开闭原则”,也能够实现代码复用,将不变的行为转移到父类,去除子类中的重复代码。但是缺点是不同的实现都需要定义一个子类,导致类的个数的增加使得系统更加庞大,设计更加抽象。模板方法模式的UML图如下:

    模板方法详情:Java设计模式之行为型:模板方法模式

    15、行为型-责任链模式:

            职责链可以将请求的处理者组织成一条链,并将请求沿着链传递,如果某个处理者能够处理请求则处理,否则将该请求交由上级处理。客户端只需将请求发送到职责链上,无须关注请求的处理细节,通过职责链将请求的发送者和处理者解耦了,这也是职责链的设计动机。        

           职责链模式可以简化对象间的相互连接,因为客户端和处理者都没有对方明确的信息,同时处理者也不知道职责链中的结构,处理者只需保存一个指向后续者的引用,而不需要保存所有候选者的引用。

            另外职责链模式增加了系统的灵活性,我们可以任意增加或更改处理者,甚至更改处理者的顺序,不过有可能会导致一个请求无论如何也得不到处理,因为它可能被放置在链末端。

    所以责任链模式有以下几个优点:

    • (1)降低耦合度,将请求的发送者和接收者解耦。反映在代码上就是不需要在类中写很多丑陋的 if….else 语句,如果用了职责链,相当于我们面对一个黑箱,只需将请求递交给其中一个处理者,然后让黑箱内部去负责传递就可以了。
    • (2)简化了对象,使得对象不需要链的结构。
    • (3)增加系统的灵活性,通过改变链内的成员或者调动他们的次序,允许动态地新增或者删除处理者
    • (4)增加新的请求处理类很方便。

    但是责任链模式也存在一些缺点:

    • (1)不能保证请求一定被成功处理
    • (2)系统性能将受到一定影响,并且可能会造成循环调用。
    • (3)可能不容易观察运行时的特征,而且在进行代码调试时不太方便,有碍于除错。

            责任链模式的UML结构图如下:

    责任链模式详情:Java设计模式之行为型:责任链模式

    16、行为型-观察者模式:

            观察者模式又称为 发布-订阅模式,定义了对象之间一对多依赖关系,当目标对象(被观察者)的状态发生改变时,它的所有依赖者(观察者)都会收到通知。一个观察目标可以对应多个观察者,而这些观察者之间没有相互联系,所以能够根据需要增加和删除观察者,使得系统更易于扩展,符合开闭原则;并且观察者模式让目标对象和观察者松耦合,虽然彼此不清楚对方的细节,但依然可以交互,目标对象只知道一个具体的观察者列表,但并不认识任何一个具体的观察者,它只知道他们都有一个共同的接口。

            但观察者模式的缺点在于如果存在很多个被观察者的话,那么将需要花费一定时间通知所有的观察者,如果观察者与被观察者之间存在循环依赖的话,那么可能导致系统崩溃,并且观察者模式没有相应的机制让观察者知道被观察对象是怎么发生变化的,而仅仅只是知道观察目标发生了变化。观察者模式的UML结构图如下:

     观察者模式详情:Java设计模式之行为型:观察者模式

    17、行为型-访问者模式:

            访问者模式就是一种分离对象数据结构与行为 (基于数据结构的操作) 的方法,通过这种分离,达到为一个被访问者动态添加新的操作而无需做其它修改的效果,使得添加作用于这些数据结构的新操作变得简单,并且不需要改变各数据结构,为不同类型的数据结构提供多种访问操作方式,这样是访问者模式的设计动机。

            除了使新增访问操作变得更加简单,也能够在不修改现有类的层次结构下,定义该类层次结构的操作,并将有关元素对象的访问行为集中到一个访问者对象中,而不是分散搞一个个的元素类中。

           但访问者模式的缺点在于让增加新的元素类变得困难,每增加一个新的元素类都意味着要在抽象访问者角色中增加一个新的抽象操作,并在每一个具体访问者类中增加相应的具体操作,违背了“开闭原则”的要求;

            所以访问者模式适用于对象结构中很少改变,但经常需要在此对象结构上定义新的操作的系统,使得算法操作的增加变得简单;或者需要对一个对象结构中进行很多不同并且不相关的操作,并且需要避免让这些操作污染这些对象,也不希望在增加新操作时修改这些类的场景。

            访问者模式的UML结构图如下:

            从上面的 UML 结构图中我们可以看出,访问者模式主要分为两个层次结构,一个是访问者层次结构,提供了抽象访问者和具体访问者,主要用于声明一些操作;一个是元素层次结构,提供了抽象元素和具体元素,主要用于声明 accept 操作;而对象结构 ObjectStructure 作为两者的桥梁,存储了不同类型的对象,以便不同的访问者来访问,相同访问者可以以不同的方式访问不同的元素,所以在访问者模式中增加新的访问者无需修改现有代码,可扩展行强。

            在访问者模式使用了双分派技术,所谓双分派技术就是在选择方法的时候,不仅仅要根据消息接收者的运行时区别,还要根据参数的运行时区别。在访问者模式中,客户端将具体状态当做参数传递给具体访问者,这里完成第一次分派,然后具体访问者作为参数的“具体状态”中的方法,同时也将自己this作为参数传递进去,这里就完成了第二次分派。双分派意味着得到的执行操作决定于请求的种类和接受者的类型。

     访问者模式详情:Java设计模式之行为型:访问者模式

    18、行为型-中介者模式:

             中介者模式通过中介者对象来封装一系列的对象交互,将对象间复杂的关系网状结构变成结构简单的以中介者为核心的星形结构,对象间一对多的关联转变为一对一的关联,简化对象间的关系,便于理解;各个对象之间的关系被解耦,每个对象不再和它关联的对象直接发生相互作用,而是通过中介者对象来与关联的对象进行通讯,使得对象可以相对独立地使用,提高了对象的可复用和系统的可扩展性。

            在中介者模式中,中介者类处于核心地位,它封装了系统中所有对象类之间的关系,除了简化对象间的关系,还可以对对象间的交互进行进一步的控制。中介者模式的UML结构图如下:

            但是,中介者对象封装了对象之间的关联关系,导致中介者对象变得比较庞大复杂,所承担的责任也比较多,维护起来也比较困难,它需要知道每个对象和他们之间的交互细节,如果它出问题,将会导致整个系统都会出问题。

    中介者模式详情:Java设计模式之行为型:中介者模式

    19、行为型-命令模式:

            命令模式的本质是将请求封装成对象,将发出命令与执行命令的责任分开,命令的发送者和接收者完全解耦,发送者只需知道如何发送命令,不需要关心命令是如何实现的,甚至是否执行成功都不需要理会。命令模式的关键在于引入了抽象命令接口,发送者针对抽象命令接口编程,只有实现了抽象命令接口的具体命令才能与接收者相关联。

            使用命令模式的优势在于降低了系统的耦合度,而且新命令可以很方便添加到系统中,也容易设计一个组合命令。但缺点在于会导致某些系统有过多的具体命令类,因为针对每一个命令都需要设计一个具体命令类。

            命令模式的UML结构图如下:

    命令模式详情: Java设计模式之行为型:命令模式

    20、行为型-状态模式:

            状态模式,就是允许对象在内部状态发生改变时改变它的行为,对象看起来就好像修改了它的类,也就是说以状态为原子来改变它的行为,而不是通过行为来改变状态。

            当对象的行为取决于它的属性时,我们称这些属性为状态,那该对象就称为状态对象。对于状态对象而言,它的行为依赖于它的状态,比如要预订房间,只有当该房间空闲时才能预订,想入住该房间也只有当你预订了该房间或者该房间为空闲时。对于这样的一个对象,当它的外部事件产生互动的时候,其内部状态就会发生变化,从而使得他的行为也随之发生变化。

            状态模式的UML结构图如下:

     从上面的UML结构图我们可以看出状态模式的优点在于:

    (1)封装了转换规则,允许状态转换逻辑与状态对象合成一体,而不是某一个巨大的条件语句块

    (2)将所有与状态有关的行为放到一个类中,可以方便地增加新的状态,只需要改变对象状态即可改变对象的行为。 

    但是状态模式的缺点在于:

    (1)需要在枚举状态之前需要确定状态种类

    (2)会导致增加系统类和对象的个数。

    (3)对 “开闭原则” 的支持并不友好,新增状态类需要修改那些负责状态转换的源代码,否则无法切换到新增状态;而且修改某个状态类的行为也需修改对应类的源代码。

    所以状态模式适用于:代码中包含大量与对象状态有关的条件语句,以及对象的行为依赖于它的状态,并且可以根据它的状态改变而改变它的相关行为。

    状态模式详情:Java设计模式之行为型:状态模式

    21、行为型-备忘录模式:

            备忘录模式提供了一种恢复状态的机制,在不破坏封装的前提下,捕获对象的某个时刻内部状态,并保存在该对象之外,保证该对象能够恢复到某个历史状态;备忘录模式将保存的细节封装在备忘录中,除了创建它的创建者之外其他对象都不能访问它,并且实现了即使要改变保存的细节也不影响客户端。但是备忘录模式都是多状态和多备份的,会早用较多的内存,消耗资源。备忘录模式的额UML结构图如下:

             备忘录模式的核心就是备忘录 Memento,在备忘录中存储的就是原发器 Originator 的部分或者所有的状态信息,而这些状态信息是不能够被其他对象所访问的,也就是说我们是不能使用备忘录之外的对象来存储这些状态信息,如果暴漏了内部状态信息就违反了封装的原则,故备忘录除了原发器外其他对象都不可以访问。所以为了实现备忘录模式的封装,我们需要对备忘录的访问做些控制:

    (1)对原发器:可以访问备忘录里的所有信息。

    (2)对负责人 caretaker:不可以访问备忘录里面的数据,但是他可以保存备忘录并且可以将备忘录传递给其他对象。

    (3)其他对象:不可访问也不可以保存,它只负责接收从负责人那里传递过来的备忘录同时恢复原发器的状态。

    备忘录模式详情:Java设计模式之行为型:备忘录模式

    22、行为型-迭代器模式:

            迭代器模式提供一种访问集合中的各个元素,而不暴露其内部表示的方法。将在元素之间游走的职责交给迭代器,而不是集合对象,从而简化集合容器的实现,让集合容器专注于在它所应该专注的事情上,更加符合单一职责原则,避免在集合容器的抽象接口层中充斥着各种不同的遍历操作。迭代器模式的UML结构图如下:

    迭代器模式详情:Java设计模式之行为型:迭代器模式

    23、行为型-解释器模式:

            解释器模式,就是定义语言的文法,并建立一个解释器来解释该语言中的句子,通过构建解释器,解决某一频繁发生的特定类型问题实例。

            解释器模式描述了如何构成一个简单的语言解释器,主要应用在使用面向对象语言开发的编译器中,它描述了如何为简单的语言定义一个文法,如何在该语言中表示一个句子,以及如何解释这些句子。    

            解释器模式中除了能够使用文法规则来定义一个语言,还能通过使用抽象语法树来更加直观表示、更好地地表示一个语言的构成,每一颗抽象语法树对应一个语言实例。抽象语法树描述了如何构成一个复杂的句子,通过对抽象语法树的分析,可以识别出语言中的终结符和非终结符类。 在解释器模式中由于每一种终结符表达式、非终结符表达式都会有一个具体的实例与之相对应,所以系统的扩展性比较好。

            解释器模式的UML如下:

     解释器模式详情:Java设计模式之行为型:解释器模式


    相关推荐阅读:

    Spring常见面试题总结

    SpringMVC常见面试题总结

    Mybatis常见面试题总结

    MySQL常见面试题总结

    Redis常见面试题总结

    RabbitMQ消息队列常见面试题总结

    ElasticSearch搜索引擎常见面试题总结

    计算机网络常见面试题总结

    操作系统常见面试题总结

    Java基础、集合、多线程常见面试题总结

    Java虚拟机常见面试题总结

    Java常见设计模式总结

    海量数据处理的方法总结


    参考文章:

    Java之美[从菜鸟到高手演变]之设计模式

    Java之美[从菜鸟到高手演变]之设计模式二

    Java之美[从菜鸟到高手演变]之设计模式三

    Java之美[从菜鸟到高手演变]之设计模式四

    展开全文
  • Java设计模式——策略模式

    千次阅读 多人点赞 2021-10-29 12:50:37
    策略模式 1.策略模式简介 策略模式:策略模式是一种行为型模式,它将对象和行为分开,将行为定义为 一个行为接口 和 具体行为的实现。策略模式最大的特点是行为的变化,行为之间可以相互替换。每个if判断都可以理解...

    策略模式

    1.策略模式简介

    策略模式:策略模式是一种行为型模式,它将对象和行为分开,将行为定义为 一个行为接口具体行为的实现。策略模式最大的特点是行为的变化,行为之间可以相互替换。每个if判断都可以理解为就是一个策略。本模式使得算法可独立于使用它的用户而变化

    2.模式结构

    策略模式包含如下角色:

    • Strategy: 抽象策略类:策略是一个接口,该接口定义若干个算法标识,即定义了若干个抽象方法(如下图的algorithm())

    • Context: 环境类 /上下文类:

      • 上下文是依赖于接口的类(是面向策略设计的类,如下图Context类),即上下文包含用策略(接口)声明的变量(如下图的strategy成员变量)。
      • 上下文提供一个方法(如下图Context类中的的lookAlgorithm()方法),该方法委托策略变量调用具体策略所实现的策略接口中的方法(实现接口的类重写策略(接口)中的方法,来完成具体功能)
    • ConcreteStrategy: 具体策略类:具体策略是实现策略接口的类(如下图的ConcreteStrategyA类和ConcreteStrategyB类)。具体策略实现策略接口所定义的抽象方法,即给出算法标识的具体方法。(说白了就是重写策略类的方法!)

    在这里插入图片描述

    3.案例

    在这里插入图片描述

    1).传统实现方式

    代码

        public Double calculationPrice(String type, Double originalPrice, int n) {
    
            //中级会员计费
            if (type.equals("intermediateMember")) {
                return originalPrice * n - originalPrice * 0.1;
            }
            //高级会员计费
            if (type.equals("advancePrimaryMember")) {
                return originalPrice * n - originalPrice * 0.2;
            }
            //普通会员计费
            return originalPrice;
        }
    

    传统的实现方式,通过传统if代码判断。这样就会导致后期的维护性非常差。当后期需要新增计费方式,还需要在这里再加上if(),也不符合设计模式的开闭原则。

    2).策略模式实现

    抽象类策略

    package StrategyExercise;
    
    public interface MemberStrategy {
        // 一个计算价格的抽象方法
        //price商品的价格 n商品的个数
        public double calcPrice(double price, int n);
    }
    
    

    具体实现类

    // 普通会员——不打折
    public class PrimaryMemberStrategy implements MemberStrategy { // 实现策略
        //重写策略方法具体实现功能
        @Override
        public double calcPrice(double price, int n) {
            return price * n;
        }
    }
    
    package StrategyExercise;
    
    // 中级会员 打百分之10的折扣
    public class IntermediateMemberStrategy implements MemberStrategy{
        @Override
        public double calcPrice(double price, int n) {
            double money = (price * n) - price * n * 0.1;
            return money;
        }
    }
    
    
    package StrategyExercise;
    
    // 高级会员类 20%折扣
    public class AdvanceMemberStrategy implements MemberStrategy{
        @Override
        public double calcPrice(double price, int n) {
            double money = price * n - price * n * 0.2;
            return money;
        }
    }
    
    

    上下文类

    也叫做上下文类或环境类,起承上启下封装作用。

    package StrategyExercise;
    
    /**
     * 负责和具体的策略类交互
     * 这样的话,具体的算法和直接的客户端调用分离了,使得算法可以独立于客户端独立的变化。
     */
    
    // 上下文类/环境类
    public class MemberContext {
        // 用户折扣策略接口
        private MemberStrategy memberStrategy;
    
        // 注入构造方法
        public MemberContext(MemberStrategy memberStrategy) {
            this.memberStrategy = memberStrategy;
        }
    
        // 计算价格
        public double qoutePrice(double goodsPrice, int n){
            // 通过接口变量调用对应的具体策略
            return memberStrategy.calcPrice(goodsPrice, n);
        }
    
    }
    
    

    测试类

    package StrategyExercise;
    
    // 测试类
    public class Application {
        public static void main(String[] args) {
    
            // 具体行为策略
            MemberStrategy primaryMemberStrategy = new PrimaryMemberStrategy(); // 接口回调(向上转型)
            MemberStrategy intermediateMemberStrategy = new IntermediateMemberStrategy();
            MemberStrategy advanceMemberStrategy = new AdvanceMemberStrategy();
    
            // 用户选择不同策略
            MemberContext primaryContext = new MemberContext(primaryMemberStrategy);
            MemberContext intermediateContext = new MemberContext(intermediateMemberStrategy);
            MemberContext advanceContext = new MemberContext(advanceMemberStrategy);
    
            //计算一本300块钱的书
            System.out.println("普通会员的价格:"+ primaryContext.qoutePrice(300,1));// 普通会员:300
            System.out.println("中级会员的价格:"+ intermediateContext.qoutePrice(300,1));// 中级会员 270
            System.out.println("高级会员的价格:"+ advanceContext.qoutePrice(300,1));// 高级会员240
        }
    }
    
    

    运行结果

    普通会员的价格:300.0
    中级会员的价格:270.0
    高级会员的价格:240.0

    上述案例UML类图

    在这里插入图片描述

    4.策略模式优缺点

    1)优点

    • 策略模式提供了对“开闭原则”的完美支持,用户可以在不 修改原有系统的基础上选择算法或行为,也可以灵活地增加 新的算法或行为。

    • 策略模式提供了管理相关的算法族的办法。

    • 策略模式提供了可以替换继承关系的办法。

    • 使用策略模式可以避免使用多重条件转移语句。

    2)缺点

    • 客户端必须知道所有的策略类,并自行决定使用哪一个策略类。
    • 策略模式将造成产生很多策略类,可以通过使用享元模式在一 定程度上减少对象的数量。

    5.策略模式适用场景

    在以下情况下可以使用策略模式:

    • 如果在一个系统里面有许多类,它们之间的区别仅在于它们 的行为,那么使用策略模式可以动态地让一个对象在许多行 为中选择一种行为。
    • 一个系统需要动态地在几种算法中选择一种。
    • 如果一个对象有很多的行为,如果不用恰当的模式,这些行 为就只好使用多重的条件选择语句来实现。
    • 不希望客户端知道复杂的、与算法相关的数据结构,在具体 策略类中封装算法和相关的数据结构,提高算法的保密性与 安全性。

    在我们生活中比较常见的应用模式有:

    1、电商网站支付方式,一般分为银联、微信、支付宝,可以采用策略模式
    2、电商网站活动方式,一般分为满减送、限时折扣、包邮活动,拼团等可以采用策略模式

    在这里插入图片描述

    6.总结

    • 在策略模式中定义了一系列算法,将每一个算法封装起来,并让它们 可以相互替换。策略模式让算法独立于使用它的客户而变化,也称为 政策模式。策略模式是一种对象行为型模式。

    • 策略模式包含三个角色:环境类在解决某个问题时可以采用多种策略, 在环境类中维护一个对抽象策略类的引用实例;抽象策略类为所支持 的算法声明了抽象方法,是所有策略类的父类;具体策略类实现了在 抽象策略类中定义的算法。

    • 策略模式是对算法的封装,它把算法的责任和算法本身分割开,委派 给不同的对象管理。策略模式通常把一个系列的算法封装到一系列的 策略类里面,作为一个抽象策略类的子类。

    • 策略模式主要优点在于对“开闭原则”的完美支持,在不修改原有系 统的基础上可以更换算法或者增加新的算法,它很好地管理算法族, 提高了代码的复用性,是一种替换继承,避免多重条件转移语句的 实现方式;其缺点在于客户端必须知道所有的策略类,并理解其区 别,同时在一定程度上增加了系统中类的个数,可能会存在很多策 略类

    • 策略模式适用情况包括:在一个系统里面有许多类,它们之间的区 别仅在于它们的行为,使用策略模式可以动态地让一个对象在许多 行为中选择一种行为;一个系统需要动态地在几种算法中选择一种; 避免使用难以维护的多重条件选择语句;希望在具体策略类中封装 算法和与相关的数据结构。

    注:如果文章有任何错误或不足,请各位大佬尽情指出,评论留言留下您宝贵的建议!如果这篇文章对你有些许帮助,希望可爱亲切的您点个赞推荐一手,非常感谢啦

    image

    展开全文
  • 软件体系结构设计模式java运行代码案例,包括各种模式的简单代码。 包括使用UML插件刻画类图
  • java实现23中设计模式,可以直接导入到ide中进行debug
  • Java设计模式之结构型:桥接模式

    万次阅读 2021-09-13 17:26:40
    桥接模式将系统的抽象部分与实现部分分离解耦,使他们可以独立的变化。为了达到让抽象部分和实现部分独立变化的目的,桥接模式使用组合关系来代替继承关系,抽象部分拥有实现部分的接口对象,从而能够通过这个接口...

    一、什么是桥接模式:

            桥接,顾名思义,就是用来连接两个部分,使得两个部分可以互相通讯,桥接模式的作用就是为被分离的抽象部分和实现部分搭桥。在现实生活中一个物品在搭配不同的配件时会产生不同的动作和结果,例如一辆赛车搭配的是硬胎或者是软胎就能够在干燥的马路上行驶,而如果要在下雨的路面行驶,就需要搭配雨胎了,这种根据行驶的路面不同,需要搭配不同的轮胎的变化的情况,我们从软件设计的角度来分析,就是一个系统由于自身的逻辑,会有两个或多个维度的变化,而为了应对这种变化,我们就可以使用桥接模式来进行系统的解耦。 桥接模式将一个系统的抽象部分和实现部分分离,使它们都可以独立地进行变化,对应到上面就是赛车的种类可以相对变化,轮胎的种类可以相对变化,形成一种交叉的关系,最后的结果就是一种赛车对应一种轮胎就能够成功产生一种结果和行为。 

            桥接模式将系统的抽象部分与实现部分分离解耦,使他们可以独立的变化。为了达到让抽象部分和实现部分独立变化的目的,桥接模式使用组合关系来代替继承关系,抽象部分拥有实现部分的接口对象,从而能够通过这个接口对象来调用具体实现部分的功能。也就是说,桥接模式中的桥接是一个单方向的关系,只能够抽象部分去使用实现部分的对象,而不能反过来。 

            桥接模式符合“开闭原则”,提高了系统的可拓展性,在两个变化维度中任意扩展一个维度,都不需要修改原来的系统;并且实现细节对客户不透明,可以隐藏实现细节。但是由于聚合关系建立在抽象层,要求开发者针对抽象进行编程,这增加系统的理解和设计难度。

            所以,桥接模式一般适用于以下几种应用场景:

    • (1)系统需要在构件的抽象化角色和具体化角色之间增加更多的灵活性,避免在两个层次之间建立静态的继承联系,则可以通过桥接模式使他们在抽象层建立一个关联关系;
    • (2)系统不希望使用继承或因为多层次继承导致系统类的个数急剧增加时
    • (3)一个类存在两个独立变化的维度,而这两个维度都需要进行扩展。

    二、UML结构图:

    • 抽象化角色 Abstraction:定义抽象的接口,包含一个对实现化角色的引用,抽象角色的方法需要调用实现化角色;
    • 扩展抽象化角色 RefinedAbstraction:抽象化角色的子类,一般对抽象部分的方法进行完善和扩展,实现父类中的业务方法,并通过组合/聚合关系调用实现化角色中的业务方法
    • 实现化角色 Implementor:定义具体行为、具体特征的应用接口,供扩展抽象化角色使用,一般情况下是由实现化角色提供基本的操作,而抽象化角色定义基于实现部分基本操作的业务方法;
    • 具体实现化角色 ConcreteImplementor:完善实现化角色中定义的具体逻辑。

    三、代码实现:

    Implementor 接口类:

    public interface Implementor {
        void operationImpl();
    }

    ConcreteImplementor 接口实现类:

    public class ConcreteImplementorA implements Implementor{
        @Override
        public void operationImpl() {
            //具体实现
        }
    }
    
    public class ConcreteImplementorB implements Implementor{
        @Override
        public void operationImpl() {
            //具体实现
        }
    }

    Abstraction 抽象类:

    public abstract class Abstraction {
        private Implementor implementor;
    
        public Abstraction(Implementor implementor) {
            this.implementor = implementor;
        }
    
        public void operation() {
            implementor.operationImpl();
        }
    }

    RefinedAbstraction 抽象类的具体实现:

    public class RefinedAbstraction extends Abstraction{
        public RefinedAbstraction(Implementor implementor) {
            super(implementor);
        }
    
        public void refinedOperation() {
            //对 Abstraction 中的 operation 方法进行扩展
        }
    }

            看了这段通用代码之后,桥接模式的结构应该就很清楚了,需要注意的是 RefinedAbstraction 根据实际情况是可以有多个的。 当然上面的 UML 类图和通用代码只是最常用的实现方式而已,在实际使用中可能会有其他的情况,比如 Implementor 只有一个类的情况,虽然这时候可以不去创建 Implementor 接口,精简类的层次,但是我建议还是需要抽象出实现部分的接口。

    四、JDBC源码解析-桥接模式:

    该部分引用自:JDBC和桥接模式 - 枯落 - 博客园

            Java 中,我们使用 JDBC 连接数据库时,在各个数据库之间进行切换,基本不需要动太多的代码,原因就是使用了桥接模式,JDBC 提供统一接口,每种类型的数据库提供各自的实现,然后由桥接类创建一个连接数据库的驱动,使用某一个数据库的时候只需要切换一下就行。接下来我们就对 JDBC 的源码做下剖析:

    通过原生JDBC API连接MySQL数据库,则有如下示例代码:

    Class.forName("com.mysql.cj.jdbc.Driver");
    Connection conn = DriverManager.getConnection("jdbc:mysql://<host>:<port>/<database>");

    短短两行代码难以看出桥接模式的结构,下面先对源码进行一定的分析,理解各个类和接口之间的关系:

    1、源码分析:

    (1)Class.forName() 方法:

            该方法将返回与给定字符串名的类或接口相关联的 java.lang.Class 类对象,用于在程序运行时动态加载该类或该接口到当前线程中,如果 Class.forName() 加载的是一个类,也会执行类中包含的static { } 静态代码段

    (2)com.mysql.cj.jdbc.Driver 类:

            MySQL 将具体的 java.sql.Driver 接口的实现放到了 NonRegisteringDriver 中,com.mysql.cj.jdbc.Driver 类仅包含一段静态代码,具体类图如下:

            其中最关键的是静态代码段中的 DriverManager.registerDriver(new Driver()) ,它会在客户端调用Class.forName() 方法加载 com.mysql.cj.jdbc.Driver 类的同时被执行,Driver 类自身的一个实例被注册到 DriverManager(即保存到 DriverManager 的静态字段 registeredDrivers 内),注册过程的源码如下: 

    public static synchronized void registerDriver(java.sql.Driver driver, DriverAction da)
    throws SQLException {
      /* Register the driver if it has not already been added to our list */
      if(driver != null) {
        registeredDrivers.addIfAbsent(new DriverInfo(driver, da));
      } else {
        // This is for compatibility with the original DriverManager
        throw new NullPointerException();
      }
      println("registerDriver: " + driver);
    }

            registeredDrivers 静态字段的类型是实现了 List 接口的 CopyOnWriteArrayList 类,它能够保存进一步封装 java.sql.Driver 接口的 DriverInfo 类实例,DriverInfo 类的声明代码如下:

    class DriverInfo {
      final Driver driver;
      DriverAction da;
      DriverInfo(Driver driver, DriverAction action) {
        this.driver = driver;
        da = action;
      }
      // ……
    }

    DriverInfo 还包装了 DriverAction,DriverAction 会在Driver被取消注册时被调用,在 MySQL 的 Driver 在向 DriverManager 进行注册时,DriverAction 被设置为 null

    (3)DriverManager 类:

    由上面的分析可得,Class.forName() 方法调用后,com.mysql.cj.jdbc.Driver 类被加载,并执行static { } 静态代码段,将 com.mysql.cj.jdbc.Driver 类实例注册到 DriverManager 中。然后,客户端会调用 DriverManager.getConnection() 方法获取一个 Connection 数据库连接实例,该方法的部分源码如下:

    private static Connection getConnection(String url, java.util.Properties info, Class<?> caller) throws SQLException {
      // ……
      for(DriverInfo aDriver : registeredDrivers) {
        // If the caller does not have permission to load the driver then
        // skip it.
        if(isDriverAllowed(aDriver.driver, callerCL)) {
          try {
            println(" trying " + aDriver.driver.getClass().getName());
            Connection con = aDriver.driver.connect(url, info);
            if (con != null) {
              // Success!
              println("getConnection returning " + aDriver.driver.getClass().getName());
              return (con);
            }
          } catch (SQLException ex) {
            if (reason == null) {
              reason = ex;
            }
          }
        } else {
          println(" skipping: " + aDriver.getClass().getName());
        }
      }
      // ……
    }

    DriverManager.getConnection() 方法会遍历 registeredDrivers 静态字段,获取字段内保存的每一个 Driver 来尝试响应客户端的数据库连接请求,若所有 Driver 都连接数据库失败,则提示连接失败信息

    (4)Connection接口:

    Connection 代表和特定数据库的连接会话,能够执行SQL语句并在连接的上下文中返回执行结果。因此,DriverManager.getConnection() 方法返回的 Connection 数据库连接实例根据不同的数据库有不同的实现,MySQL 的 Connection 接口实现关系如下:

     2、源码类图:

    根据源码的分析,绘制类图如下:

     对 Driver 和 Connection 进行抽象,绘制类图如下:

            桥接模式通过聚合关系代替继承关系,实现抽象化和实现化部分的解耦。以上述 JDBC 在 MySQL 中的简略类图为例,抽象化部分有 DriverManager,实现化部分有 Driver 接口和 Connection 接口。对于不同的数据库,Driver接口和Connection接口都有自己独特的实现类。

            但是,和 Driver 接口不同的是,Connection 接口与 DriverManager 类的关系只是联系较弱的依赖关系,并不符合桥接模式的定义和特点。因此,在考虑桥接模式的情况下,可以再次将类图进行简化:

     最后,我们将其它数据库的Driver接口实现也考虑在内,绘制类图如下:

            桥接模式中的实现化角色 (Implementor) 对应上图的 Driver 接口,具体实现化 (Concrete Implementor) 角色对应 MysqlDriver、OracleDriver 和 MariadbDriver,扩展抽象化 (Refined Abstraction) 角色对应 DriverManager,不具有抽象化 (Abstraction) 角色作为扩展抽象化角色的父类

    3、对 JDBC 的观点:

    (1)观点一:JDBC 的桥接模式是一中简化的桥接模式

            桥接模式的主要应用场景是某个类存在两个独立变化的维度,且这两个维度都需要进行扩展,而现在仅有 Driver 一个变化维度,DriverManager 没有抽象化父类,它本身也没有任何子类,因此我认为,在 JDBC 中,是一种简化的桥接模式。

            倘若 JDBC 针对 Connection 接口的设计不是将它作为 Driver 和 DriverManager 的"依赖"来处理,而是也作为一个变化的维度加入到桥接模式,或许能够更好地体现JDBC对桥接模式的实现,一种"假想"的桥接模式如下:

     (2)观点二:JDBC采用的是策略模式而不是桥接模式

    问题来源知乎:jdbc是桥接模式还是策略模式? - 知乎

            因为这确实和策略模式十分相似,如果把桥接模式的抽象部分简化来看,不去设计Abstraction,也就是用 Refined Abstraction 代替 Abstraction,那么就类似于策略模式的 Context 来使用接口的对象。

            但是,桥接模式和策略模式的目的是不一样的,策略模式属于对象行为模式(描述对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,以及怎样分配职责),它的目的是封装一系列的算法,使得算法可以相互替代,并在程序运行的不同时刻选择合适的算法。而桥接模式属于对象结构模式(描述如何将对象按某种布局组成更大的结构),它的目的是将抽象与实现分离,使它们可以独立变化

            因此,从设计的目的来看,JDBC采用的并不是策略模式,在一段程序中数据库驱动并不存在频繁地相互替换

    (3)观点三:变化的维度一个是平台,另一个是数据库

    问题来源:https://www.unclewang.info/learn/java/771/?tdsourcetag=s_pctim_aiomsg

            这是我认同的一个观点,引用原文的话:变的是平台和数据库,平台在 JVM 这个层面就解决了,因为所有操作系统 Java 基本都会提供对应JDK,这也是 "Once Write,Run AnyWhere" 的原因。而数据库则是依托公司的具体实现,各个公司都提供对应的 Driver 类,我用 DriverManager 类进行懒加载.

            考虑数据库的实际应用场景,我们可能在不同的操作系统上使用不同的数据库,但是JVM的平台无关性使得我们不再有操作系统层面上的变化。假设不存在JVM,那么不同的客户端加载和运行数据库驱动程序的代码自然也各有不同,即 DriverManager 会因操作系统的变化而变化,不同的操作系统可以有不同的注册 Driver 的方式,不过因为存在JVM,我们现在不再有"平台"这一变化维度了

    (4)观点四:变化的维度一个是客户端应用系统,另一个是数据库

    问题来源:java设计模式-桥梁模式(桥接模式 Bridge) - 简书

            一个比较独特的观点,引用原文的话:应用系统作为一个等级结构,与 JDBC 驱动器这个等级结构是相对独立的,它们之间没有静态的强关联。应用系统通过委派与JDBC驱动器相互作用,这是一个桥梁模式的例子。

            原文笔者不认为 DriverManager 作为 Refined Abstraction 角色存在,而是视作两个变化维度之间的一个"过渡",原本的"桥"是 Abstraction 和 Implementor 之间的组合/聚合关系,而现在DriverManager 类本身成为了"桥",可以看作是桥梁模式的一个变体

    (5)观点五:变化的维度一个是 Driver,一个是 Connection:

            如果从观点四的原文笔者的角度看,把 DriverManager 类本身作为"桥",那么我们还可以提出一种新的观点,绘制类图如下:


    设计模式系列文章:

    Java设计模式之创建型:工厂模式详解(简单工厂+工厂方法+抽象工厂)

    Java设计模式之创建型:建造者模式

    Java设计模式之创建型:单例模式

    Java设计模式之创建型:原型模式

    Java设计模式之结构型:适配器模式

    Java设计模式之结构型:装饰器模式

    Java设计模式之结构型:代理模式

    Java设计模式之结构型:桥接模式

    Java设计模式之结构型:外观模式

    Java设计模式之结构型:组合模式

    Java设计模式之结构型:享元模式

    Java设计模式之行为型:策略模式

    Java设计模式之行为型:模板方法模式

    Java设计模式之行为型:责任链模式

    Java设计模式之行为型:观察者模式

    Java设计模式之行为型:访问者模式

    Java设计模式之行为型:中介者模式

    Java设计模式之行为型:命令模式

    Java设计模式之行为型:状态模式

    Java设计模式之行为型:备忘录模式

    Java设计模式之行为型:迭代器模式

    Java设计模式之行为型:解释器模式


    参考博客:

    JDBC和桥接模式 - 枯落 - 博客园

    java/android 设计模式学习笔记(8)---桥接模式_Shawn_Dut的专栏-CSDN博客_桥接模式

    JAVA开发的23种设计模式之 --- 桥接模式_叶孤心的专栏-CSDN博客

    展开全文
  • Java设计模式之行为型:中介者模式

    万次阅读 2021-09-14 17:52:27
    中介者模式通过中介者对象来封装一系列的对象交互,将对象间复杂的关系网状结构变成结构简单的以中介者为核心的星形结构,对象间一对多的关联转变为一对一的关联,简化对象间的关系,便于理解;各个对象之间的关系被...
  • 结构型模式可以描述两种...在适配器中,由于Java语言不支持多重继承,它只能是接口。 (2)Adapter(适配器类):它可以调用另一个接口,作为一个转换器,对Aadptee和Target进行适配。适配器Adapter是适配器模式的核
  • 设计模式Java 中实现设计模式。 在每个包中运行 client.java 以查看输出。 图案: 适配器 工厂 合成的 观察员 装饰器 状态 战略 命令 责任链版本 1
  • JAVA设计模式之单例模式

    万次阅读 多人点赞 2014-04-16 06:51:34
     java中单例模式是一种常见的设计模式,单例模式的写法有好几种,这里主要介绍三种:懒汉式单例、饿汉式单例、登记式单例。  单例模式有以下特点:  1、单例类只能有一个实例。  2、单例类必须自己创建自己的...
  • 全新150集通俗易懂的Java设计模式

    千人学习 2019-07-01 17:29:26
    单例模式的8种实现方式、工厂模式的3种实现方式、适配器模式的3种实现、代理模式的3种方式、深拷贝等 3) 如果你想写出规范、漂亮的程序,就花时间来学习下设计模式吧 课程内容和目标 本课程是使用Java来讲解设计模式,...
  • java设计模式

    2017-07-31 17:04:28
    java 设计模式,下载即运行,宝宝亲自用口语给你将什么是设计模式,什么场景用什么设计模式,每种设计模式的优缺点
  • JAVA设计模式demo之策略模式,解压代码可以直接运行。谁能告诉我,为什么资源分不能搞成0分?!
  • JAVA设计模式——适配器模式

    万次阅读 多人点赞 2018-01-18 16:28:30
    适配器模式是一种结构型设计模式。适配器模式的思想是:把一个类的接口变换成客户端所期待的另一种接口,从而使原本因接口不匹配而无法在一起工作的两个类能够在一起工作。 用电器来打个比喻:有一个电器的插头是...
  • 各个资料都在一个WORD钟,代码全面,复制粘贴即可运行
  • JAVA设计模式——单例模式八种方式

    千次阅读 多人点赞 2021-10-14 18:01:56
    目录 单例模式简介: 应用场景: 单例设计模式的八种方式: 1、饿汉式(静态常量) ...单例模式(Singleton Pattern)是 Java 中最简单的设计模式之一。这种类型的设计模式属于创建型模式,它提供
  • Java设计模式 这包含设计模式Java实现。 建设项目。 先决条件 JDK 1.6.x或更高版本 脚步: 下载并解压缩该项目。 转到项目首页 转到所需的设计模式运行Demo.class(JAVAC或在Eclipse中) 文档(即将推出..) ...
  • 工厂模式 代码实现: 步骤一:创建一个接口 Car.java package FactoryMode; public interface Car { public void run(); } 步骤二:创建实现类 BaoMaCar.java package FactoryMode; public class BaoMaCar ...
  • Java单例模式是比较简单一种设计模式。现在多数情况下都不会手工去写一个单例的类,一般Singleton会交给Spring容器来管理。但如果亲自操刀写一个单例的类,怎么写最完美,并且能保证线程安全(在代码层面上控制类在...
  • 主要介绍了浅谈Java多进程程序的运行模式,包括对进程阻塞问题的讨论等,需要的朋友可以参考下
  • 韩顺平图解Java设计模式

    千次阅读 2019-08-27 08:30:00
    今天分享一部设计模式相关的视频,好好复习帮助还是很大的。课程介绍1) 优秀的程序应该是这样的:阅读时,感觉很优雅;新增功能时,感觉很轻松;运行时,感觉很快速,这就需要设计...
  • Java 3des加密算法ECB模式,亲测完美通过。目前网上的大部分算法都通不过或者加进Base64之类的,还要不下载其它jar包。而代码使用时直接下载运行,无须配置和下载额外的jar包 ,只需换上自己的密钥和待加密的数据...
  • Java装配模式

    千次阅读 2018-01-20 19:44:08
    return "运行速度快"; } } public class Phone { private String name; private IAppearance appearance; private IPrice price; private ISpeed speed; private IScreen screen; public Phone() {...
  • Java设计模式之代理模式 引言 Java动态代理机制的出现使得 Java开发人员不用手工编写代理类只要简单地指定一组接口及委托类对象便能 动态地获得代理类代理类会负责将所有的方法调用分派到委托对象上反射执行在分派...
  • 目录 文章目录目录一、前言二、简介1. 谁发明了设计模式?2. 我怎么学不会设计模式?...5月20日那天投身实战型设计模式打磨,通过模拟互联网业务开发实际需求作为学习场景,讲解设计模式。 全书共计22个真实业务场
  • Java微信扫码支付模式二Demo ,整合官网直接运行版本 概述 场景介绍 扫码支付模式二,用于web网站。用户点击支付后,根据商品生成的二维码,用户扫码完成支付,手机提示支付成功,微信支付系统把交易结果发送到回调...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 942,974
精华内容 377,189
关键字:

java 运行模式

java 订阅