精华内容
下载资源
问答
  • 二阶有源带通滤波器设计及参数计算,有详细的计算过程,应用在全国大学生电子设计竞赛的综合测评里,提取基波,三次谐波,五次谐波
  • 该EXCEL表格可用于辅助带通滤波器设计。用户输入带通滤波器性能指标,表格快速给出低通原型滤波器的元件参数以及带通滤波器的归一化耦合系数、输入群时延、外部Q值等
  • 利用高通、低通滤波器级联可以实现宽带带通滤波器,利用此方法设计了一个工作频段在...ADS仿真结果验证了理论设计的可行性,并通过优化使滤波器带宽达到4倍频程,带内平坦,输 入、输出端口匹配良好,滤波器矩形系数达到1.2
  • 导读: 要设计一个滤波器,首先要分析滤波器的技术指标,选择合适的滤波器形式,确定滤波器的级数,分析滤波器的带外特性以及通带特性,...由上面的指标可以看出本滤波器是窄带带通滤波器。  采用巴特沃斯滤波器来
  • 传统的带通滤波器设计方法中涉及了很多复杂的理论分析和计算。针对上述缺点,介绍一种使用EDA软件进行带通滤波器的设计方案,详细阐述了使用FilterPro软件进行有源带通滤波器电路的设计步骤,然后给出了在Proteus中...

    带通滤波器电路图设计(一)

    传统的带通滤波器设计方法中涉及了很多复杂的理论分析和计算。针对上述缺点,介绍一种使用EDA软件进行带通滤波器的设计方案,详细阐述了使用FilterPro软件进行有源带通滤波器电路的设计步骤,然后给出了在Proteus中对所设计的滤波器进行仿真分析和测试的方法。测试结果表明,使用该方法设计的带通滤波器具有性能稳定。设计难度小等优点,也为滤波器的设计提供了一个新的思路。

    带通滤波器是一种仅允许特定频率通过,同时对其余频率的信号进行有效抑制的电路。由于它对信号具有选择性,故而被广泛地应用现在电子设计中。但是,带通滤波器的种类繁多,各个类型的设计差异也很大,这就导致了在传统滤波器的设计方法中不可避免地要进行大量的理论计算与分析,不但损失了宝贵的时间,同时也提升了电路的设计门槛。为了解决上述弊端,本文介绍了一种使用FilterPro和Proteus相结合的有源带通滤波器的设计方案,随着EDA技术的不断发展,这种方法的优势也将越来越明显。

    带通滤波器电路图大全(三款带通滤波器电路设计原理图详解)

    图1  使用理想运放的带通滤波器

    电路原理图如图1所示。然后可在Proteus中搭建电路进行仿真分析,前面已经提到,FilterPro生成的滤波器中的运放使用的理想运放模型,所以仿真时需要先用理想运放进行分析,然后再进行替换。

    带通滤波器电路图大全(三款带通滤波器电路设计原理图详解)

    图2  实际搭建的滤波器电路

    设计中运放选择TI产品典型的通用双放LM358,LM358里面包括两个高增益、独立的、内部频率补偿的双运放,适用于电压范围很宽的单电源,而且也适用于双电源工作方式,特点方面具有低输入偏置电流、低输入失调电压和失调电流,它的共模输入电压范围较宽,差模输入电压范围等于电源电压范围,单电源供电电压3-32V,双电源供电±1.5-±16V,单位增益带宽为1MHz,适用于一般的带通滤波器的设计,同时具有低功耗的功能,对于设计阶数相对高一些的带通滤波器的话,可以选用TI的四运放LM324,其性能与LM358大体相同,应用起来节省空间。对于运放的要求此设计不是特别高,只要运放的频率满足低通的截止频率即可,如果精确度要求高的话那么首先运放的供电电压要足够稳定,或者选择精密运放,如TLC274A,否则通用的即可,例如推荐TI的LM224四运放。

    巴特沃斯带通滤波器幅频响应在通带中具有最平幅度特性,但是从通带到阻带衰减较慢,如果对于过渡带要求稍高,可以增加阶数来实现,否则改选用切比雪夫滤波电路。

    下面讨论设计两种带通滤波器,其一为二阶低通滤波器和二阶高通滤波器组成的四阶带通滤波器,如下图:

    带通滤波器电路图大全(三款带通滤波器电路设计原理图详解)

    图 3  四阶带通滤波器

     

    参数选择与计算:

    对于低通滤波器的设计,电容一般选取1000pF,对于高通滤波器的设计,电容一般选取0.1uF,然后根据公式R=1/2Πfc计算得出与电容相组合的电阻值,即得到此图中R2、R6和R7,为了消除运放的失调电流造成的误差,尽量是运放同相输入端与反向输入端对地的直流电阻基本相等,同时巴特沃斯滤波器阶数与增益有一定的关系(见表1),根据这两个条件可以列出两个等式:30=R4*R5/(R4+R5),R5=R4(A-1),36=R8*R9/(R8+R9),R8=R9(A-1)由此可以解出R4、R5、R8、R9,原则是根据现实情况稍调整电阻值保持在一定限度内即可,不要相差太大,注意频率不要超过运放的标定频率。

    表1巴特沃斯低通、高通电路阶数与增益的关系

    带通滤波器电路图大全(三款带通滤波器电路设计原理图详解)

    其二是二阶有源带通滤波器,只用一个放大区间,如下图:

    带通滤波器电路图大全(三款带通滤波器电路设计原理图详解)

    图4  二阶带通滤波器

    带通滤波器电路图设计(二)

    由图(1)所示带通滤波电路的幅频响应与高通、低通滤波电路的幅频响应进行比较,不难发现低通与高通滤波电路相串联如图(2),可以构成带通滤波电路,条件是低通滤波电路的截止角频率WH大于高通电路的截止角频率WL,两者覆盖的通带就提供了一个带通响应。

    带通滤波器电路图大全(三款带通滤波器电路设计原理图详解)

    带通滤波器电路图大全(三款带通滤波器电路设计原理图详解)

    这是一个通带频率范围为100HZ-10KHZ的带通滤波电路,在通带内我们设计为单位增益。根据题意,在频率低端f=10HZ时,幅频响应至少衰减26dB。在频率高端f=100KHZ时,幅频响应要求衰减不小于16dB。因此可以选择一个二阶高通滤波电路的截止频率fH=10KHZ,一个二阶低通滤波电路的fL=100HZ,有源器件仍选择运放LF142,将这两个滤波电路串联如图所示,就构成了所要求的带通滤波电路。

     

    由巴特沃斯低通、高通电路阶数n与增益的关系知Avf1=1.586,因此,由两级串联的带通滤波电路的通带电压增益(Avf1)2=(1.586)2=2.515,由于所需要的通带增益为0dB,因此在低通滤波器输入部分加了一个由电阻R1、R2组成的分压器。

    带通滤波器电路图大全(三款带通滤波器电路设计原理图详解)

    元件参数的选择和计算

    在选用元件时,应当考虑元件参数误差对传递函数带来的影响。现规定选择电阻值的容差为1%,电容值的容差为5%。由于每一电路包含若干电阻器和两个电容器,预计实际截止频率可能存在较大的误差(也许是+10%)。为确保在100Hz和10kHz处的衰减不大于3dB.现以额定截止频率90Hz和1kHz进行设计。

    前已指出,在运放电路中的电阻不宜选择过大或较小。一般为几千欧至几十千欧较合适。因此,选择低通级电路的电容值为1000pF,高通级电路的电容值为0.1μF,然后由式RCWC1可计算出精确的电阻值。

    对于低通级由于已知c=1000pF和fh=11kHz,由式RCWC1算得R3=14.47kΩ,先选择标准电阻值R3=14.0kΩ。对于高通级可做同样的计算。由于已知C=0.1μF和fL=90Hz,可求出R7=R8≈18kΩ。

    考虑到已知Avf1=1.586,同时尽量要使运放同相输入端和反相输入端对地的直流电阻基本相等,现选择R5=68k,R10=82k,由此可算出R4=(Avf1-1)R5≈39.8k,R9=(Avf1-1)R10≈48k,其容差为1%。

    设计完成的电路如图所示。信号源vI通过R1和R2进行衰减,它的戴维宁电阻是R1和R2的并联值,这个电阻应当等于低通级电阻R3(=14k)。因此,有

    带通滤波器电路图大全(三款带通滤波器电路设计原理图详解)

    由于整个滤波电路通带增益是电压分压器比值和滤波器部分增益的乘积,且应等于单位增益,

    带通滤波器电路图大全(三款带通滤波器电路设计原理图详解)

    联解式和,并选择容差为1%的额定电阻值,得R1=35.7kΩ和R2=23.2kΩ。

    带通滤波器电路图设计(三)

    实用的带通滤波器电路原理图

    带通滤波器电路图大全(三款带通滤波器电路设计原理图详解)

    该电路在负反馈支路上是一个带阻滤波齐器,以使其只允许通过被反馈支路阻断的频率信号。

    带通滤波器电路图大全(三款带通滤波器电路设计原理图详解)

    展开全文
  • 摘要:为了掌握微波滤波器的制作原理及设计方法,实现一种UHF波段带通滤波器的设计和制作。该设计采用了既定指标确定滤波器的形式(椭圆函数LC带通滤波器),以椭圆函数为理论基础,通过软件仿真、版图制作、加工,...
  • 要求 一个中心频率为10kHz的带通滤波器,分别计算对应带宽为100Hz、500Hz和2000Hz的带宽。  解 分别利用下式计算f1和f2  例中的结果说明,对窄的百分比带宽(1%),f1和f2在算术上和fo有相同的距离。对较宽的...
  • 带通滤波器可用于隔离或滤除位于特定频带或频率范围内的某些频率。简单的RC无源滤波器中的截止频率或ƒc点可以通过仅使用一个与无极性电容器串联的电阻器来精确控制,并且根据连接它们的方式,我们可以看到低通或...

    带通滤波器可用于隔离或滤除位于特定频带或频率范围内的某些频率。简单的RC无源滤波器中的截止频率或ƒc点可以通过仅使用一个与无极性电容器串联的电阻器来精确控制,并且根据连接它们的方式,我们可以看到低通或获得高通滤波器。

    这些类型的无源滤波器的一种简单用法是在音频放大器应用或电路中,例如在扬声器分频滤波器或前置放大器音调控制中。有时,仅需要通过特定的频率范围,该频率范围不是从0Hz(DC)开始,也不是在某个较高的高频点结束,而是在某个范围或频率范围内(窄或宽)。

          通过将单个低通滤波器电路与高通滤波器电路连接或“级联” ,我们可以生产另一种无源RC滤波器,该滤波器通过选定的范围或“频带”,该频带可以窄或宽,同时衰减所有超出此范围的人。这种新型的无源滤波器装置可产生一个频率选择滤波器,通常称为带通滤波器或简称BPF。

    带通滤波电路

    与仅使低频范围的信号通过的低通滤波器或使高频范围的信号通过的高通滤波器不同,带通滤波器使特定的“频带”或“扩展”频率内的信号通过而不会使输入失真信号或引入额外的噪声。该频带可以是任何宽度,通常称为滤波器Bandwidth。

    带宽通常定义为存在于两个指定频率截止点(ƒc )之间的频率范围,该频率范围 比最大中心或共振峰值低3dB,同时衰减或削弱这两个点之外的其他频率。

    然后,对于广泛的传播频率中,我们可以简单地定义术语“带宽”,BW为下截止频率(之间的差 ƒc LOWER )和更高的截止频率( ƒc 高等 )点。换句话说,BW =ƒ ħ - ƒ 大号。显然,要使通带滤波器正常工作,低通滤波器的截止频率必须高于高通滤波器的截止频率。

    “理想” 带通滤波器还可用于隔离或滤除位于特定频带内的某些频率,例如,消除噪声。带通滤波器通常被称为二阶滤波器(两极),因为它们在电路设计中具有“两个”电抗成分,即电容器。低通电路中的一个电容器,高通电路中的另一个电容器。

    二阶带通滤波器的频率响应

    上方的波特图或频率响应曲线显示了带通滤波器的特性。在这里,信号在低频带,直至频率达到“下限截止”点处的输出在+20分贝/十年(6分贝/倍频程)的斜率增加衰减ƒ 大号。在此频率下,输出电压再次为输入信号值的1 /√2= 70.7%或输入的-3dB(20 * log(V OUT / V IN))。

    输出继续到直到它到达“上限截止”点最大增益ƒ ħ,其中在-20dB /十倍频(6分贝/倍频程)的速率下的输出降低衰减的任何高频信号。最大输出增益的点通常是上下限之间的两个-3dB值的几何平均值,称为“中心频率”或“谐振峰值”值ƒr。这种几何平均值计算为ƒr 2 =ƒ (UPPER) Xƒ (LOWER) 。

    带通滤波器被认为是二阶(两极)型滤波器,因为它的电路结构中具有“两个”电抗分量,因此相角将是先前看到的一阶滤波器的相角的两倍。180 Ò。输出信号的相位角LEADS通过使输入的90 ø到中心或谐振频率,ƒr点分别成为“零”度(0 Ò)或“同相”,然后改变到LAG输入由-90 ø作为输出频率的增加。

    例如,可以使用与低通和高通滤波器相同的公式找到带通滤波器的上限和下限截止频率点。

    那么显然,可以通过两个滤波器的两个截止频率点的位置来控制滤波器的通带宽度。

    带通滤波器示例No.1。

    将使用RC组件构建一个二阶带通滤波器,该滤波器将仅允许一定范围的频率通过高于1kHz(1,000Hz)和低于30kHz(30,000Hz)的频率。假设两个电阻的阻值为10kΩ,则计算所需的两个电容的阻值。

    高通滤波器阶段

    电容器的值C1需要,得到的截止频率ƒ 大号 1kHz时的与电阻值10kΩ的计算公式为:

    然后,高通级给出截止频率为1.0kHz所需的R1和C1的值为:R1 =10kΩ并最接近的首选值C1 = 15nF。

    低通滤波器阶段

    电容器的值C2需要,得到的截止频率ƒ ħ用的电阻器值的30kHz的10kΩ的计算公式为:

    然后,低通级给出截止频率为30kHz所需的R2和C2的值为R =10kΩ和C = 530pF。但是,计算得出的530pF电容器值的最接近首选值是560pF,因此将其替代。

    假设电阻R1和R2的值均为10kΩ,高通和低通滤波器的电容C1和C2的值分别为15nF和560pF,那么我们的简单无源带通滤波器的电路给出为。

    完成的带通滤波器电路

    带通滤波器谐振频率

    我们还可以计算输出增益达到最大值或峰值时带通滤波器的“谐振”或“中心频率”(ƒr)点。该峰值不是您可能期望的-3dB上下截止点的算术平均值,而是实际上的“几何”或平均值。这种几何平均值计算为ƒr 2 =ƒc (UPPER) Xƒc (LOWER)例如:

    中心频率方程

    其中,ƒ - [R是谐振或中心频率

    ƒ 大号是下-3dB截止频率点

    ƒ ħ是上部-3db截止频率点

    在我们的上述简单例子中,所计算出的截止频率被发现是ƒ 大号 = 1060赫兹和ƒ ħ = 28420赫兹使用该滤波器值。

    然后通过将这些值代入上式得出中心谐振频率为:

    带通滤波器摘要

    通过将单个低通滤波器与高通滤波器级联在一起,可以制成一个简单的无源带通滤波器。RC组合的上下-3dB截止点之间的频率范围(以赫兹为单位)被称为滤波器“带宽”。

    滤波器带宽的宽度或频率范围可以非常小和选择性,或者非常宽且非选择性,具体取决于所使用的R和C的值。

    中心或共振频率点是上下截止点的几何平均值。在此中心频率下,输出信号达到最大值,并且输出信号的相移与输入信号相同。

    对于这种情况,来自带通滤波器或任何无源RC滤波器的输出信号的幅度将始终小于输入信号的幅度。换句话说,无源滤波器也是衰减器,其电压增益小于1(单位)。为了提供具有大于一的电压增益的输出信号,在电路设计中需要某种形式的放大。

    甲无源带通滤波器被归类为一个二阶滤波器,因为它具有它的设计中的两个反应性组分,该电容器。它由两个单个RC滤波器电路组成,每个电路本身都是一阶滤波器。

    如果多个过滤器串联在一起所产生的电路将被称为“N 个阶”过滤器,其中的“n”代表个体反应性组分,并且因此过滤器电路内的极数。例如,过滤器可以是一个2 次阶,4 个阶,10 个阶等

    滤波器阶数越高,n倍-20dB / decade的斜率就越大。但是,将两个或多个单独的电容器组合在一起而获得的单个电容器值仍然是一个电容器。

    上面的示例显示了“理想”带通滤波器的输出频率响应曲线,通带具有恒定增益,阻带具有零增益。实际上,该带通滤波器电路的频率响应与高通电路的输入电抗会影响低通电路(串联或并联连接的组件)的频率响应不同,反之亦然。解决该问题的一种方法是在两个滤波器电路之间提供某种形式的电隔离,如下所示。

    缓冲单个滤波器级

    将放大和滤波组合到同一电路中的一种方法是使用运算放大器或运算放大器,运算放大器部分提供了这些示例。在下一个教程中,我们将介绍在设计中使用运算放大器的滤波器电路,这些滤波器不仅会引入增益,而且会在各级之间提供隔离。这些类型的过滤器布置通常称为有源过滤器。

    声明:本站内容及配图由作者撰写或者网站转载。文章及其配图仅供学习参考分享之用,如有内容图片侵权或者其他问题,请联系本站及时删除。

    ☆ END ☆

    精彩回顾

    • 腔体滤波器技术提升解决方案
    • 腔体滤波器设计之----自动单腔频率温飘
    • 秒仿糖葫芦串形低通
    • 秒仿糖葫芦型低通后续之----低通优化
    • TE01模介质滤波器滤波器
    • 无源互调浅析
    • 如何选择谐振杆的尺寸使功率容量达到最佳
    • 金属介质混合+零腔案例
    • 三模并联耦合介质波导滤波器仿真实例
    • 同轴高低阻抗型低通的公差影响几何?
    • Coupfil对高阶强零点生成的结果偶会出错
    • 陶瓷滤波器的各项制备工序讲解_简介篇
    • (干货)陶瓷滤波器讲解----材料篇
    • (干货)陶瓷滤波器讲解----材料制备篇
    • 细而全的5G产业链详解
    • 陶瓷滤波器讲解----陶瓷材料检测篇
    • BAW,SAW和FBAR滤波器剖析
    • LTCC、IPD、SAW、BAW、FBAR滤波器入门以及应用场景分析

    欢迎加入滤波器、多工器、天线、环形隔离器、功分耦合器、连接器、线缆负载等无源器件的大家庭,关注后可加群

    长按扫左侧二维码可关注

    本团队提供可信可靠的滤波器相关产品各种定制化服务,响应快,专业强,敬请咨询微信号18681587206

    点"在看"为本文点个赞,才算真的看完呦

    展开全文
  • 死磕带通滤波器

    千次阅读 2021-04-24 20:51:17
    带通滤波器的作用 与陷波器类似,带通滤波器在数字电源控制领域有重要作用。比如在三相LCL逆变器的谐振抑制控制方面,通过带通滤波器可以提取谐振点附近的频谱做进一步的控制策略。在有源电力滤波器利用带通滤波器...

    带通滤波器的作用

    与陷波器类似,带通滤波器在数字电源控制领域有重要作用。比如在三相LCL逆变器的谐振抑制控制方面,通过带通滤波器可以提取谐振点附近的频谱做进一步的控制策略。在有源电力滤波器利用带通滤波器可以提取电网信号的基波频率从而做进一步的控制。

    带通滤波器传递函数

    带通滤波器的传递函数是:
    h ( s ) = A w o B s s 2 + B s + w o 2 h(s)=\frac{Aw_oBs}{s^2+Bs+w_o^2} h(s)=s2+Bs+wo2AwoBs
    其中, w o w_o wo 是带通的“中心频率”,也就是想要通过频率的中心点频率。 B B B是带通的频宽比,注意此处频宽比是一个相对于中心频率的比例,比如:
    w o = 50 ∗ 2 ∗ p i w_o=50*2*pi wo=502pi
    B = 0.2 B=0.2 B=0.2
    表达的意义是设定中心频率为50Hz,带通的带宽为50*0.2=10Hz。

    带通滤波器的伯德图

    设定“中心频率”为50Hz,频宽比为0.4。用matlab绘制伯德图,如下:
    带通滤波器的幅频特性
    可见,仅仅在50Hz附近有大于0的增益,其他频率点都被抑制了。于是就有了“带通”的效果。

    离散化

    上述都是在连续域中分析的,但是对于数字控制应用,它是无法落地实现的,所以我们需要对连续域模型进行离散化分析。

    Z变换

    利用Z变换可以离散化。也可以利用matlab对S函数进行Z变换,选定离散时间Ts=0.0002,则其Z变换如下:
    F ( z ) = 0.0012557 z − 0.0012557 z 2 − 1.996 z + 0.999920 F(z)=\frac{0.0012557z-0.0012557}{z^2-1.996z+0.999920} F(z)=z21.996z+0.9999200.0012557z0.0012557

    差分方程

    z变换后很自然能得到差分方程,只需要对分子分母除以 z z z的最高次幂:
    Y X = 0.0012557 X k − 1 − 0.0012557 X k − 2 1 − 1.996 X k − 1 + 0.999920 X k − 2 \frac{Y}{X}=\frac{0.0012557X_{k-1}-0.0012557X_{k-2}}{1-1.996X_{k-1}+0.999920X_{k-2}} XY=11.996Xk1+0.999920Xk20.0012557Xk10.0012557Xk2
    有了差分方程,程序的实现可以落到实地。在Matlab的m文件中编写matlab function为例说明:

    function Y = BandFilter(X)
    %#codegen
    %% 中间变量定义及初始化
    Num0 = 0;
    Num1 = 0.0012557;
    Num2 = -0.0012557;
    
    Den0 = 1;
    Den1 = -1.996;
    Den2 = 0.999920;
    
    persistent Xk_1; %1次的输入
    persistent Xk_2; %2次的输入
    
    persistent Yk_1; %1次的输出
    persistent Yk_2; %2次的输出
    
    if isempty(Xk_1)   Xk_1 = 0;
    end
    if isempty(Xk_2)   Xk_2 = 0;
    end
    if isempty(Yk_1)   Yk_1 = 0;
    end
    if isempty(Yk_2)   Yk_2 = 0;
    end
    %% 执行计算
    Temp = Num0*X + Num1*Xk_1 + Num2*Xk_2 - (Den1*Yk_1 + Den2*Yk_2);
    Y = Temp/Den0;
    Xk_2 = Xk_1;
    Xk_1 = X;
    Yk_2 = Yk_1;
    Yk_1 = Y;
    
    

    Simulink仿真

    利用Sum模块将50Hz、1Hz、500Hz正弦信号,以及直线信号、随机信号,这5个信号相加,得到一组带有谐波的信号注入到带通滤波器,结构图如下所示:
    带通滤波器的Simulink仿真
    从仿真结果可以看到:滤波后,除了50Hz的波形被保留下来,其他波形都被滤除了。可见,带通滤波器在杂波信号中获取指定次的谐波有较好的效果。
    在这里插入图片描述

    参考文献

    二阶滤波器的标准传递函数

    展开全文
  • 对于临界采样和过采样,我们都可以用一个以原点为中心,带宽带通滤波器把原始函数过滤出来;而如果欠采样,是一种有损采样,是无论如何也还原不回原函数的了。 那么这个问题就转换为求解临界采样的时候,连续...

    a819784af06c872ffcef7e1e8510454f.png

    看来逢年过节,烧香上供,除了图灵祖师爷还要加上这两位了。

    闲聊

    我们知道声音是一种纵波,而不管是男低音或者女高音,发出的频率范围在85~1.1K Hz之间,而人耳能听到的声音的频率范围在20~20K Hz之间。所以在日常生活中我们听到彼此交谈妥妥的。

    但是发明计算机之后,在数字世界里怎么存储声音呢?从第一章就走过来的我们当然不陌生,当然是采样、量化后存储数字信号,听的时候再还原回模拟信号。

    好了,这里面的第一个问题就是,采样率该怎么设定?设定大了浪费存储空间,设定小了会有什么问题?

    a0bfff39cafe36d00e9a3b6368e0aa33.png

    百度百科说:

    在数字音频领域,常用的采样率有:
    8,000 Hz - 电话所用采样率, 对于人的说话已经足够
    11,025 Hz-AM调幅广播所用采样率
    22,050 Hz和24,000 Hz- FM调频广播所用采样率
    32,000 Hz - miniDV 数码视频 camcorder、DAT (LP mode)所用采样率
    44,100 Hz - 音频 CD, 也常用于 MPGE-1 音频(VCD, SVCD, MP3)所用采样率
    47,250 Hz - 商用 PCM录音机所用采样率
    48,000 Hz - miniDV、数字电视、DVD、DAT、电影和专业音频所用的数字声音所用采样率
    50,000 Hz - 商用数字录音机所用采样率
    96,000 或者 192,000 Hz - DVD-Audio、一些 LPCM DVD 音轨、BD-ROM(蓝光盘)音轨、和 HD-DVD (高清晰度 DVD)音轨所用所用采样率
    2.8224 MHz - Direct Stream Digital 的 1 位 sigma-delta modulation 过程所用采样率。

    对比一下本地的音频文件:

    45b133ed18075e45a7c5c787e789bdbc.png
    嗯, bps 这不就是频率的概念吗?

    采样定律

    要了解什么样的采样频率合适,我们可以翻出来上一节的一张图,直观感受一下;

    对于临界采样和过采样,我们都可以用一个以原点为中心,带宽为

    带通滤波器把原始函数过滤出来;而如果欠采样,是一种有损采样,是无论如何也还原不回原函数的了。

    那么这个问题就转换为求解临界采样的时候,连续脉冲函数的频率的问题了。

    fd11f73eda084f29479e49e6bb28a26a.png

    一、带限函数

    先上定义,对于以原点为中心的有限带宽

    之外的频率值,其傅里叶变换为零的函数
    称为带限函数。

    好抽象,上图:

    e63a65b6b4c220040c9d8d6a0b729136.png
    函数f(x)对应的傅里叶变换F(u)

    这么想,人发声只能在85~1.1K Hz之间,那么人发声也是一个带限函数。

    二、对带限函数进行采样

    我们用周期为

    的连续脉冲函数对其进行采样,

    daae5edaeea46e0654c5f4a0ba7fa87d.png
    周期为1/Delta T的采样后的傅里叶变换

    有图可知,要想从

    提取出来单周期的
    就必须要
    ,即:

    这个公式就是奎更斯特(香农)采样定理:

    如果以超过函数最高频率的两倍的取样率来获取样本,连续的带限函数可以完全地从它的样本集来恢复。

    物理意义就是:

    如果要把一个信号还原回来,就要以这个信号最高频率的2倍以上进行采样。

    三、如何恢复

    只关心如何采样,而不告诉我们如何恢复显然不是雷神的风格。看下图;

    2576751f319b95856cc36214e4ec7ac9.png

    该图显示了一个过采样后的

    ,经过低通滤波器
    后复原成
    的故事。

    其中:

    低通滤波器:

    将采样后的傅里叶

    经过

    一旦拿到

    ,我们就可以还原回

    完美!

    展开全文
  • 二阶带通滤波器电路设计

    千次阅读 多人点赞 2020-05-27 21:42:40
    掌握有源滤波器电路设计基本方法。 掌握电路仿真软件的基本使用方法。 二、实验内容及结果 实验内容 参考查表法或辅助软件法,利用集成运放设计二阶音频滤波器,实现音频信号的消噪。假设输入信号幅度在0.1Vpp...
  • fir带通滤波器matlab代码Foseedsp 包含以scilab编码的iirnotch,ca2tf,firlp2lp matlab函数 ca2tf: 计算两个全通滤波器(耦合全通滤波器)的平均值,并提供新的传递函数H(z) H(z)= B(z)/ A(z)= 1/2 * [H1...
  • 但是关于滤波器是什么,估计非专业人士肯定是一头雾水,今天小编就整理了一些滤波器的知识,供大家参考:一、概述1、定义凡是可以使信号中特定的频率成分通过,而极大地衰减或抑制其他频率成分的装置或系统都称之为...
  • ADIsimPower设计工具通过计算转换器在滤波器和电感短路时的开环传递函数(OLTF)从而计算RFILT。RFILT值为猜测值,直到滤波器仅为转换器OLTF以上10 dB时转换器OLTF的峰值(电感短路)。这种技术可用于ADIsimPE等仿真器中...
  • 二阶有源带通滤波器滤波原理

    万次阅读 多人点赞 2017-01-18 17:20:35
    请注意有源滤波器因为运放的有效识别电压和响应频率的影响,适用于低频信号的滤波,对于高频信号最好使用无缘滤波。 名词解释 一阶低通滤波器,包含一组RC构成的滤波器,将谐波过滤一次;两阶低通滤波器,包含两组...
  • 基于Multisim的带通滤波器仿真设计实验 【实验目的】 熟悉Multsim电路仿真软件; 熟悉并了解Multsim在模拟电子线路中的应用; 掌握Multisim电路仿真设计; 掌握Multsim电路分析和仿真测试。 【实验要求】 利用...
  • 滤波器是一种选频装置,可以使信号中特定的频率成分通过,而极大地衰减其它频率成分。一、概述1、定义凡是可以使信号中特定的频率成分通过,而极大地衰减或抑制其他频率成分的装置或系统都称之为滤波器,相当于频率...
  • MATLAB切比雪夫带通滤波器

    万次阅读 2019-02-22 21:09:53
    原始信号由5Hz,50Hz,110Hz三种频率的正弦信号构成...​使用通带为[10,100]Hz的切比雪夫滤波器,滤波后的信号时域曲线为: 图 2 滤波信号 ​对原始信号和滤波信号作傅里叶变换,观察频谱的变化(左图为原始信号...
  • Matlab 是一个强大的工具,可以用来做各种各样的仿真设计、数字信号处理和科学计算。 由于工作的需要,需要进行数字信号处理,首先就得做仿真,然后将仿真得到的结果再c++上面去实现。 1.先来看看fir滤波器是个啥...
  • 假设需要处理一个20mV的正弦信号,该信号的频率范围是15~35Hz,经过处理后幅值不超过3.3V,且需要经过带通滤波器滤除杂波。 2、滤波器定义 滤波电路又称为滤波器,是一种选频电路,能够使特定频...
  • 最基本的开关电容电路是由电子开关和电容组成的,主要应用是构成各种低通、高通、带通、带阻等开关电容滤波器(Switched-Capacitor Filter,SCF)。将开关电容电路与运算放大器结合,组成的开关电容有源滤波器具有很多...
  • 根据上式可见,电容C的大小并不影响带通滤波器的增益H(jf0)和品质因数Q 电容的选取根据工作频率选择,依靠经验值决定 由于滤波器的中心频率f0和品质因数Q均与R1,R2的并联值有关,现在分别考虑R1>>R2和R1&...
  • 假设需要处理一个20mV的正弦信号,该信号的频率范围是15~35Hz,经过处理后幅值不超过3.3V,且需要经过带通滤波器滤除杂波。2、滤波器定义滤波电路又称为滤波器,是一种选频电路,能够使特定频率范围的信号通过,...
  • 作为一个电子硬件方面的工作者,怎么能不认识滤波器呢?那么到底什么是滤波?分享一篇科普文了解一下电阻—电容(RC)低通滤波器是什么,以及在何处使用它们能让你更好的掌握高端电路设计实战。本文将介绍滤波的概念,...
  • 滤波器有四个基本原型,低通、带通、带阻、高通。实现滤波器就是实现相应的谐振系统。纪总参数就是电感、电容,分布参数就是各种射频/微波传输线形成的谐振器。理论上,滤波器是无耗元件。滤波器的指标工作频率。...
  • 由于其优越的性能,微带线形式的各种滤波器已成为广泛使用的射频器件。本文重点研究平行耦合微带线带通滤波器...结果表明全等宽平行耦合微带线带通滤波器适用带宽较宽,且结构简洁,大大降低了设计及仿真调试的复杂度。
  • 二阶有源带通滤波器设计1、背景对于微弱的信号的处理方式一般是:放大和滤波,这个过程中就涉及到放大电路的选取、滤波器的选择以及偏置电路的设计。本例以实例的方式讲解并附带参数计算、仿真、实物测试三个环节。 ...
  • 假设需要处理一个20mV的正弦信号,该信号的频率范围是15~35Hz,经过处理后幅值不超过3.3V,且需要经过带通滤波器滤除杂波。2、滤波器定义滤波电路又称为滤波器,是一种选频电路,能够使特定频率范围的信号通过,...
  • 要求 带通滤波器,中心频率为LOkHz,在±250 Hz处衰减3dB,在±750 Hz处最小衰减为60dB,R=】00Ω,最小R,=1n1-lt71Ω,可用电感Q值为99R。  解 ①因为滤波器的带宽窄,故该指标可作为算术对称形式处理。从下...
  • 二、按频段分类 1、低通滤波器 2、高通滤波器 3、带通滤波器 4、带阻滤波器 5、全通滤波器:对信号的每一个频率分量加一个线性的相移,引入一个恒定的延时。 滤波器优化 实际滤波器与理想滤波器相比,缺少了如下的...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 1,511
精华内容 604
关键字:

带通滤波器带宽计算