精华内容
下载资源
问答
  • 向量数量积的坐标运算公式是如何推导出的 两个向量向量积公式是怎
    千次阅读
    2020-12-18 23:08:36

    a·b=|a|·|b|·cos〈a,b〉是定义,推出交换律,分配率,与数的乘法的结合

    律,以及垂直时为零。

    ∴(x1,y1)·(x2,y2)=[x1i+y1j]·[x2i+y2j]

    =x1x2(i·i)+y1y2(j·j)+[x1y2+x2y1](i·j)=x1x2+y1y2.

    [ i,j是x轴。y轴上的单位向量。i²=1, j²=1, i·j=0 ]

    看你是要高中证明还是大学证明还是更严密的证明。

    向量有点量积、矢量积、旋量积之分。大多高中只接触个点积而已

    三维向量外积(即矢积、叉积)可以用几何方法证明;也可以借用外积的反对称性、内积的分配律和混合积性质,以代数方法证明。

    下面把向量外积定义为:

    a

    ×

    b

    =

    |a|·|b|·Sin

    b>.

    分配律的几何证明方法很繁琐,大意是用作图的方法验证。有兴趣的话请自己参阅参考文献中的证明。

    下面给出代数方法。我们假定已经知道了:

    1)外积的反对称性:

    a

    ×

    b

    =

    -

    b

    ×

    a.

    这由外积的定义是显然的。

    2)内积(即数积、点积)的分配律:

    a·(b

    +

    c)

    =

    a·b

    +

    a·c,

    (a

    +

    b)·c

    =

    a·c

    +

    b·c.

    这由内积的定义a·b

    =

    |a|·|b|·Cos

    更多相关内容
  • 向量数量积公式是什么

    千次阅读 2020-12-24 04:39:20
    展开全部已知两个非零向量a、b,那么|a||b|cosθ(θ是a与b的夹角)32313133353236313431303231363533e59b9ee7ad...即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2向量数量积公式:a*b=|a||b|cosθ,...

    展开全部

    已知两个非零向量a、b,那么|a||b|cosθ(θ是a与b的夹角)32313133353236313431303231363533e59b9ee7ad9431333365656531叫做a与b的数量积或内积。记作a·b。两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2

    向量的数量积公式:a*b=|a||b|cosθ,a,b表示向量,θ表示向量a,b共起点时的夹角,很明显向量的数量积表示数,不是向量。

    一个向量和另个向量在这个向量上的投影的乘积,前提始位置要相同。

    [扩展资料]

    数量积的性质

    设a、b为非零向量,则

    ①设e是单位向量,且e与a的夹角为θ,则e·a=a·e=|a|cosθ

    ②a⊥b=a·b=0

    ③当a与b同向时,a·b=|a||b|;当a与b反向时,a·a=|a|2=a2或|a|=√a·a

    ④|a·b|≤|a|·|b|,当且仅当a与b共线时,即a∥b时等号成立

    ⑤cosθ=a·b╱|a||b|(θ为向量a.b的夹角)

    ⑥零向量与任意向量的数量积为0。

    向量数量积的运算律

    ⑴交换律:a·b=b·a

    ⑵数乘结合律:(λa)·b=λ(a·b)=a·(λb)

    ⑶分配律:(a+b)·c=a·c+b·c

    平面向量数量积的几何意义

    ①一个向量在另一个向量方向上的投影

    设θ是a、b的夹角,则|b|cosθ叫做向量b在向量a的方向上的投影,|a|cosθ叫做向量a在向量b方向上的投 影。

    ②a·b的几何意义

    数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积

    ★注意:投影和两向量的数量积都是数量,不是向量。

    ③数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。

    展开全文
  • 向量数量积公式大全

    千次阅读 2020-12-24 04:41:31
    平面向量的数量积平面向量数量积的定义已知两个非零向量a和b,它们的夹角为θ,把数量|a||b|cosθ叫做a和b的数量积(或内积),记作a·b.即a&m...积化和差,指初等数学三角函数部分的一组恒等式。可以通过展开角的...

    学习数学需要讲究方法和技巧,更要学会对知识点进行归纳整理。下面是小编为大家整理的高二数学平面向量的数量积知识点,希望对大家有所帮助!高二数学平面向量的数量积知识点总结1.平面向量的数量积平面向量数量积的定义已知两个非零向量a和b,它们的夹角为θ,把数量|a||b|cosθ叫做a和b的数量积(或内积),记作a·b.即a&m...

    积化和差,指初等数学三角函数部分的一组恒等式。可以通过展开角的和差恒等式的手段来证明。无论乘积项中的三角函数是否同名,化为和差形式时,都应是同名三角函数的和差。公式sinαsinβ=-[1][cos(α+β)-cos(α-β)]/2【注意等式右边前端的负号】cosαcosβ=[c...

    导语:高考临近,考生们都进入了紧张的最后冲刺阶段,高考数学是一科很容易拉开分数的科目,无论是文科生还是理科生,都要重视数学在高考中的重要性。下面小编给大家推荐一个高考数学复习的教程视频,欢迎大家进行学习观看。更多的学习视频。尽在。...

    向量的点乘a*b公式:a*b=|a|*|b|*sinθ,sin是a,b的夹角,取值[0,π]。向量积|c|=|a×b|=|a||b|sin。点乘又叫向量的内积、数量积,是一个向量和它在另一个向量上的投影的长度的乘积;是标量。向量的乘法有两种,分别成为内积和外积。内积也称数量积。因为其结果为一个数(标量)。向量a,b的内积为|a|*|b|cos,其中&lt...

    向量的数量积:a*b=|a||b|cosθ,a,b表示向量,θ表示向量a,b共起点时的夹角,很明显向量的数量积表示数,不是向量。在数学中,向量指具有大小和方向的量。向量数量积的基本性质设ab都是非零向量θ是a与b的夹角则①cosθ=a·b/|a||b|②当a与b同向时a·b=|a||b|当a与b反向时a·b=-|a||b|③|a·b|≤|a||b|④a⊥b=a·b=0适用在平面内的两直线几何意...

    向量a乘以向量b=(向量a得模长)乘以(向量b的模长)乘以cosα[α为2个向量的夹角];向量a(x1,y1)向量b(x2,y2),向量a乘以向量b=(x1*x2,y1*y2)。A向量乘B向量等于什么点乘向量A=(x1,y1)向量B=(x2,y2)向量A·向量B=|向量A||向量B|cosu=x1x2+y1y2=数值u为向量A、向量B之间夹角。叉乘向量A×向量B=(x1y2i,x2y2j)=向量向...

    向量垂直公式:x1*x2+y1*y2=0和|A|*|B|*cos(A与B的夹角)=0。垂直公式a,b是两个向量a=(a1,a2)b=(b1,b2)a//b:a1/b1=a2/b2或a1b1=a2b2或a=λb,λ是一个常数a垂直b:a1b1+a2b2=0证明:①几何角度:向量A(x1,y1),长度L1=√(x12+y12)向量B(x2,y2),长度L2=√(x22+y22)(x1,y...

    向量积的长度|a×b|可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)·c可以得到以a,b,c为棱的平行六面体的体积。向量积向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学...

    平面向量数量积教学要求学生掌握平面向量数量积的概念、几何意义、性质、运算律及坐标表示,分享了平面向量数量积的练习题,欢迎借鉴!一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.设i,j是互相垂直的单位向量,向量a=(m+1)i-3j,b=i+(m-1)j,(a+b)⊥(a-b),则实数m的值为( )A.-2 &...

    平面向量数量积教学要求学生掌握平面向量数量积的概念、几何意义、性质、运算律及坐标表示,分享了平面向量数量积的练习题,欢迎借鉴!一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.设i,j是互相垂直的单位向量,向量a=(m+1)i-3j,b=i+(m-1)j,(a+b)⊥(a-b),则实数m的值为( )A.-2 &...

    展开全文
  • 向量积公式证明

    2020-12-24 04:40:59
    向量的点乘公式就是这样。就这么一个简简单单的公式:$$\vec{a}\cdot{\vec{b}}=|\vec{a}||\vec{b}|\cos\theta$$要是没记错的话,初中学的东西,一直在用,可总是想不起来是怎么来的。这里给出一个形象化的解释,省的...

    有些东西,看上去比较熟,用起来没什么问题,但细想起来却一脸茫然,这种感觉非常不爽。向量的点乘公式就是这样。就这么一个简简单单的公式:

    $$

    \vec{a}\cdot{\vec{b}}=|\vec{a}||\vec{b}|\cos\theta

    $$

    要是没记错的话,初中学的东西,一直在用,可总是想不起来是怎么来的。这里给出一个形象化的解释,省的后面再次遇到仍然不爽。

    物理中有一个基本的公式,这里就称为做功公式,如下:

    $$

    W=F\cdot{S}

    $$

    这里,$F$是施加在物体上的力,$S$是物体沿力的方向移动的距离,$W$就是力$F$做的功。对于力和位移方向相同的情况比较好理解。中学物理讨论的也基本上都是这种情况。

    对于方向不同的情况,我们放到二维的向量平面中进行分析,如下:

    可以将力$F$和位移$S$沿x、y轴进行分解。x轴上的分力和分位移分别为$F_x$、$S_x$,y轴上的分力和分位移分别为$F_y$、$S_y$。所以沿x轴、y轴做的功分别为:

    $$

    W_x=F_x\cdot{S_x}\

    W_y=F_y\cdot{S_y}

    $$

    总的做功为:

    $$

    W=W_x+W_y=F_x\cdot{S_x}+F_y\cdot{S_y}

    $$

    也就是力向量和位移向量的点乘。

    同样的,我们还可以选用不同的坐标来进行分解。这次选用位移$S$向量所在的轴为横轴,垂直于$S$的轴为纵轴。则位移$S$在纵轴的分量为0。此时,不管力$F$在纵轴的分量是多少,纵轴方向上做的功恒为0。再看横轴。由于$S$和横轴在同一条线上,所以其分量就是本身。$F$在横轴的分量为:

    $$

    F_s=\frac{|F|\cdot\cos{\theta}}{|S|}\cdot{S}

    $$

    力$F$沿$S$做的功,也就是总功为:

    $$

    W=|F_s|\cdot|S|=|F||S|\cos\theta

    $$

    所以有:

    $$

    F\cdot{S}=|F||S|\cos\theta

    $$

    将$F$、$S$换成$\vec{a}$、$\vec{b}$,于是有:

    $$

    \vec{a}\cdot\vec{b}=|\vec{a}||\vec{b}|\cos\theta

    $$

    问题得证。

    展开全文
  • 数学----向量积公式推导

    万次阅读 多人点赞 2019-03-10 09:52:01
    设二维空间内有两个向量和,定义它们的数量积(又叫内积、点积)为以下实数: 更一般地,n维向量的内积定义如下:[1] 三 定义间的推导 1 几何定义推导代数定义 2 代数定义推导几何定义 向量将...
  • 平面向量的所有公式-平面向量公式

    千次阅读 2020-12-18 23:08:41
    1平面向量的所有公式设a=(x,y),b=(x',y')。1、向量的加法向量的加法满足平行四边形法则和三角形法则。AB+BC=AC。a+b=(x+x',y+y')。a+0=0+a=a。向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。2、...
  • 2.3.3向量数量积的坐标运算与度量公式.pptx
  • 向量数量积的坐标运算与量公式.pptx
  • 向量积的坐标运及度量公式.ppt

    千次阅读 2020-12-30 13:38:07
    向量积的坐标运及度量公式* * 向量数量积的 坐标运算与度量公式 一.复习回顾: 2. 二.探究新知: 三.新课讲授: 1.向量内积的坐标运算 结论:两个向量的数量积等于它们 对应坐标的乘积的和。 即: x o B(b1,b2) A(a1,a2...
  • 向量数量积的坐标运算与量公式PPT学习教案.pptx
  • 向量数量积的坐标运算与度量公式PPT学习教案.pptx
  • 对于a=(x1,y1,z1)和b=(x2,y2,z2) 数量积:(x1*x2,y1*y2,z1*z2) 向量积:(y1*z2-z1*y2,z1*z2-z1*z2,x1*y2-y1*x2) 即求矩阵
  • 平面向量数量积的坐标运算与度量公式PPT学习教案.pptx
  • 向量数量积的坐标运算与量公式可用PPT学习教案.pptx
  • 向量数量积的坐标运算与量公式18262PPT学习教案.pptx
  • 平面向量数量积的坐标运算与量公式PPT教案学习.pptx
  • 向量数量积的坐标运算与量公式人教B必修PPT学习教案.pptx
  • 全国通用版2018_2019高中数学第二章平面向量2.3平面向量的数量积2.3.3向量数量积的坐标运算与度量公式练习新人教B版必修4
  • 数学向量数量积的坐标运算与量公式新人教B必修PPT学习教案.pptx
  • 向量数量积向量积怎么算?

    千次阅读 2021-02-05 03:17:56
    展开全部数量积AB=ac+bd向量积要利用行列式若向量a=(a1,b1,c1),向量b=(a2,b2,c2),则向量向量b=a1a2+b1b2+c1c2向量向量b=|e68a8462616964757a686964616f31333363396364 i j k| |a1 b1 c1| |a2 b2 c2| =(b1c2-...
  • 数学233向量数量积的坐标运算与量公式1新人教B版必修PPT学习教案.pptx
  • (新课程)2013高中数学 向量数量积的坐标运算与度量公式 课件 苏教版必修4
  • 2019_2020学年高中数学第2章平面向量2.3.3向量数量积的坐标运算与度量公式练习新人教B版必修4
  • 高数中的知识,忘了差不多了呢,一下内容来自于网络整理:向量的点积即数量积,叉积又称向量积或矢量积。点积、叉积甚至两者的混合积在场论中是极其基本的运算。MATLAB是用函数实现向量点、叉积运算的。1. 点积运算...
  • 2015_2016学年高中数学2.3.3向量数量积的坐标运算与度量公式课时作业新人教B版必修4
  • 辽宁省大连市理工大学附属高中数学 向量数量积的坐标运算与度量公式学案 新人教B版必修4
  • 向量数量积

    2021-01-23 14:13:12
    向量数量积 向量在轴上的射影 设向量 AB→\overrightarrow{AB}AB 的始点 A 和终点 B 在轴 l 上的射影分别为点 A′A'A′ 和 B′B'B′,那么向量 A′B′→\overrightarrow{A'B'}A′B′ 叫做向量 AB→\...
  • 向量数量积向量积,混合积

    千次阅读 2019-10-05 21:49:56
    设两向量分别为 α 和 β, ... 通过公式我们可以发现,两个向量数量积就是一个数量。  数量积又称为点积或者内积。  ex: 在直角坐标系 {O; i, j, k} 中,设 α = (a1, a2, a3), β = (b1, b2, b3),  ...
  • 本文介绍了向量的內和外的概念,以及相关的运算公式

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 13,311
精华内容 5,324
关键字:

向量数量积公式

友情链接: relax.zip