精华内容
下载资源
问答
  • 根判别式:A=b2-3ac;B=bc-9ad;C=c2-3bd,总判别式:Δ=B2-4AC。当A=B=0时,盛金公式①:X1=X2=X3=-b/(3a)=-c/b=-3d/c。当Δ=B2-4AC>0时,盛金公式②:X1=(-b-3√Y1-3√Y2)/(3a);X2,3=(-2b+3√Y1...

    可用盛金公式 方法如下

    一元三次方程aX3+bX2+cX+d=0,(a,b,c,d∈R,且a≠0)。

    重根判别式:

    A=b2-3ac;

    B=bc-9ad;

    C=c2-3bd,

    总判别式:

    Δ=B2-4AC。

    当A=B=0时,盛金公式①:

    X1=X2=X3=-b/(3a)=-c/b=-3d/c。

    当Δ=B2-4AC>0时,盛金公式②:

    X1=(-b-3√Y1-3√Y2)/(3a);

    X2,3=(-2b+3√Y1+3√Y2)/(6a)±(3√Y1-3√Y2)√3i/(6a);

    其中Y1,2=Ab+3a(-B±√(B2-4AC))/2,i2=-1。

    当Δ=B2-4AC=0时,盛金公式③:

    X1=-b/a+K;

    X2=X3=-K/2,

    其中K=B/A,(A≠0)。

    当Δ=B2-4AC<0时,盛金公式④:

    X1=(-b-2cos(θ/3)√A)/(3a);

    X2,3=(-b+(cos(θ/3)±sin(θ/3)√3)√A)/(3a);

    其中θ=arccosT,T=(2Ab-3aB)/(2A√A),(A>0,-1<T<1)。检举 回答人的补充 2009-07-08 21:23

    盛金判别法

    ①:当A=B=0时,方程有一个三重实根;

    ②:当Δ=B2-4AC>0时,方程有一个实根和一对共轭虚根;

    ③:当Δ=B2-4AC=0时,方程有三个实根,其中有一个两重根;

    ④:当Δ=B2-4AC<0时,方程有三个不相等的实根。

    展开全文
  • 完整第2讲.判别式求根公式.尖子班.学生版.docx
  • 一元二次方程的求根公式判别式.doc
  • 东 莞 理 工 学 院本 科 毕 业 论 文(2015届)题 目: 多项式方程的判别式求根公式学生姓名:学 号: 201141410230院(系): 计算机学院专业班级: 信息与计算科学(2)班指导教师:起止时间: 2015年1月—2015年5月多项式...

    东 莞 理 工 学 院

    本 科 毕 业 论 文

    (2015届)

    题 目: 多项式方程的判别式与求根公式

    学生姓名:

    学 号: 201141410230

    院(系): 计算机学院

    专业班级: 信息与计算科学(2)班

    指导教师:

    起止时间: 2015年1月—2015年5月

    多项式方程的判别式与求根公式

    摘 要: 近代数学史甚至能说是一部求解多项式方程的历史。对于高次方程的数值根求解法,人们从很早就开始并一直探求这样的问题。而且在古代,很多人都想出了一个办法来解决各种各样的多项式方程。如卡尔米诺的《大术》,贾宪的《黄帝九章算法细草》,秦九韶的《数书九章》等等。? 在目前,有关问题求解多项式方程根的在工程实践中占有举足轻重的地位。如在人类的生活过程中,经济建设和科学技术的发展过程中,计算一直起着非常重要的作用。当人们在进行科学或者工程计算时,求解多项式方程组更是非常容易遇到的问题之一。许多领域如自然生活和工程科学最终都可以归结为求解多项式方程组的问题。这个时候人们就通常需要处理求解代数方程组的问题,如果当项较简单或变元较少时,计算过程就好相对来说简单一些;但是当项非常复杂或变元非常多的时候,那么其求解的过程中往往会遇到比较多的困难。

    对多项式方程的判别式和求根公式的研究,在理论研究和实际工程计算中,具有十分重要的意义。

    关键词: Discriminant and seek the root of polynomial equations

    Abstract: the modern mathematics that would become a history of polynomial equation solution. People long ago began to explore the problem of high order equation of numerical method. But in ancient times, many people have been developed to solve all kinds of method of polynomial equations. Such as "chapter nine of the yellow emperor algorithm fine grass" of jia xian, chiu-shao the number of book chapter nine, Carl mino "big operation" and so on.

    In nowadays, polynomial equation for the root problem has a pivotal position in the engineering practice. As in human life, economic construction and development of science and technology in the process of calculation is always plays a very important role. In science and engineering calculation, to solve the polynomial equations is one of the most common problems in the natural life and the computing problem in the field of engineering science and many other eventually all boils down to solving the polynomial equations. At this time often need to deal with algebraic equations to solve the problem, if the argument or a simpler, less calculation process is relatively simple; And when the argument is very more or when the item is very complex, its solving process is often more difficult.

    The discriminant and seek the root of polynomial equations, in theoretical research and practical engineerin

    展开全文
  • 公式法及判别式.doc
  • 一元三次方程的求根公式

    千次阅读 2021-01-30 15:47:12
    一元二次方程的回顾和启示学过初中数学都知道对于任何一个实系数一元二次方程 ,通过配方可以得到 ,根据判别式 的符号,可以判断方程实的个数,并且可以得到求根公式要么是 个不同的实 ,要么是 个二重实 ,...

    一元二次方程的回顾和启示

    学过初中数学都知道对于任何一个实系数一元二次方程

    equation?tex=ax%5E2%2Bbx%2Bc%3D0%2C~a+%5Cneq+0 ,通过配方可以得到

    equation?tex=%5Cleft%28x%2B%5Cfrac%7Bb%7D%7B2a%7D%5Cright%29%5E2%3D%5Cfrac%7Bb%5E2-4ac%7D%7B4a%5E2%7D ,根据判别式

    equation?tex=%5CDelta%3Db%5E2-4ac 的符号,可以判断方程实根的个数,并且可以得到求根公式

    equation?tex=+x%3D%5Cfrac%7B-b%5Cpm%5Csqrt%7Bb%5E2-4ac%7D%7D%7B2a%7D%3D-%5Cfrac%7Bb%7D%7B2a%7D%5Cpm%5Cfrac%7B%5Csqrt%7B%5CDelta%7D%7D%7B2a%7D%5C%5C

    要么是

    equation?tex=2 个不同的实根

    equation?tex=%5CDelta%3E0 ,要么是

    equation?tex=1 个二重实根

    equation?tex=%5CDelta%3D0 ,要么是

    equation?tex=1 对共轭虚根

    equation?tex=%5CDelta%3C0 ;计算重数的情况下都是

    equation?tex=2 个根。

    记两根为

    equation?tex=+x_1%3D%5Cfrac%7B-b%2B%5Csqrt%7Bb%5E2-4ac%7D%7D%7B2a%7D+%2C~+x_2%3D%5Cfrac%7B-b-%5Csqrt%7Bb%5E2-4ac%7D%7D%7B2a%7D+%5C%5C

    可以直接验证韦达定理:

    两根之和

    equation?tex=x_1%2Bx_2%3D-%5Cfrac%7Bb%7D%7Ba%7D+ 以及两根之积

    equation?tex=x_1x_2%3D%5Cfrac%7Bc%7D%7Ba%7D,判别式

    equation?tex=+%5CDelta%3Da%5E2%28x_1-x_2%29%5E2 .

    求根公式看上去复杂,但如果把上述两式代入求根公式

    equation?tex=x%3D-%5Cfrac%7Bb%7D%7B2a%7D%5Cpm%5Csqrt%7B%5Cleft%28-%5Cfrac%7Bb%7D%7B2a%7D%5Cright%29%5E2-%5Cfrac%7Bc%7D%7Ba%7D%7D%3D%5Cfrac%7Bx_1%2Bx_2%7D%7B2%7D%5Cpm%5Csqrt%7B%5Cleft%28%5Cfrac%7Bx_1-x_2%7D%7B2%7D%5Cright%29%5E2%7D%3D%5Cfrac%7Bx_1%2Bx_2%7D%7B2%7D%5Cpm%5Cfrac%7Bx_1-x_2%7D%7B2%7D%5C%5C .

    注:如果

    equation?tex=x_1%2C~x_2 是共轭虚根,

    equation?tex=x_1-x_2 就是纯虚数,对负数

    equation?tex=%5Cleft%28%5Cfrac%7Bx_1-x_2%7D%7B2%7D%5Cright%29%5E2 开方不能得到

    equation?tex=%5Cfrac%7B%7Cx_1-x_2%7C%7D%7B2%7D .

    几何意义:记

    equation?tex=s%3D%5Cfrac%7Bx_1%2Bx_2%7D%7B2%7D%3D-%5Cfrac%7Bb%7D%7B2a%7D 是两根的平均值,乘积为

    equation?tex=p%3Dx_1x_2%3D%5Cfrac%7Bc%7D%7Ba%7D . 如果

    equation?tex=x_1%2C~x_2 都是实根,则

    equation?tex=d%3D%5Cfrac%7B%7Cx_1-x_2%7C%7D%7B2%7D%3D%5Csqrt%7Bs%5E2-p%7D 是根到平均值的距离。

    求根公式就可以改写成

    equation?tex=x%3D-%5Cfrac%7Bb%7D%7B2a%7D%5Cpm%5Csqrt%7B%5Cleft%28-%5Cfrac%7Bb%7D%7B2a%7D%5Cright%29%5E2-%5Cfrac%7Bc%7D%7Ba%7D%7D%3Ds%5Cpm%5Csqrt%7Bs%5E2-p%7D%3Ds%5Cpm+d%5C%5C

    两根到平均值

    equation?tex=s 的距离

    equation?tex=d%3D%5Cfrac%7B%7Cx_1-x_2%7C%7D%7B2%7D 还可以通过下列方式得到:

    不妨设

    equation?tex=x_1%3Ds%2Bd%2C~+x_2%3Ds-d ,用平方差公式得到

    equation?tex=%28s%2Bd%29%28s-d%29%3Ds%5E2-d%5E2%3Dp ,立即可以算出

    equation?tex=d%3D%5Csqrt%7Bs%5E2-p%7D .

    可以看到在实根的情况下

    equation?tex=s%3D%5Cfrac%7Bx_1%2Bx_2%7D%7B2%7D 是实数轴上两根的中点,而

    equation?tex=d%3D%5Cfrac%7B%7Cx_2-x_1%7C%7D%7B2%7D 是两根到中点的距离。

    如果

    equation?tex=%5CDelta%3C0

    equation?tex=z_1%3D-%5Cfrac%7Bb%7D%7B2a%7D%2B%5Cfrac%7B%5Csqrt%7B-%5CDelta%7D%7D%7B2a%7Di

    equation?tex=z_2%3D-%5Cfrac%7Bb%7D%7B2a%7D-%5Cfrac%7B%5Csqrt%7B-%5CDelta%7D%7D%7B2a%7Di 是共轭虚根,绝对值(长度)相等

    equation?tex=s%3D%5Cfrac%7Bz_1%2Bz_2%7D%7B2%7D%3D-%5Cfrac%7Bb%7D%7B2a%7D 在复平面上是

    equation?tex=z_1

    equation?tex=z_2 连线的中点(在实轴上),刚好对应由

    equation?tex=z_1

    equation?tex=z_2 作为两邻边的菱形对角线的交点,是菱形水平方向对角线的一半,而

    equation?tex=d%3D%5Cpm%5Cfrac%7Bz_1-z_2%7D%7B2%7D%3D%5Cfrac%7B%5Csqrt%7B-%5CDelta%7D%7D%7B2a%7Di 是中点到两根的有向距离,是菱形竖直方向对角线的一半。

    如果考虑一般的复系数一元二次方程呢?任何两个复数

    equation?tex=z_1

    equation?tex=z_2 都可能是方程的两根,因为由韦达定理可以构造出

    equation?tex=z%5E2-%28z_1%2Bz_2%29z%2Bz_1z_2%3D0%5C%5C

    所以

    equation?tex=s%3D%5Cfrac%7Bz_1%2Bz_2%7D%7B2%7D 就是两根连线的中点,但不一定在实轴上,以

    equation?tex=z_1

    equation?tex=z_2 为邻边构成的是一个更一般的平行四边形,

    equation?tex=s 是对角线的交点,是其中一条对角线的一半,而

    equation?tex=d%3D%5Cpm%5Cfrac%7Bz_1-z_2%7D%7B2%7D 是交点到两根的有向距离,是另外一条对角线的一半。

    一元三次方程根的构造

    对于实系数一元三次方程

    equation?tex=ax%5E3%2Bbx%5E2%2Bcx%2Bd%3D0%2C~a%5Cneq+0 ,自然会想能不能用配方法?

    这里不是配成完全平方而是完全立方:

    equation?tex=x%5E3%2B%5Cfrac%7Ba%7D%7Bb%7Dx%5E2%2B%5Cfrac%7Bc%7D%7Ba%7Dx%2B%5Cfrac%7Bd%7D%7Ba%7D%3D0%5CLeftrightarrow+x%5E3%2B3%5Cleft%28+%5Cfrac%7Bb%7D%7B3a%7D%5Cright%29+x%5E2%3D-%5Cfrac%7Bc%7D%7Ba%7Dx-%5Cfrac%7Bd%7D%7Ba%7D%5C%5C

    根据前两项两边同时加上

    equation?tex=3+%5Cleft%28%5Cfrac%7Bb%7D%7B3a%7D%5Cright%29%5E2x

    equation?tex=%5Cleft%28%5Cfrac%7Bb%7D%7B3a%7D%5Cright%29%5E3 可以把左边边成完全立方,也就是

    equation?tex=%5Cleft%28x%2B%5Cfrac%7Bb%7D%7B3a%7D%5Cright%29%5E3%3D%5Cfrac%7Bb%5E2-3ac%7D%7B3a%5E2%7Dx%2B%5Cfrac%7Bb%5E3-27a%5E2d%7D%7B27a%5E3%7D+ . 右边等于

    equation?tex=%5Cfrac%7Bb%5E2-3ac%7D%7B3a%5E2%7D%5Cleft%28x%2B%5Cfrac%7Bb%7D%7B3a%7D%5Cright%29-%5Cfrac%7Bb%5E3-3abc%7D%7B9a%5E3%7D%2B%5Cfrac%7Bb%5E3-27a%5E2d%7D%7B27a%5E3%7D%3D%5Cfrac%7Bb%5E2-3ac%7D%7B3a%5E2%7D%5Cleft%28x%2B%5Cfrac%7Bb%7D%7B3a%7D%5Cright%29%2B%5Cfrac%7B9abc-2b%5E3-27a%5E2d%7D%7B27a%5E3%7D

    equation?tex=x 的一次项,不能像一元二次方程配方后可以直接开平方根得到方程的根。但这提示我们可以作变量替换

    equation?tex=t%3Dx%2B%5Cfrac%7Bb%7D%7B3a%7D 把根整体平移

    equation?tex=%5Cfrac%7Bb%7D%7B3a%7D 个单位,得到

    equation?tex=t%5E3%2B%5Cfrac%7B3ac-b%5E2%7D%7B3a%5E2%7Dt%2B%5Cfrac%7B2b%5E3-9abc%2B27a%5E2d%7D%7B27a%5E3%7D%3D0%5C%5C

    (或者用直接用待定系数法确定平移量)

    equation?tex=p%3D%5Cfrac%7B3ac-b%5E2%7D%7B3a%5E2%7D%2C~q%3D%5Cfrac%7B2b%5E3-9abc%2B27a%5E2d%7D%7B27a%5E3%7D

    这里就把方程化简为了

    equation?tex=t%5E3%2Bpt%2Bq%3D0 . 从这里可以看出,配方法能做到的只是消去比方程次数少一次的那项,结合韦达定理可以知道,只不过是找到了方程的三个根的平均值,做一个平移,让新得到的方程的三个根的平均值为0.

    这里有很多种变量替换的方法求解

    equation?tex=t%5E3%2Bpt%2Bq%3D0 .

    一、卡尔达诺方法(Cardano's method)

    引入两个新的变量

    equation?tex=u%2C~v

    equation?tex=t%3Du%2Bv,代入可得

    equation?tex=%28u%2Bv%29%5E3%2Bp%28u%2Bv%29%2Bq%3D0%5CLeftrightarrow+u%5E3%2Bv%5E3%2B%283uv%2Bp%29%28u%2Bv%29%2Bq%3D0%5C%5C

    equation?tex=3uv%2Bp%3D0 ,方程变为

    equation?tex=u%5E3%2Bv%5E3%2Bq%3D0 .

    只要

    equation?tex=u%2C~v 满足

    equation?tex=uv%3D-%5Cfrac%7Bp%7D%7B3%7D

    equation?tex=u%5E3%2Bv%5E3%3D-q ,那么

    equation?tex=t%3Du%2Bv 就是

    equation?tex=t%5E3%2Bpt%2Bq%3D0 的根。

    由第一个方程可得

    equation?tex=v%3D-%5Cfrac%7Bp%7D%7B3u%7D ,代入第二个方程得

    equation?tex=u%5E3-%5Cfrac%7Bp%5E3%7D%7B27u%5E3%7D%2Bq%3D0 .

    两边同时乘以

    equation?tex=u%5E3 可得

    equation?tex=u%5E6%2Bqu%5E3-%5Cfrac%7Bp%5E3%7D%7B27%7D%3D0

    equation?tex=u%5E3 的一元二次方程,由求根公式可得

    equation?tex=u%5E3%3D-%5Cfrac%7Bq%7D%7B2%7D%5Cpm%5Csqrt%7B%5Cfrac%7Bq%5E2%7D%7B4%7D%2B%5Cfrac%7Bp%5E3%7D%7B27%7D%7D%2C+~v%5E3%3D-%5Cfrac%7Bq%7D%7B2%7D%5Cmp%5Csqrt%7B%5Cfrac%7Bq%5E2%7D%7B4%7D%2B%5Cfrac%7Bp%5E3%7D%7B27%7D%7D%5C%5C

    立方根有三个,这里取其中一个

    equation?tex=u%3D%5Csqrt%5B3%5D%7B-%5Cfrac%7Bq%7D%7B2%7D%2B%5Csqrt%7B%5Cfrac%7Bq%5E2%7D%7B4%7D%2B%5Cfrac%7Bp%5E3%7D%7B27%7D%7D%7D%5C%5C

    equation?tex=uv%3D-%5Cfrac%7Bp%7D%7B3%7D 得对应的

    equation?tex=v 可以表示成

    equation?tex=v%3D%5Csqrt%5B3%5D%7B-%5Cfrac%7Bq%7D%7B2%7D-%5Csqrt%7B%5Cfrac%7Bq%5E2%7D%7B4%7D%2B%5Cfrac%7Bp%5E3%7D%7B27%7D%7D%7D%5C%5C

    得到方程的一个根为

    equation?tex=t_1%3Du%2Bv%3D%5Csqrt%5B3%5D%7B-%5Cfrac%7Bq%7D%7B2%7D%2B%5Csqrt%7B%5Cfrac%7Bq%5E2%7D%7B4%7D%2B%5Cfrac%7Bp%5E3%7D%7B27%7D%7D%7D%2B%5Csqrt%5B3%5D%7B-%5Cfrac%7Bq%7D%7B2%7D-%5Csqrt%7B%5Cfrac%7Bq%5E2%7D%7B4%7D%2B%5Cfrac%7Bp%5E3%7D%7B27%7D%7D%7D%5C%5C

    equation?tex=%5Comega%3De%5E%7B%5Cfrac%7B2%5Cpi+i%7D%7B3%7D%7D%3D-%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7Di 为单位原根满足

    equation?tex=%5Comega%5E3%3D1%2C~+%5Comega%5Cneq1 (

    equation?tex=%5Comega%5E2%2B%5Comega%2B1%3D0 ),可以得到另外两个根分别为

    equation?tex=t_2%3D%5Comega+u%2B%5Comega+%5E2v%2C~t_3%3D%5Comega%5E2u%2B%5Comega+v .

    注意到

    equation?tex=uv%3D-%5Cfrac%7Bp%7D%7B3%7D

    equation?tex=t%3Du-%5Cfrac%7Bp%7D%7B3u%7D ,因此也可以用下面的替换来推导出求根公式:

    二、韦达替换(Vieta's substitution)

    equation?tex=t%3Dw-%5Cfrac%7Bp%7D%7B3w%7D ,代入可得

    equation?tex=%5Cleft%28w-%5Cfrac%7Bp%7D%7B3w%7D%5Cright%29%5E3%2Bp%5Cleft%28w-%5Cfrac%7Bp%7D%7B3w%7D%5Cright%29%2Bq%3D0%5CLeftrightarrow+w%5E3-%5Cfrac%7Bp%5E3%7D%7B27w%5E3%7D%2Bq%3D0%5C%5C

    注意到

    equation?tex=w%5E6%2Bqw%5E3-%5Cfrac%7Bp%5E3%7D%7B27%7D%3D0

    equation?tex=w%5E3 的一元二次方程,所以

    equation?tex=w%5E3%3D-%5Cfrac%7Bq%7D%7B2%7D%5Cpm%5Csqrt%7B%5Cfrac%7Bq%5E2%7D%7B4%7D%2B%5Cfrac%7Bp%5E3%7D%7B27%7D%7D%5CRightarrow+w%3D%5Csqrt%5B3%5D%7B-%5Cfrac%7Bq%7D%7B2%7D%5Cpm%5Csqrt%7B%5Cfrac%7Bq%5E2%7D%7B4%7D%2B%5Cfrac%7Bp%5E3%7D%7B27%7D%7D%7D%5C%5C

    代回可得

    equation?tex=t%3Dw-%5Cfrac%7Bp%7D%7B3w%7D%3D%5Csqrt%5B3%5D%7B-%5Cfrac%7Bq%7D%7B2%7D%5Cpm%5Csqrt%7B%5Cfrac%7Bq%5E2%7D%7B4%7D%2B%5Cfrac%7Bp%5E3%7D%7B27%7D%7D%7D%2B%5Csqrt%5B3%5D%7B-%5Cfrac%7Bq%7D%7B2%7D%5Cmp%5Csqrt%7B%5Cfrac%7Bq%5E2%7D%7B4%7D%2B%5Cfrac%7Bp%5E3%7D%7B27%7D%7D%7D%5C%5C

    上面两种办法都通过变量替换推导求根公式,经过长期解具体方程总结得出一般规律,比如发现三次方程的根可以表示成两个立方根之和,有了这个根的形式的预判,求根公式就呼之欲出了。再后来Lagrange通过离散傅立叶变换统一求解低次方程,但这方法无法推广到5次方程。

    三、拉格朗日方法(Lagrange's Method)

    对于一般的二次方程, 根可以表示为:

    equation?tex=x_1%3D%5Cfrac%7B1%7D%7B2%7D%5B%28x_1%2Bx_2%29%2B%28x_1-x_2%29%5D%5C%5C

    equation?tex=x_2%3D%5Cfrac%7B1%7D%7B2%7D%5B%28x_1%2Bx_2%29-%28x_1-x_2%29%5D%5C%5C

    其中

    equation?tex=x_1%2Bx_2 是根的对称多项式,

    equation?tex=x_1-x_2 虽然本身不是,但平方后也是根的对称多项式,可以用基本对称多项式表出

    equation?tex=%28x_1-x_2%29%5E2%3D%28x_1%2Bx_2%29%5E2-4x_1x_2 . 再根据韦达定理,可以推出求根公式。

    equation?tex=x%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft%5Bx_1%2Bx_2%5Cpm%5Csqrt%7B%28x_1-x_2%29%5E2%7D%5Cright%5D%5C%5C

    对于一般的一元三次方程,记

    equation?tex=%5Comega%3De%5E%7B%5Cfrac%7B2%5Cpi+i%7D%7B3%7D%7D ,根可以表示为:

    equation?tex=x_1%3D%5Cfrac%7B1%7D%7B3%7D%5B%28x_1%2Bx_2%2Bx_3%29%2B%28x_1%2B%5Comega+x_2%2B%5Comega%5E2x_3%29%2B%28x_1%2B%5Comega%5E2x_2%2B%5Comega+x_3%29%5D

    equation?tex=x_2%3D%5Cfrac%7B1%7D%7B3%7D%5B%28x_1%2Bx_2%2Bx_3%29%2B%5Comega%5E2%28x_1%2B%5Comega+x_2%2B%5Comega%5E2+x_3%29%2B%5Comega%28x_1%2B%5Comega%5E2x_2%2B%5Comega+x_3%29%5D

    equation?tex=x_3%3D%5Cfrac%7B1%7D%7B3%7D%5B%28x_1%2Bx_2%2Bx_3%29%2B%5Comega%28x_1%2B%5Comega+x_2%2B%5Comega%5E2x_3%29%2B%5Comega%5E2%28x_1%2B%5Comega%5E2+x_2%2B%5Comega+x_3%29%5D

    equation?tex=s_1%3Dx_1%2B%5Comega+x_2%2B%5Comega%5E2+x_3

    equation?tex=s_2%3Dx_1%2B%5Comega%5E2+x_2%2B%5Comega+x_3 本身不是对称多项式,但两者立方后得到

    equation?tex=s_1%5E3%3Dx_1%5E3%2Bx_2%5E3%2Bx_3%5E3%2B3%5Comega%28x_1%5E2x_2%2Bx_2%5E2x_3%2Bx_3%5E2x_1%29%2B3%5Comega%5E2%28x_1x_2%5E2%2Bx_2x_3%5E3%2Bx_3x_1%5E2%29%2B6x_1x_2x_3

    equation?tex=s_2%5E3%3Dx_1%5E3%2Bx_2%5E3%2Bx_3%5E3%2B3%5Comega%5E2%28x_1%5E2x_2%2Bx_2%5E2x_3%2Bx_3%5E2x_1%29%2B3%5Comega%28x_1x_2%5E2%2Bx_2x_3%5E3%2Bx_3x_1%5E2%29%2B6x_1x_2x_3

    然后两者相加可得立方和

    equation?tex=s_1%5E3%2Bs_2%5E3+%3D2%28x_1%5E3%2Bx_2%5E3%2Bx_3%5E3%29-3%28x_1%5E2+x_2%2B+x_1x_2%5E2%2Bx_2%5E2x_3%2Bx_2x_3%5E2%2Bx_3%5E2x_1%2Bx_3x_1%5E2%29%2B12x_1x_2x_3

    是根的对称多项式,乘积

    equation?tex=s_1s_2%3Dx_1%5E2%2Bx_2%5E2%2Bx_3%5E2-%28x_1x_2%2Bx_2x_3%2Bx_3x_1%29

    是根的对称多项式,乘积的立方

    equation?tex=s_1%5E3s_2%5E3%3D%28s_1s_2%29%5E3 也是根的对称多项式。

    对于一般的一元三次方程

    equation?tex=ax%5E3%2Bbx%5E2%2Bcx%2Bd%3D0%2C~a%5Cneq+0

    对称多项式

    equation?tex=s_1%5E3%2Bs_2%5E3

    equation?tex=s_1%5E3s_2%5E3 可以由基本对称多项式

    equation?tex=%5Csigma_1%3Dx_1%2Bx_2%2Bx_3%3D-%5Cfrac%7Bb%7D%7Ba%7D

    equation?tex=%5Csigma_2%3Dx_1x_2%2Bx_2x_3%2Bx_3x_1%3D%5Cfrac%7Bc%7D%7Ba%7D

    equation?tex=%5Csigma_3%3Dx_1x_2x_3%3D-%5Cfrac%7Bd%7D%7Ba%7D

    多项式表出,因此是方程系数的多项式。

    也就是存在多项式

    equation?tex=P

    equation?tex=Q 使得

    equation?tex=s_1%5E3%2Bs_2%5E3%3DP%28a%2Cb%2Cc%2Cd%29

    equation?tex=s_1%5E3s_2%5E3%3DQ%28a%2Cb%2Cc%2Cd%29 . 容易看出

    equation?tex=s_1%5E3

    equation?tex=s_2%5E3 是一元二次方程

    equation?tex=z%5E2-Pz%2BQ%3D0 (预解式)的两根,可以用二次方程求根公式得到,再代回下列三式就可以得到三次方程的三个根:

    equation?tex=x_1%3D%5Cfrac%7B1%7D%7B3%7D%5Cleft%5Bx_1%2Bx_2%2Bx_3%2B%5Csqrt%5B3%5D%7B%28x_1%2B%5Comega+x_2%2B%5Comega%5E2x_3%29%5E3%7D%2B%5Csqrt%5B3%5D%7B%28x_1%2B%5Comega+x_2%2B%5Comega%5E2x_3%29%5E3%7D%5Cright%5D

    equation?tex=x_2%3D%5Cfrac%7B1%7D%7B3%7D%5Cleft%5Bx_1%2Bx_2%2Bx_3%2B%5Comega%5Csqrt%5B3%5D%7B%28x_1%2B%5Comega+x_2%2B%5Comega%5E2x_3%29%5E3%7D%2B%5Comega%5E2%5Csqrt%5B3%5D%7B%28x_1%2B%5Comega+x_2%2B%5Comega%5E2x_3%29%5E3%7D%5Cright%5D

    equation?tex=x_3%3D%5Cfrac%7B1%7D%7B3%7D%5Cleft%5Bx_1%2Bx_2%2Bx_3%2B%5Comega%5E2%5Csqrt%5B3%5D%7B%28x_1%2B%5Comega+x_2%2B%5Comega%5E2x_3%29%5E3%7D%2B%5Comega%5Csqrt%5B3%5D%7B%28x_1%2B%5Comega+x_2%2B%5Comega%5E2x_3%29%5E3%7D%5Cright%5D

    对于约简后的一元三次方程

    equation?tex=t%5E3%2Bpt%2Bq%3D0 ,和Cardano和Vieta方法殊途同归,得到相同的求根公式。

    equation?tex=t_1%3D%5Csqrt%5B3%5D%7B-%5Cfrac%7Bq%7D%7B2%7D%2B%5Csqrt%7B%5Cfrac%7Bq%5E2%7D%7B4%7D%2B%5Cfrac%7Bp%5E3%7D%7B27%7D%7D%7D%2B%5Csqrt%5B3%5D%7B-%5Cfrac%7Bq%7D%7B2%7D-%5Csqrt%7B%5Cfrac%7Bq%5E2%7D%7B4%7D%2B%5Cfrac%7Bp%5E3%7D%7B27%7D%7D%7D

    equation?tex=t_2%3D%5Comega%5Csqrt%5B3%5D%7B-%5Cfrac%7Bq%7D%7B2%7D%2B%5Csqrt%7B%5Cfrac%7Bq%5E2%7D%7B4%7D%2B%5Cfrac%7Bp%5E3%7D%7B27%7D%7D%7D%2B%5Comega%5E2%5Csqrt%5B3%5D%7B-%5Cfrac%7Bq%7D%7B2%7D-%5Csqrt%7B%5Cfrac%7Bq%5E2%7D%7B4%7D%2B%5Cfrac%7Bp%5E3%7D%7B27%7D%7D%7D

    equation?tex=t_3%3D%5Comega%5E2%5Csqrt%5B3%5D%7B-%5Cfrac%7Bq%7D%7B2%7D%2B%5Csqrt%7B%5Cfrac%7Bq%5E2%7D%7B4%7D%2B%5Cfrac%7Bp%5E3%7D%7B27%7D%7D%7D%2B%5Comega%5Csqrt%5B3%5D%7B-%5Cfrac%7Bq%7D%7B2%7D-%5Csqrt%7B%5Cfrac%7Bq%5E2%7D%7B4%7D%2B%5Cfrac%7Bp%5E3%7D%7B27%7D%7D%7D

    equation?tex=p%2C~q 都用根表示代进去化简,可以得到平方根下的表达式为

    equation?tex=%5Cbegin%7Balign%7D+%26%5Cfrac%7Bq%5E2%7D%7B4%7D%2B%5Cfrac%7Bp%5E3%7D%7B27%7D+%3D%5Cfrac%7Bt_1%5E2t_2%5E2t_3%5E2%7D%7B4%7D%2B%5Cfrac%7B%28t_1t_2%2Bt_2t_3%2Bt_3t_1%29%5E3%7D%7B27%7D%5C%5C+%3D%26%5Cfrac%7Bt_1%5E2t_2%5E2%28t_1%2Bt_2%29%5E2%7D%7B4%7D%2B%5Cfrac%7B%5Bt_1t_2-%28t_1%2Bt_2%29%5E2%5D%5E3%7D%7B27%7D%5C%5C+%3D%26%5Cfrac%7B4t_1%5E3t_2%5E3%2B15t_1%5E2t_2%5E2%28t_1%2Bt_2%29%5E2%2B12+t_1+t_2%28t_1%2Bt_2%29%5E4-4%28t_1%2Bt_2%29%5E6%7D%7B108%7D+%5Cend%7Balign%7D

    equation?tex=%5Cbegin%7Balign%7D+%5CDelta%3D%26%28t_1-t_2%29%5E2%28t_2-t_3%29%5E2%28t_3-t_1%29%5E2%3D%28t_1-t_2%29%5E2%282t_2%2Bt_1%29%5E2%282t_1%2Bt_2%29%5E2%5C%5C+%3D%26%5B%28t_1%2Bt_2%29%5E2-4t_1t_2%5D%5B2%28t_1%2Bt_2%29%5E2%2Bt_1t_2%5D%5E2%5C%5C+%3D%26%5B%28t_1%2Bt_2%29%5E2-4t_1t_2%5D%5B4%28t_1%2Bt_2%29%5E4%2B4t_1t_2%28t_1%2Bt_2%29%5E2%2Bt_1%5E2t_2%5E2%5D%5C%5C+%3D%264%28t_1%2Bt_2%29%5E6-12t_1t_2%28t_1%2Bt_2%29%5E4-15t_1%5E2t_2%5E2%28t_1%2Bt_2%29%5E2-4t_1%5E3t_2%5E3+%5Cend%7Balign%7D

    展开后刚好是

    equation?tex=%5Cfrac%7Bq%5E2%7D%7B4%7D%2B%5Cfrac%7Bp%5E3%7D%7B27%7D 的分子的相反数,也就是

    equation?tex=%5CDelta%3D-%284p%5E3%2B27q%5E2%29 ,称之为方程的判别式,可以用来判断方程是否有重根。

    如果

    equation?tex=%5CDelta%3D0

    equation?tex=4p%5E3%2B27q%5E2%3D0 ,非实的复根一定成对出现,所以只可能是实根是重根,剩下一个根也不可能是非实的复根,所以三个根都是实根;最特殊的情况是1个三重实根(

    equation?tex=p%3Dq%3D0 )。

    如果

    equation?tex=%5CDelta%3C0

    equation?tex=4p%5E3%2B27q%5E2%3E0 ,一定是只有1个实根,两个非实的共轭复根;

    如果

    equation?tex=%5CDelta%3E0

    equation?tex=4p%5E3%2B27q%5E2%3C0 ,一定是3个不同实根。

    对于一般的三次方程

    equation?tex=ax%5E3%2Bbx%5E2%2Bcx%2Bd%3D0 ,判别式

    equation?tex=%5CDelta%3Da%5E4%28x_1-x_2%29%5E2%28x_2-x_3%29%5E2%28x_3-x_1%29%5E2%3D18abcd%2Bb%5E2c%5E2-27a%5E2d%5E2-4ac%5E3-4b%5E3d

    四、三角解法 (Trigonometric Method) 和几何意义

    如果实系数方程

    equation?tex=t%5E3%2Bpt%2Bq%3D0 有三个不同的实根 (

    equation?tex=%5CDelta%3E0%2C~4p%5E3%2B27q%5E2%3D-%5CDelta%3C0 ,一定有

    equation?tex=p%3C0 ),用求根公式表示出来会有虚数

    equation?tex=%5Csqrt%7B%5Cfrac%7Bp%5E2%7D%7B4%7D%2B%5Cfrac%7Bq%5E3%7D%7B27%7D%7D%3D%5Csqrt%7B-%5Cfrac%7B%5CDelta%7D%7B108%7D%7D%3D%5Cfrac%7Bi%5Csqrt%7B3%5CDelta%7D%7D%7B18%7D%5C%5C

    但如果用三角函数表示出来,不仅可以避免复数,还可以看出三个根的分布。

    为了利用三倍角公式

    equation?tex=%5Ccos+3%5Ctheta%3D4%5Ccos%5E3%5Ctheta-3%5Ccos%5Ctheta ,待定系数可设

    equation?tex=t%3Du%5Ccos%5Ctheta

    代入可得

    equation?tex=u%5E3%5Ccos%5E3%5Ctheta%2Bpu%5Ccos%5Ctheta%2Bq%3D0

    只需要满足系数成比例,也就是

    equation?tex=%5Cfrac%7Bu%5E3%7D%7Bpu%7D%3D%5Cfrac%7B4%7D%7B-3%7D ,解得

    equation?tex=u%3D2%5Csqrt%7B-%5Cfrac%7Bp%7D%7B3%7D%7D%3E0 .

    原方程变为

    equation?tex=%5Ccos3%5Ctheta%3D4%5Ccos%5E3%5Ctheta-3%5Ccos%5Ctheta%3D%5Cfrac%7B3q%7D%7B2p%7D%5Csqrt%7B-%5Cfrac%7B3%7D%7Bp%7D%7D .

    equation?tex=%5Ctheta_k%3D%5Cfrac%7B1%7D%7B3%7D%5Carccos%5Cleft%28%5Cfrac%7B3q%7D%7B2p%7D%5Csqrt%7B-%5Cfrac%7B3%7D%7Bp%7D%7D%5Cright%29-%5Cfrac%7B2k%5Cpi%7D%7B3%7D%2C~k%3D0%2C1%2C2 .

    当然也可以取为

    equation?tex=%5Coverline%7B%5Ctheta_k%7D%3D-%5Ctheta_k%2C+~k%3D0%2C1%2C2.

    equation?tex=t_k%3D2%5Csqrt%7B-%5Cfrac%7Bp%7D%7B3%7D%7D%5Ccos%5Ctheta_k%2C+~k%3D0%2C1%2C2.

    圆心在y轴上任意一点,半径为

    equation?tex=r%3D2%5Csqrt%7B-%5Cfrac%7Bp%7D%7B3%7D%7D 的圆上,三个点分别对应

    equation?tex=%5Ctheta_k%2C~k%3D0%2C1%2C2 ,三个根是这三个点在横轴上的投影。对于一般情形圆心需要平移

    equation?tex=-%5Cfrac%7Bb%7D%7B3a%7D ,刚好在三次函数

    equation?tex=y%3Dax%5E3%2Bbx%5E2%2Bcx%2Bd 图像的拐点处。

    方程有3个不同的实的单根,对应函数图像与横轴的3个交点(均斜穿过横轴);函数图像有2个转折点(turning points),对应一个局部最大和一个局部最小。

    五、三次函数的图像

    三次函数

    equation?tex=f%28x%29%3Dax%5E3%2Bbx%5E2%2Bcx%2Bd 转折点的数量取决于其导函数

    equation?tex=f%27%28x%29%3D3ax%5E2%2B2bx%2Bc 的判别式

    equation?tex=4b%5E2-12ac .

    或者通过水平方向的平移消掉二次项和竖直方向上的拉伸压缩(或者还需要沿横轴的反射)把首项系数变为1,可以得到

    equation?tex=f%28x%29%3Dx%5E3%2Bpx%2Bq

    equation?tex=f%27%28x%29%3D3x%5E2%2Bp ,判别式是

    equation?tex=-12p ,事实上,我们有

    equation?tex=p%3D%5Cfrac%7B3ac-b%5E2%7D%7B3a%5E2%7D .

    可以看出如果

    equation?tex=b%5E2-3ac%3E0+~%28p%3C0%29 那么函数图像一定有两个转折点(局部最大和局部最小);

    equation?tex=b%5E2-3ac%3D0 则会有一个不是转折点的临界点;

    equation?tex=b%5E2-3ac%3C0 则没有临界点(没有水平切线)。

    下面不妨记

    equation?tex=%5CDelta%3E0 为情形(1),这种情形一定有

    equation?tex=b%5E2-3ac%3E0~%284p%5E3%2B27q%5E2%3C0%5CRightarrow+p%3C0%29 ,

    e.g.

    equation?tex=y%3D%28x%2B1%29%28x%2B2%29%28x-3%29%3Dx%5E3-7x-6 .

    equation?tex=%5CDelta%3C0 时,有一个实根和一对非实的共轭复根,对应函数图像与x轴的1个交点(斜穿过横轴);根据转折点的数量又分为三种情形

    情形(2):

    equation?tex=b%5E2-3ac%3E0~%284p%5E3%2B27q%5E2%3E0+~%5C%26+~p%3C0%29

    2个转折点,对应一个局部最大和一个局部最小,

    e.g.

    equation?tex=y%3D%28x-2%29%28x%5E2%2B2x%2B3%29%3Dx%5E3-x-6

    情形(3):

    equation?tex=b%5E2-3ac%3D0~%284p%5E3%2B27q%5E2%3E0~%5C%26+~p%3D0%29

    1个非转折点的临界点,函数在定义域

    equation?tex=%5Cmathbb%7BR%7D 上单调,e.g.

    equation?tex=y%3D%28x%2B1%29%28x%5E2-x%2B1%29%3Dx%5E3%2B1

    equation?tex=y%3D%28x-1%29%28x%5E2%2Bx%2B1%29%3Dx%5E3-1 .

    情形(4):

    equation?tex=b%5E2-3ac%3C0~%284p%5E3%2B27q%5E2%3E0~%5C%26~p%3E0%29

    0个临界点,函数在定义域

    equation?tex=%5Cmathbb%7BR%7D 上单调,e.g.

    equation?tex=y%3Dx%28x%5E2%2B1%29%3Dx%5E3%2Bx .

    equation?tex=%5CDelta%3D0 时,又对应两种情况:

    情形(5):

    equation?tex=b%5E2-3ac%3E0~%284p%5E3%2B27q%5E2%3D0+~%5C%26+~p%3C0%29

    1个二重实根和1个实单根,函数图像在二重根处与横轴相切不穿过,在单根处斜穿过,一定有两个转折点,对应一个局部最大和一个局部最小,e.g.

    equation?tex=y%3D%28x-1%29%5E2%28x%2B2%29%3Dx%5E3-3x%2B2 .

    情形(6):

    equation?tex=b%5E2-3ac%3D0~%284p%5E3%2B27q%5E2%3D0+~%5C%26+~p%3D0%29

    1个三重实根,函数图像在三重实根处与x轴相切穿过,没有转折点,函数在定义域

    equation?tex=%5Cmathbb%7BR%7D 上单调,e.g.

    equation?tex=y%3Dx%5E3 .

    展开全文
  • 公式法与判别式[汇编].pdf
  • 二次方程求根公式,是每个中学阶段的学生不得不要面对的一个公式,几家欢喜几家愁,那么先来看看这个求根公式的样子是什么吧:二次方程求根公式很复杂对不对?杂七杂八的什么都有,那么大家还记得它是怎么来的吗?忘记...

    c97a65efe87855495c3c552b97ea2fde.png

    二次方程求根公式,是每个中学阶段的学生不得不要面对的一个公式,几家欢喜几家愁,那么先来看看这个求根公式的样子是什么吧:

    c008da2136b6a72d8c35dcebb19422a3.png

    二次方程求根公式

    很复杂对不对?杂七杂八的什么都有,那么大家还记得它是怎么来的吗?忘记了的话,那么仔细看一看,假如记得就可以跳过下面这一段了。下面推导过程中,有一个前提b2-4ac≥0。

    b6b7fea5131ee6be3cdd023d8e7b5a4e.png

    配方法推导求根公式的过程

    上面的这个过程就是配方法的过程,教课书里有说的。这也是一种很重要的数学思想,配方法。今天这篇文章不打算来探讨配方法的,而是来看看这个二次方程的求根公式的,我们一起来好好的研究这个二次求根公式?

    首先,这个求根公式向我们展示了这样的一个事实:二次方程的实根是由其三个系数(二次项系数a、一次项系数b、常数项c)完全确定的,也就是说,一个二次方程的三个系数知道的话,那么这个方程的实根情况也就确定了,这是一个(二次方程的)“万能”求根公式。它向我们展示了数学的抽象性、一般性和简洁美。

    其次,这个公式包括了初中阶段所学过的全部运算:加、减、乘、除、乘方、开方。其中,除法要求分母不为零,这个是满足的;但是开平方要求被开方数非负,这个要求并不一定总能满足,基于这个原因,就导致了有的方程有实数根,有的方程没有实数根。这一个公式里面包含六种运算,在整个初中阶段,仅此一个。

    第三,这个公式的本身就回答了解二次方程的三个问题:

    1)方程有没有实根?

    这个只需看开平方能够进行,也是上面所说的被开方数是否是非负,那么就只需计算Δ=b2-4ac的符号是否非负。

    2)有实根时共有几个?

    当Δ≥0时有两个实根。当Δ>0时,原二次方程有两个不相等的实根;当Δ=0时,原二次方程有两个相等的实根。

    3)如何求出实根?

    这个问题的答案就是它本身啊!

    你看啊,一个公式就如此完整、完全、完善的回答了三个问题,难道这个公式不应该用perfect来概括嘛?实至名归啊!

    第四,这个公式给我们提示了二次方程求根的解题程序,这个就是计算机的算法的模型啊!

    1)将所给的方程化为标准形式

    ax2+bx+c=0 (a≠0)

    确定系数a、b、c。

    2)计算判别式Δ=b2-4ac,考察其符号;

    3)在Δ≥0的条件下,代入求根公式,算出实根来。

    你现在还忍心说这个公式真的乱七八糟嘛?生活不缺乏美,缺乏的是发现的眼睛,你说了?

    假如你还说,这个公式不能产生出什么新的东西了,学习数学了,既要正向用,也要逆向使用,那就将二次方程求根公式逆向推一遍,看能得到什么吧:

    f628d309fc68cfbcdc3c3b5d2e49042b.png

    二次方程求根公式的逆过程

    这里的每一步都比较平常无奇,但平常的东西就有可能有意想不到的结果,假如我们将上面的过程倒过来书写,我们可以发现二次方程的一种新的解法。这里我就不在写了。

    在这个新的解法中,我们可以发现,判别式其实是配方法的结果,并且判别式的本质上式完全平方式(2ax+b)2,并且这个过程在竞赛问题中也有出现过。这个过程也可以说明判别式为什么会在方程讨论、不等式证明、函数求极值等许多领域应用范围如此之广。

    一个简单的公式,包含如此之多的内容,难怪说数学是科学语言,是科学的基础,马克思曾说过:“任何学科只有用上了数学这个工具,才称之为科学!”不无道理。

    展开全文
  • 一元四次方程求根公式,是数学代数学基本公式,由意大利数学家费拉里首次提出证明。一元四次方程是未知数最高次数不超过四次的多项式方程,应用化四次为二次的方法,结合盛金公式求解。适用未知数最高次项的次数不...
  • 一元方程的求根公式

    千次阅读 2019-03-10 15:12:52
    要得到一元方程的求根公式,就得先定义什么是一元方程,什么是求根公式。方程是指等式连接的两个子(相信大家都明白),一元方程是指方程中只含有一个未知数的方程。求根公式就是通过方程的系数进行有限次加减乘除...
  • 一元三次方程的判别式

    千次阅读 2020-12-23 04:47:20
    范盛金推导出一套直接用a、b、c、d表达的较简明形式的一元三次方程的一般求根公式,并建立了新判别法。(有的数学爱好者把以下公式称作范氏公式,虽然是正确的,但作者认为:全世界姓范的人有成千上万,科学的...
  • 一元二次方程求根公式小结

    千次阅读 2020-10-03 10:54:15
    一元二次方程的解 小结 一、一元二次方程的解 含义及特点 ...二、一元二次方程求根公式小结 叮嘟!这里是小啊呜的学习课程资料整理。好记性不如烂笔头,今天也是努力进步的一天。一起加油进阶吧!
  • 2013-09-12一元二次方程所有解法是不是一样的答案一元二次方程的解法有如下几种: 第一种:运用因式分解的方法,而因式分解的方法有:(1)十字相乘法(又包括二次项系数为1的和二次项系数不为1,但又不是0的),(2)公式法:...
  • 一元三次方程求解(求根) - 盛金公式法 一、引言 只含有一个未知数(即“元”),并且未知数的最高次数为3(即“次”)的整式方程叫做一元三次方程(英文名:cubic equation in one unknown)。一元三次方程的...
  • 初中二次函数求根公式是什么

    千次阅读 2021-05-22 11:36:53
    初中二次函数求根公式是什么2020-10-03 14:51:04文/宋则贤一般地,把形如y=ax²+bx+c(a≠0)(a、b、c是常数)的函数叫做二次函数,下面总结了二次函数的相关知识点,供大家参考。初中二次函数求根公式二次函数的求根...
  • 北师大版九年级数学上册同步练习:2.3 用公式法解一元二次方程 第1课时 公式法与判别式.docx
  • 一般三次方程的简明新求根公式判别法—— 谢国芳Email: roixie@163.comAbstract: In this article we derive a set of elegant new formulas for finding the roots of a cubic equation of the general form ...
  • 一元三次方程求根公式

    千次阅读 2020-03-15 21:56:44
    标准型的一元三次方程aX^3+bX^2+cX+d=0(a,b,c,d∈R,且a≠0),其解法有:1、意大利学者卡尔丹于1545年发表的卡尔丹公式法;2、中国学者范盛金于1989年发表的盛金公式法。 两种公式法都可以解标准型的一元三次...
  • 在机器学习中,对于有监督学习可以将其分为两类模型:判别式模型和生成式模型。简单地说,判别式模型是针对条件分布建模,而生成式模型则针对联合分布进行建模。 01 基本概念 假设我们有训练数据(X,Y),X是属性集....
  • 产生式模型和判别式模型区分

    千次阅读 2019-03-20 20:32:49
    近来看到贝叶斯分类器,其中有一个知识点提及产生式模型和判别式模型,查阅了一番资料终于理解透彻了,特此记录。 产生式模型和判别式模型区分 二者是分类器中常遇到的概念,产生式模型估计它们的联合概率分布P(x,y)...
  • 多元函数极值时,我们关注的不是偏导数而是方向导数,因为 f(x,y)f(x,y)f(x,y)沿任意方向都可以变化,而偏导数只描述了沿x,y方向的变化,方向导数则可描述随意方向。 ∂f∂l=▽f⋅(cosα,cosβ)=fx′cosα+fy′...
  • 判别式模型(Discriminative Model)是直接对条件概率p(y|x;θ)建模。常见的判别式模型有 线性回归模型、线性判别分析、支持向量机SVM、神经网络等。生成式模型(Generative Model)则会对x和y的联合分布p(x,y)建模,...
  • 机器学习:生成式模型和判别式模型

    千次阅读 多人点赞 2018-12-23 11:41:27
    决策函数Y=f(X)与条件概率分布P(Y|X) 决策函数Y=f( ...参考一篇比较判别式模型和生成式模型的paper:  On Dicriminative vs. Generative classfier: A comparison of logistic regression and naive Bayes
  • 谈谈判别式模型与生成式模型

    千次阅读 2018-04-06 16:51:44
    判别式模型与生成式模型是机器学习领域中的基本概念,今天将两者的特点总结一下,如下表所示: 对比 判别式模型 生成式模型 特点 寻找不同类别之间的最优分类面,反映异类数据之间的差异 以统计的角度表示数据...
  • 1 定义1.1 生成式模型 生成式模型(Generative Model)会对x和y的联合分布p(x,y)建模,然后通过贝叶斯公式来求得 p(yi|x),然后选取使得p(yi|x) 最大的 yi,即: 简单说...1.2 判别式模型 对条件概率 p(y|x;) ...
  • 1.线性判别分析的基本出发点  借用一下周教授传奇大作西瓜书华人区《机器学习》配图,线性判别分析是很老的技术了,...2.线性判别分析的相关公式详解 公式1:投影转换  这个公式的含义是,x为数据的向量,...
  • 文章目录一、监督学习中的判别式模型和生成式模型1.1 判别式模型(线性回归、SVM、NN)1.2 生成式模型(朴素贝叶斯、HMM)二、无监督学习中的生成式模型参考资料 一、监督学习中的判别式模型和生成式模型 有监督学习...
  • 常见高斯型公式简介

    千次阅读 2021-10-11 16:36:11
    一维区间上的公式 区间 [a,b][a,b][a,b] 上带权函数 ρ(x)\rho(x)ρ(x) 的插值型公式的一般形式为 I(f)=∫abρ(x)f(x)dx≈∑k=0nAkf(xk)(1) I(f) = \int^b_a \rho(x) f(x) dx \approx \sum_{k=0}^nA_k f(x_k...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 16,661
精华内容 6,664
关键字:

判别式公式求根公式