精华内容
下载资源
问答
  • 数据分析与可视化案例
    千次阅读
    2022-03-31 15:16:12

    python数据分析基础(一)

    该部分将对python数据结构、函数等基础内容进行回顾,python大牛和想要直接套用模板进行数据分析方法的朋友可以直接跳过此部分。

    一、基本数据结构-元组和列表

    元组和列表是python最常见也是最基本的数据结构,其区别在于元组的内容和长度是不可变的,而列表是可变的。下面通过实例来介绍一些元组列表的基本操作。

    1、两者之间的转换

    a=[1,2,3,4]
    b=1,2,3,4
    print(type(a))
    print(type(b))
    <class 'list'>
    <class 'tuple'>

    (1)列表->元组

    a=tuple(a)
    print(a)
    print(type(a))
    (1, 2, 3, 4)
    <class 'tuple'>

    (2)元组->列表

    b=list(b)
    print(b)
    print(type(b))
    [1, 2, 3, 4]
    <class 'list'>

    可以通过tuple和list函数将任意序列和迭代器换成元组和数列。

    2、连接和扩展

    元组和列表扩展的方式是相同的。

    (1,2,"jerry")+(3,4,"tom")
    (1, 2, 'jerry', 3, 4, 'tom')
    [1,2,"jerry"]+[3,4,"tom"]
    [1, 2, 'jerry', 3, 4, 'tom']
    (1,"jerry")*2
    (1, 'jerry', 1, 'jerry')
    [1,"jerry"]*3
    [1, 'jerry', 1, 'jerry', 1, 'jerry']

    需要注意的是元组连接和扩展并没有让原本的元组长度和内容发生变化,而是生成了一个新的元组(c=a+b)c是一个全新的元组,a和b并不受其影响。

    3、拆包

    对元组的数据或对列表的数据进行拆包通常用作变量赋值。

    a,b=(1,2)
    c,d=[3,4]
    print(a,b,c,d)
    1 2 3 4
    a=1,2,3,4,5,6
    b,c,*_=a
    #*_代表从3及以后的数字将被舍弃
    print(b,c)
    1 2

    4、对列表进行操作的常用方法

    由于元组的不可变性,除了一些查询操作,暂时没有想到其他的可操作性,接下来将对列表的常用操作进行回顾。

    (1)增加、删减元素

    a=['jerry','tom']
    a.append(1)#末尾增加数字1
    print(a)
    ['jerry', 'tom', 1]
    a=['jerry','tom']
    a.insert(1,'rose')#指定位置插入字符串“rose”
    print(a)
    ['jerry', 'rose', 'tom']
    a=['jerry','tom']
    a.pop(1)#删除指定位置元素
    print(a)
    ['jerry']
    a=['jerry','tom']
    a.remove('tom')#从位置0开始移除第一个遇到的“tom”
    print(a)
    ['jerry']

    (2)sorted

    a=[3,2,1,4]
    sorted(a)#将a内元素从小到大,从a到z进行排序,这部分网上内容较多,可以进行参考
    [1, 2, 3, 4]

    (3)reversed

    list(reversed(a))#将列表a中的元素倒叙排列,此处需要注意,reversed是生成器,因此需要list
    [4, 1, 2, 3]

    (4)enumerate

    a=['tom','jerry','rose']
    for position,name in enumerate(a):
        print(position,name)
    0 tom
    1 jerry
    2 rose

    将列表输入enuerate函数,会输出(位置,当前位置的元素)

    5、小结

    上面介绍了python中最基本的两种数据结构及其操作,在后面还会结合具体案例对其操作进行拓展、补充。

    二、基本数据结构-字典

    这部分在数据分析中用的特别多,我们先来看看字典的型式。

    dict = {'mother': 'jerry', 'father': 123, 'son':['tom']}

    字典的每个键值 key=>value 对用冒号 : 分割,每个对之间用逗号(,)分割,整个字典包括在花括号 {} 中 。

    该合集为Python数据分析的视频教程,定期更新,目录如下:

    系列一:2021python数据分析从基础到进阶课程(适合新手)

    系列二:2021数据分析从基础到实战系列

    系列三:2021四个月带你完完全全学习数据分析(视频+源码)

    系列四:2021年最新python大数据分析师教程(视频+源码+课件)

    系列五:2021最新python大数据全栈分析工程师视频教程

    系列六:2022数据分析师入职培训教程,带你拿到理想薪资(2022.3.14更新)

    点击我查看目录

    更多相关内容
  • 通过一个综合案例分析和演示数据处理和可视化的过程,加深对Pandas、Matplotlib库中一些常见方法的理解和使用,非常适合初学者自我测试和老师课堂教学。
  • Python数据分析与可视化案例解析

    千次阅读 2021-06-03 07:52:38
    已知两个Excel表格:学生基本信息表、期末考试成绩表分别用于存放学生的基本信息(包括姓名、性别、班级)和学生的期末成绩(包括姓名、语文、数学、英语、总分),部分数据如下图所示(完整数据见学生基本信息表....

    题目需求描述

    已知两个Excel表格:学生基本信息表期末考试成绩表分别用于存放学生的基本信息(包括姓名性别班级)和学生的期末成绩(包括姓名语文数学英语总分),部分数据如下图所示(完整数据见学生基本信息表.xls期末考试成绩表.xls),完成以下操作。

    (1)编写程序读取两张表中的数据,并将其根据姓名进行合并,然后将合并后的数据按照总分从高到低进行排序,总分相同时,根据英语成绩从高到低排序,并将结果存放在学生期末考试成绩排名表.xls中,最终表中的部分数据如下。

     (2)编写程序分别用饼状图绘制出语文、数学、英语课程优秀分数>=90)、良好90>分数>=80)、中等80>分数>=70)、及格70>分数>=60)、不及格分数<60)的比例。最终效果如图所示,要求三个图放在一个大图中,大图的标题为学生各科成绩分布图,每个图都有子标题,例如语文成绩分布,所有比例保留1位小数点,最终的图保存为饼状图.png

     (3)编写程序分别用条形图绘制出语文、数学、英语课程的最低分、最高分以及平均分。最终效果图如图所示,要求图中显示图例标题,条形图上方显示相应数字,最终的图保存为条形.png

    代码参考 

    import pandas as pd
    import matplotlib.pyplot as plt
    import numpy as np
    
    
    def get_datas(df, col):
        level_1 = len(df[df[col] >= 90])
        level_2 = len(df[(df[col] < 90) & (df[col] >= 80)])
        level_3 = len(df[(df[col] < 80) & (df[col] >= 70)])
        level_4 = len(df[(df[col] < 70) & (df[col] >= 60)])
        level_5 = len(df[df[col] < 60])
        return level_1, level_2, level_3, level_4, level_5
    
    
    # 第一小题
    d_1 = pd.read_excel("学生基本信息表.xls", skiprows=1)
    d_2 = pd.read_excel("期末考试成绩表.xls", skiprows=1)
    d_3 = pd.merge(d_1, d_2)
    d_3 = d_3.sort_values(by=["总分", "英语"], ascending=False)
    d_3.to_excel("学生期末考试成绩排名表.xls")
    
    
    # 第二小题
    results = []
    titles = ["语文", "数学", "英语"]
    plt.rcParams["font.family"] = "FangSong"  # 设置字体
    labels = ["优秀", "良好", "中等", "及格", "不及格"]
    for title in titles:
        results.append(get_datas(d_3, title))
    
    plt.figure(figsize=(12, 5))  # 创建一个新图
    plt.suptitle("学生各科成绩分布图")
    for index, data in enumerate(results):
        print(data)
        plt.subplot(1, 3, index + 1)
        plt.title(titles[index] + "成绩分布")
        plt.pie(data, labels=labels, autopct='%.1f%%', shadow=True, labeldistance=1.2,
                explode=(0.1, 0, 0, 0, 0), colors=['m', 'c', 'y', 'r', 'g'])
    plt.savefig("饼状图")
    
    
    # 第三小题
    plt.figure()  # 创建一个新图
    min_datas =[np.min(d_3["语文"]), np.min(d_3["数学"]), np.min(d_3["英语"])]
    mean_datas =[np.mean(d_3["语文"]), np.mean(d_3["数学"]), np.mean(d_3["英语"])]
    max_datas =[np.max(d_3["语文"]), np.max(d_3["数学"]), np.max(d_3["英语"])]
    kemu_datas = [min_datas, mean_datas, max_datas]
    legends = ["最低分", "平均分", "最高分"]
    x = range(len(titles))
    plt.title("各科成绩统计信息")
    for index, data in enumerate(kemu_datas):
        plt.bar([i + 0.3 * index for i in x], height=data, width=0.3, label=legends[index])
        for j, num in enumerate(data):
            plt.text(0.3 * index + j, num + 1, "{:.1f}".format(num), ha="center", va="bottom", color="r")
    plt.xticks([i + 0.3 for i in x], titles)  # 绘制底部标签
    plt.legend()
    plt.savefig("条形图")
    plt.show()
    

    相关资源和代码可以关注微信公众号:Python资源分享,回复 0603 即可获取。或者通过CSDN资源下载页下载:https://download.csdn.net/download/Dream_Gao1989/19358882

    展开全文
  • 数据可视化案例—基于影视数据分析与可视化展示系统。全部资料都在内,新手可自己动手,高手可二次开发。 数据可视化案例—基于影视数据分析与可视化展示系统。全部资料都在内,新手可自己动手,高手可二次开发...
  • 基于Anaconda环境下的Python数据分析可视化
  • 基于数据可视化技术的电商平台家具市场分析.pdf
  • 2、数据、信息与数据分析 数据:是指对客观事件进行记录并可以鉴别的符号,是对客观事物的性质、状态以及相互关系等进行记载的物理符号或这些物理符号的组合。它是可识别的、抽象的符号。 数据是信息的表现形式和...

    1、大数据分析框架结构

    在这里插入图片描述

    2、数据、信息与数据分析

    数据:是指对客观事件进行记录并可以鉴别的符号,是对客观事物的性质、状态以及相互关系等进行记载的物理符号或这些物理符号的组合。它是可识别的、抽象的符号。
    数据是信息的表现形式和载体,可以是符号、文字、数字、语音、图像、视频等。
    数据聚焦于数据的采集、清理、预处理、分析和挖掘,图形聚焦于解决对光学图像进行接收、提取信息、加工变换、模式识别及存储显示,可视化聚焦于解决将数据转换成图形,并进行交互处理。

    信息:是数据的内涵,信息是加载于数据之上,对数据作具有含义的解释。
    数据和信息是不可分离的,信息依赖数据来表达,数据则生动具体表达出信息。

    数据是符号,是物理性的,信息是对数据进行加工处理之后得到、并对决策产生影响的数据,是逻辑性和观念性的;
    数据是信息的表现形式,信息是数据有意义的表示。数据是信息的表达、载体,信息是数据的内涵,是形与质的关系。
    数据本身没有意义,数据只有对实体行为产生影响时才成为信息。

    数据分析:是指用适当的统计分析方法对收集来的大量数据进行分析,为提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
    从广义的角度来说,数据分析涵盖了数据分析和数据挖掘两个部分。
    从狭义的角度来说,数据分析和数据挖掘存在不同之处。主要体现在两者的定义说明、侧重点、技能要求和最终的输出形式。

    广义的数据分析包括狭义数据分析和数据挖掘。

    狭义的数据分析是指根据分析目的,采用对比分析、分组分析、交叉分析和回归分析等分析方法,对收集来的数据进行处理与分析,提取有价值的信息,发挥数据的作用,得到一个特征统计量结果的过程。
    数据挖掘则是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,通过应用聚类、分类、回归和关联规则等技术,挖掘潜在价值的过程。
    在这里插入图片描述
    数据分析与数据挖掘的区别:

    差异角度数据分析数据挖掘
    定义描述和探索性分析,评估现状和修正不足 技术技术性的“采矿”过程,发现未知的模式和规律
    侧重点技术性的“采矿”过程,发现未知的模式和规律技术性的“采矿”过程,发现未知的模式和规律
    技能统计学、数据库、Excel、可视化等过硬的数学功底和编程技术
    结果需结合业务知识解读统计结果模型或规则

    数据分析的流程:

    1、需求分析:数据分析中的需求分析也是数据分析环节的第一步和最重要的步骤之一,决定了后续的分析的方向、方法。
    数据获取:数据是数据分析工作的基础,是指根据需求分析的结果提取,收集数据。
    2、数据预处理:数据预处理是指对数据进行数据合并,数据清洗,数据变换和数据标准化,数据变换后使得整体数据变为干净整齐,可以直接用于分析建模这一过程的总称。
    3、分析与建模:分析与建模是指通过对比分析、分组分析、交叉分析、回归分析等分析方法和聚类、分类、关联规则、智能推荐等模型与算法发现数据中的有价值信息,并得出结论的过程。
    4、模型评价与优化:模型评价是指对已经建立的一个或多个模型,根据其模型的类别,使用不同的指标评价其性能优劣的过程。
    5、部署:部署是指将通过了正式应用数据分析结果与结论应用至实际生产系统的过程。

    3、数据可视化

    数据分析是一个探索性的过程,通常从特定的问题开始。它需要好奇心、寻找答案的欲望和很好的韧性,因为这些答案并不总是容易得到的。
    数据可视化,即数据的可视化展示。有效的可视化可显著减少受众处理信息和获取有价值见解所需的时间。
    数据分析和数据可视化这两个术语密不可分。在实际处理数据时,数据分析先于可视化输出,而可视化分析又是呈现有效分析结果的一种好方法。

    数据可视化:是关于数据视觉表现形式的科学技术研究。其中,这种数据的视觉表现形式被定义为“一种以某种概要形式抽提出来的信息,包括相应信息单位的各种属性和变量”。
    数据可视化主要是借助于图形化手段,清晰有效地传达与沟通信息。

    数据可视化是指将大型数据集中的数据以图形图像形式表示,并利用数据分析和开发工具发现其中未知信息的处理过程。
    数据可视化技术的基本思想是将数据库中每一个数据项作为单个图元素表示,大量的数据集构成数据图像,同时将数据的各个属性值以多维数据的形式表示,可以从不同的维度观察数据,从而对数据进行更深入的观察和分析。

    数据可视化的方法1----面积&尺寸可视化:

    在这里插入图片描述
    数据可视化的方法2----颜色可视化
    在这里插入图片描述
    数据可视化的方法3----图形可视化
    在这里插入图片描述数据可视化的方法4----概念可视化
    在这里插入图片描述可视化典型案例:
    1、全球黑客活动
    安全供应商Norse打造了一张能够反映全球范围内黑客攻击频率的地图(http://map.ipviking.com),它利用Norse 的“蜜罐”攻击陷阱显示出所有实时渗透攻击活动。如下图所示,地图中的每一条线代表的都是一次攻击活动,借此可以了解每一天、每一分钟甚至每一秒世界上发生了多少次恶意渗透。
    在这里插入图片描述2、互联网地图:
    为了探究互联网这个庞大的宇宙,俄罗斯工程师 Ruslan Enikeev 根据 2011 年底的数据,将全球 196 个国家的 35 万个网站数据整合起来,并根据 200 多万个网站链接将这些“星球”通过关系链联系起来,每一个“星球”的大小根据其网站流量来决定,而“星球”之间的距离远近则根据链接出现的频率、强度和用户跳转时创建的链接来确定,由此绘制得到了“互联网地图”(http://internet-map.net)。
    在这里插入图片描述

    3、编程语言之间的影响力关系图
    Ramio Gómez利用来自Freebase上的编程语言维护表里的数据,绘制了编程语言之间的影响力关系图,如下图所示,图中的每个节点代表一种编程语言,之间的连线代表该编程语言对其他语言有影响,有影响力的语言会连线多个语言,相应的节点也会越大。
    在这里插入图片描述4、百度迁徙
    2014年1月25日晚间,央视与百度合作,启用百度地图定位可视化大数据播报春节期间全国人口迁徙情况,引起广泛关注。
    在这里插入图片描述

    5、世界国家健康与财富之间的关系
    “世界国家健康与财富之间的关系”利用可视化技术,把世界上200个国家,从1810年到2010年历时200年其各国国民的健康、财富变化数据(收集了1千多万个数据)制作成三维动画进行了直观展示(http://www.moojnn.com/Index/whn)。
    在这里插入图片描述

    6、3D可视化互联网地图APP
    3D可视化是描绘和理解数据的一种手段,是数据的一种表征形式,并非模拟技术。3D可视化以一种独特的立体视角为用户呈现数据,可以帮助用户发现一些在2D模式下无法察觉的内容。Peer 1开发了一个称为“互联网地图”的APP,这是一个建立在小盒子形式上的3D地图。
    在这里插入图片描述
    7、数据可视化案例-滴滴的交通大数据
    在这里插入图片描述

    数据分析与可视化常用工具

    1.Microsoft Excel
    Excel是大家熟悉的电子表格软件,已被广泛使用了二十多年,如今甚至有很多数据只能以Excel表格的形式获取到。在Excel中,让某几列高亮显示、做几张图表都很简单,于是也很容易对数据有个大致了解。Excel的局限性在于它一次所能处理的数据量上,而且除非通晓VBA这个Excel内置的编程语言,否则针对不同数据集来重制一张图表会是一件很繁琐的事情。

    2.R语言
    R语言是由新西兰奥克兰大学Ross Ihaka和Robert Gentleman开发的用于统计分析、绘图的语言和操作环境,是属于GNU系统的一个自由、免费、源代码开放的软件,是一个用于统计计算和统计制图的优秀工具。
    R语言的主要功能包括数据存储和处理系统、驻足运算工具(其向量、矩阵运算方面功能尤其强大)、完整连贯的统计分析工具、优秀的统计制图功能、简便而强大的编程语言以及可操纵数据的输入和输出等功能。

    3.Python语言
    Pyhton 是由荷兰人 Guido van Rossum 于 1989 年发明的,并在1991年首次公开发行。它是一款简单易学的编程类工具,同时,其编写的代码具有简洁性、易读性和易维护性等优点。Pyhton原本主要应用于系统维护和网页开发,但随着大数据时代的到来,以及数据挖掘、机器学习、人工智能等技术的发展,促使 Python进入数据科学的领域。
    Python同样拥有各种五花八门的第三方模块,用户可以利用这些模块完成数据科学中的工作任务。

    1. SAS软件
      SAS是全球最大的软件公司之一,是由美国NORTH CAROLINA州立大学1966年开发的统计分析软件。SAS把数据存取、管理、分析和展现有机地融为一体,具有功能强大、统计方法齐、全、新并且操作简便灵活的特点。
    2. SPSS
      SPSS是世界上最早的统计分析软件。它封装了先进的统计学和数据挖掘技术来获得预测知识,并将相应的决策方案部署到现有的业务系统和业务过程中,从而提高企业的效益。IBM SPSS Modeler拥有直观的操作界面、自动化的数据准备和成熟的预测分析模型,结合商业技术可以快速建立预测性模型。

    6.专用的可视化分析工具
    除了数据分析与挖掘工具中包含的数据可视化功能模块之外,也有一些专用的可视化工具提供了更为强大便捷的可视化分析功能。目前常用的专业可视化分析工具有Power BI、Tableau、Gehpi和Echarts等。
    在这里插入图片描述

    为何选用Python

    Python语言是一种解释型、面向对象、动态数据类型的高级程序设计语言
    Python语言是数据分析师的首选数据分析语言,也是智能硬件的首选语言

    在这里插入图片描述Python语言的特点(1):优点

    1. 简单易学
      Python是一种代表简单主义思想的语言,它有极简单的语法,极易上手。
      2.集解释性与编译性于一体
      Python语言写的程序不需要编译成二进制代码,可以直接从源代码运行程序,但是需要解释器,它也具有编译执行的特性。
      3.面向对象编程
      Python 即支持面向过程的编程也支持面向对象的编程。与其他主要的语言如C++ 、Java相比,Python以一种非常强大又简单的方式实现面向对象编程。
      4.可扩展性和可嵌入性
      可以把部分程序用C或C++编写,然后在Python程序中使用它们,也可以把Python嵌入到C/C++ 程序中,提供脚本功能。
      5.程序的可移植性
      绝大多数的的Python程序不做任何改变即可在主流计算机平台上运行。
      6.免费、开源
      可以自由地发布这个软件的拷贝、阅读它的源代码、对它做改动、把它的一部分用于新的自由软件中。

    Python语言的特点(2):缺点
    Python的唯一缺点是与C和C++相比执行的效率还不够快,因为Python没有将代码编译成底层的二进制代码;
    但Python具有嵌入性的特征,对于大型程序,完全可以采用多语言混编策略,对于需要较快运行的模块,例如图像处理,则可以用C语言编程,对性能要求不是很高的地方则可以用Python编程,当需要他图像处理的时候Python程序把代码发送至Python解释器中内部已经编译的C代码,这样综合开发效率和性能综合起来是最高的。例如作为一个Python的数值计算扩展,NumPy将Python变为一个高效并简单易用的数值计算编程工具。

    在这里插入图片描述

    优点一:优雅、简单、明确
    优点二:强大的标准库
    优点三:良好的可扩展性
    优点四:免费、开源

    在这里插入图片描述

    在这里插入图片描述
    Python常用类库

    1. Numpy
      NumPy软件包是Python生态系统中数据分析、机器学习和科学计算的主力军。它极大地简化了向量和矩阵的操作处理。
      除了能对数值数据进行切片(slice)和切块(dice)外,使用NumPy还能为处理和调试上述库中的高级实例带来极大便利。
      一般被很多大型金融公司使用,以及核心的科学计算组织如Lawrence Livermore、NASA用其处理一些本来使用C++、Fortran或Matlab等所做的任务。

    2. SciPy
      SciPy(http://scipy.org)是基于NumPy开发的高级模块,依赖于NumPy,提供了许多数学算法和函数的实现,可便捷快速地解决科学计算中的一些标准问题,例如数值积分和微分方程求解、最优化、甚至包括信号处理等。
      作为标准科学计算程序库, SciPy它是Python科学计算程序的核心包,包含了科学计算中常见问题的各个功能模块,不同子模块适用于不同的应用。

    3. Pandas
      Pandas提供了大量快速便捷处理数据的函数和方法。它是使Python成为强大而高效的数据分析环境的重要因素之一。
      Pandas中主要的数据结构有Series、DataFrame和Panel。其中Series是一维数组,与NumPy中的一维array以及Python基本的数据结构List类似;DataFrame是二维的表格型数据结构,可以将DataFrame理解为Series的容器; Panel是三维的数组,可看作为DataFrame的容器。

    4. Matplotlib
      Matplotlib是Python 的绘图库,是用于生成出版质量级别图形的桌面绘图包,让用户很轻松地将数据图形化,同时还提供多样化的输出格式。

    5. Seaborn
      Seaborn在Matplotlib基础上提供了一个绘制统计图形的高级接口,为数据的可视化分析工作提供了极大的方便,使得绘图更加容易。
      用Matplotlib最大的困难是其默认的各种参数,而Seaborn则完全避免了这一问题。一般来说,Seaborn能满足数据分析90%的绘图需求。

    6. Scikit-learn
      Scikit-learn是专门面向机器学习的Python开源框架,它实现了各种成熟的算法,容易安装和使用。
      Scikit-learn的基本功能有分类、回归、聚类、数据降维、模型选择和数据预处理六大部分。

    数据科学计算平台—Anaconda

    Anaconda是一个集成的Python数据科学环境,简单的说,Anaconda除了有Python外,还安装了180多个用于数据分析的第三方库,而且可以使用conda命令安装第三方库和创建多个环境。相对于只安装Python而言,避免了安装第三方库的麻烦。
    网站:
    https://mirror.tuna.tsinghua.edu.cn/help/anaconda/

    展开全文
  • 【入门基础+轻实战演示】【讲授方式轻松幽默、有趣不枯燥、案例与实操结合,与相关课程差异化】利用python进行数据处理、 ...通过实战,学生将了解标准的数据分析流程,学会使用可视化的 方法展示数据及结果。
  • 大数据分析师,数据分析,大数据可视化。大容量的数据
  • Echarts的大屏数据可视化集合数据可视化集合案例源码,包含会议展览、业务监控、风险预警、数据分析展示等多种展示需求可视化集合。(75+24套)数据可视化集合,75套数据可视化源码,24套数据可视化源码。Echarts的...
  • Python数据分析与可视化-案例视频下载地址
  • 原标题:Python+pandas+matplotlib数据分析与可视化案例(附源码)问题描述:运行下面的程序,在当前文件夹中生成饭店营业额模拟数据文件data.csv 然后完成下面的任务:1)使用pandas读取文件data.csv中的数据,创建...

    原标题:Python+pandas+matplotlib数据分析与可视化案例(附源码)

    问题描述:运行下面的程序,在当前文件夹中生成饭店营业额模拟数据文件data.csv

    9ab95ccd273a4af5b54236d7ee852296.jpeg

    然后完成下面的任务:

    1)使用pandas读取文件data.csv中的数据,创建DataFrame对象,并删除其中所有缺失值;

    2)使用matplotlib生成折线图,反应该饭店每天的营业额情况,并把图形保存为本地文件first.jpg;

    3)按月份进行统计,使用matplotlib绘制柱状图显示每个月份的营业额,并把图形保存为本地文件second.jpg;

    4)按月份进行统计,找出相邻两个月最大涨幅,并把涨幅最大的月份写入文件maxMonth.txt;

    5)按季度统计该饭店2018年的营业额数据,使用matplotlib生成饼状图显示2018年4个季度的营业额分布情况,并把图形保存为本地文件third.jpg。

    问题解决参考代码:

    e7dc41d1b5f641bca9019ac784dd1ae8.jpeg

    生成的first.jpg效果:

    a87317b8770040dd9c2641f9b269c812.jpeg

    生成的second.jpg效果:

    393034ef748f45d1b768136ada258d41.jpeg

    生成的third.jpg效果:

    ed1425d545144c4d922a19881517d17d.jpeg

    1900页Python系列PPT分享六:面向对象程序设计(86页)

    1、继《Python程序设计基础》、《Python程序设计(第2版)》、《Python可以这样学》、《Python程序设计开发宝典》之后,董付国老师新作《中学生可以这样学Python大学生们颤抖吧,中学生已经开始学Python了!返回搜狐,查看更多

    责任编辑:

    展开全文
  • 基于HTML/CSS/Echarts的会议展览、业务监控、风险预警、数据分析展示等多种展示需求可视化集合,76套数据可视化源码,25套数据可视化源码。数据都是前端数据,可以自由发挥。 可以弄成前端html动态数据,也可以弄成...
  • 一、数据可视化与探索图 数据可视化是指用图形或表格的方式来呈现数据。图表能够清楚地呈现数据性质, 以及数据间或属性间的关系,可以轻易地让人看图释义。用户通过探索图(Exploratory Graph)可以了解数据的...
  • 本节课我们以餐饮数据.xlsx文件作为数据源,实现一个简单的Power BI项目打开Power BI Desktop,从登录界面或文件选项...ctrl+s保存为餐饮数据分析.pbix文件。这里想要查看完整数据,得到Powerbi Query中查看。......
  • 数据可视化的教学代码: 包括折线图+柱状图+饼图+盒图+散点图+直方图...简单的数据分析可视化案例: titanic数据的简单分析可视化 iris数据的聚类可视化 GDP数据结合pyechart的应用 股票数据的可视化简单的策略实现
  • 数据可视化-奥运会分析
  • 大数据可视化平台建设及应用案例分析综合解决方案
  • 案例:Python爬取新冠肺炎实时数据及其可视化分析 作者:PyQuant 博客:https://blog.csdn.net/qq_33499889 慕课:https://mooc1-2.chaoxing.com/course/207443619.html 本案例适合作为大数据技术基础课程中数据爬取...
  • 基于ECharts数据可视化大屏案例源码
  • 实现的可视化大数据电子沙盘,项目基于html/css/js,包含行业:,智慧政务,智慧社区,金融行业,智慧交通,智慧门店,智慧大厅,智慧物流,智慧医疗,通用模板,大数据分析平台。项目包含功能 (部分):实时数据K线...
  • Python数据分析与可视化

    千次阅读 2020-12-01 01:03:24
    讲解Python数据分析与可视化中的九大模块,内容全面详实; 提供11个课程实训和2个完整的项目案例,理论结合实践 ; 赠送420分钟的教学视频及丰富的配套资源,便于教师教学。 超值赠送: 教学大纲、教学课件、电子...
  • 数据大屏可视化模版(新能源车联网数据概览演示案例) java源代码,可打开源码查看数据接口用于改成自己适用的数据大屏可视化界面
  • 数据处理与可视化之Altair 后言-python爬虫相关库 网络爬虫简介 网络爬虫(webcrawler,又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种用来自动浏览万维网的程序或者脚本。爬虫...
  • 30个大数据HTML可视化大屏展示案例
  • 基于Anaconda环境下的Python数据分析可视化.pdf
  • Python爬虫数据分析可视化.rar
  • 本课程设计是运用机器学习和数据分析与可视化,通过爬取中国天气网的天气数据,运用Python语言编写完成,课程设计分数排名在专业前三。
  • 来源丨高下制图你眼中的数据可视化的作品是否是各种条形图、柱状图等等堆积在一起进行数据的展示?今天看完为大家整理的17个数据可视化优秀作品,你就知道原来数据可视化作品还可以这样做,欢迎大家分...
  • R R 原创 语言案例数据分析报告论文附代码数据 原创 语言案例数据分析报告论文附代码数据 有问题到淘宝找大数据部落就可以了 有问题到淘宝找大数据部落就可以了 语言案例数据分析可视化报告 R 语言案例数据分析可视...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 58,530
精华内容 23,412
热门标签
关键字:

数据分析与可视化案例

友情链接: asdf.rar