精华内容
下载资源
问答
  • 主要介绍了python 如何判断一组数据是否符合正态分布,帮助大家更好的利用python分析数据,感兴趣的朋友可以了解下
  • 正态分布:若随机变量x服从有个数学期望为μ,方差为σ2 的正态分布,记为N(μ,σ)其中期望值决定密度函数的位置,标准差决定分布的幅度,当υ=0,σ=0 时的正态分布是标准正态分布判断方法有画图/k-s检验画图:#导入...

    正态分布:

    若随机变量x服从有个数学期望为μ,方差为σ2 的正态分布,记为N(μ,σ)

    其中期望值决定密度函数的位置,标准差决定分布的幅度,当υ=0,σ=0 时的正态分布是标准正态分布

    判断方法有画图/k-s检验

    画图:

    #导入模块

    import numpy as np

    import pandas as pd

    import matplotlib.pyplot as plt

    %matplotlib inline

    #构造一组随机数据

    s = pd.DataFrame(np.random.randn(1000)+10,columns = ["value"])

    #画散点图和直方图

    fig = plt.figure(figsize = (10,6))

    ax1 = fig.add_subplot(2,1,1) # 创建子图1

    ax1.scatter(s.index, s.values)

    plt.grid()

    ax2 = fig.add_subplot(2,1,2) # 创建子图2

    s.hist(bins=30,alpha = 0.5,ax = ax2)

    s.plot(kind = "kde", secondary_y=True,ax = ax2)

    plt.grid()

    结果如下:

    2020923152316793.png

    使用ks检验:

    #导入scipy模块

    from scipy import stats

    """

    kstest方法:KS检验,参数分别是:待检验的数据,检验方法(这里设置成norm正态分布),均值与标准差

    结果返回两个值:statistic → D值,pvalue → P值

    p值大于0.05,为正态分布

    H0:样本符合

    H1:样本不符合

    如何p>0.05接受H0 ,反之

    """

    u = s["value"].mean() # 计算均值

    std = s["value"].std() # 计算标准差

    stats.kstest(s["value"], "norm", (u, std))

    结果是KstestResult(statistic=0.01441344628501079, pvalue=0.9855029319675546),p值大于0.05为正太分布

    以上就是python 判断一组数据是否符合正态分布的详细内容,更多关于python 正态分布的资料请关注云海天教程其它相关文章!

    原文链接:https://www.cnblogs.com/cgmcoding/p/13253934.html

    展开全文
  • 正态分布:若随机变量x服从有个数学期望为μ,方差为σ2 的正态分布,记为N(μ,σ)其中期望值决定密度函数的位置,标准差决定分布的幅度,当υ=0,σ=0 时的正态分布是标准正态分布判断方法有画图/k-s检验画图:#导入...

    正态分布:

    若随机变量x服从有个数学期望为μ,方差为σ2 的正态分布,记为N(μ,σ)

    其中期望值决定密度函数的位置,标准差决定分布的幅度,当υ=0,σ=0 时的正态分布是标准正态分布

    判断方法有画图/k-s检验

    画图:

    #导入模块

    import numpy as np

    import pandas as pd

    import matplotlib.pyplot as plt

    %matplotlib inline

    #构造一组随机数据

    s = pd.DataFrame(np.random.randn(1000)+10,columns = ['value'])

    #画散点图和直方图

    fig = plt.figure(figsize = (10,6))

    ax1 = fig.add_subplot(2,1,1) # 创建子图1

    ax1.scatter(s.index, s.values)

    plt.grid()

    ax2 = fig.add_subplot(2,1,2) # 创建子图2

    s.hist(bins=30,alpha = 0.5,ax = ax2)

    s.plot(kind = 'kde', secondary_y=True,ax = ax2)

    plt.grid()

    结果如下:

    20200923181931858.png

    使用ks检验:

    #导入scipy模块

    from scipy import stats

    """

    kstest方法:KS检验,参数分别是:待检验的数据,检验方法(这里设置成norm正态分布),均值与标准差

    结果返回两个值:statistic → D值,pvalue → P值

    p值大于0.05,为正态分布

    H0:样本符合

    H1:样本不符合

    如何p>0.05接受H0 ,反之

    """

    u = s['value'].mean() # 计算均值

    std = s['value'].std() # 计算标准差

    stats.kstest(s['value'], 'norm', (u, std))

    结果是KstestResult(statistic=0.01441344628501079, pvalue=0.9855029319675546),p值大于0.05为正太分布

    以上就是python 判断一组数据是否符合正态分布的详细内容,更多关于python 正态分布的资料请关注WEB开发者其它相关文章!

    展开全文
  • 判断数据是否符合正态分布的方法总结描述统计方法Q-Q图P-P图直方图茎叶图统计检验方法SW检验KS检验AD检验W检验 在很多模型及假设检验中都需要满足个假设条件:数据需服从正态分布。这篇文章主要讲讲如何判断数据...
    • 在很多模型及假设检验中都需要满足一个假设条件:数据需服从正态分布。这篇文章主要讲讲如何判断数据是否符合正态分布。主要分为两种方法:描述统计方法和统计检验方法。

    描述统计方法

    • 描述统计就是用描述的数字或图表来判断数据是否符合正态分布。常用的方法有Q-Q图、P-P图、直方图、茎叶图。

    Q-Q图

    • Q是quantile的缩写,即分位数。 分位数就是将数据从小到大排序,然后切成100份,看不同位置处的值。比如中位数,就是中间位置的值。Q-Q图的x轴为分位数,y轴为分位数对应的样本值。x-y是散点图的形式,通过散点图可以拟合出一条直线, 如果这条直线的斜率为标准差,截距为均值.,则可以判断数据符合正态分布,否则则不可以。
      在这里插入图片描述
    • 拟合出来的这条直线和正态分布之间有什么关系呢?为什么可以根据这条直线来判断数据是否符合正态分布呢?我们先来想一下正态分布的特征,正态分布的x轴为样本值,从左到右x是逐渐增大的,y轴是每个样本值对应的出现的概率。概率值先上升后下降,且在中间位置达到最高。可以把Q-Q图中的y轴理解成正态分布中的x轴, 如果拟合出来的直线是45度,可以保证中位数两边的数值分布是一样的,即正态分布中基于中位数左右对称。

    P-P图

    • P-P图是根据变量的累积概率对应于所指定的理论分布累积概率绘制的散点图,用于直观地检测样本数据是否符合某一概率分布。如果被检验的数据符合所指定的分布,则代表样本数据的点应当基本在代表理论分布的对角线上。
    • P-P图的检验原理与Q-Q图基本相同,只是Q-Q图用的是分布的分位数来做检验,而P-P图是用分布的累计比。和Q-Q图一样,如果数据为正态分布,则在P-P正态分布图中,数据点应基本在图中对角线上。

    直方图

    • 直方图分为两种,一种是频率分布直方图,一种是频数分布直方图。频数就是样本值出现的次数,频率是某个值出现的次数与所有样本值出现总次数的比值。从直方图我们可以很直观的看出这组数据是否符合正态分布。
      在这里插入图片描述

    茎叶图

    • 茎叶图的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。
    • 茎叶图是一个与直方图相类似的特殊工具,但又与直方图不同,茎叶图保留原始资料的资讯,直方图则失去原始资料的讯息。将茎叶图茎和叶逆时针方向旋转90度,实际上就是一个直方图,可以从中统计出次数,计算出各数据段的频率或百分比。从而可以看出分布是否与正态分布或单峰偏态分布逼近。
      在这里插入图片描述

    统计检验方法

    • 讲完了描述统计的方法,我们来看一下统计检验的方法。统计检验的方法主要有SW检验、KS检验、AD检验、W检验。

    SW检验

    • SW检验中的S就是偏度,W就是峰度。
    • 偏度(skewness),是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度的数字特征。包括右偏分布(也叫正偏分布,其偏度>0),正态分布(偏度=0),左偏分布(也叫负偏分布,其偏度<0)。在定义上,偏度是样本的三阶标准化矩:在这里插入图片描述
    • 峰度(kurtosis),表征概率密度分布曲线在平均值处峰值高低的特征数。直观看来,峰度反映了峰部的尖度,计算方法为随机变量的四阶中心矩与方差平方的比值。公式上就是把偏度计算公式里的幂次改为4即可。峰度包括正态分布(峰度值=3),厚尾(峰度值>3),瘦尾(峰度值<3)。公式可表示如下:
      在这里插入图片描述
    • 在Python的scipy包中scipy.stats.normaltest(x, axis=0, nan_policy=‘propagate’)的原理就是基于数据的偏度和峰度,该方法是专门做正态性检验的。x:待检验的数据;axis:默认为0,表示在0轴上检验,即对数据的每一行做正态性检验,我们可以设置为 axis = None 来对整个数据做检验;nan_policy:当输入的数据中有空值时的处理办法。默认为 ‘propagate’,返回空值;设置为 ‘raise’ 时,抛出错误;设置为 ‘omit’ 时,在计算中忽略空值。

    KS检验

    • KS检验是基于样本累积分布函数来进行判断的。可以用于判断某个样本集是否符合某个已知分布,也可以用于检验两个样本之间的显著性差异。如果是判断某个样本是否符合某个已知分布,比如正态分布,则需要先计算出标准正态分布的累计分布函数,然后计算样本集的累计分布函数。两个函数之间在不同的取值处会有不同的差值。我们只需要找出来差值最大的那个点D。然后基于样本集的样本数和显著性水平找到差值边界值(类似于t检验的边界值)。判断边界值和D的关系, 如果D小于边界值,则可以认为样本的分布符合已知分布,否则不可以。
      在这里插入图片描述
    • 在Python中可通过scipy包直接进行KS检验:scipy.stats.kstest(x,cdf = “norm”);x表示待检验的样本集,cdf用来指明要判断的已知分布类型:‘norm’, ’expon’, ’logistic’, ’gumbel’, ’gumbel_l’, gumbel_r’,其中norm表示正态分布检验。返回两个值:D和对应的p_value值。

    AD检验

    • AD检验是在KS基础上进行改造的,KS检验只考虑了两个分布之间差值最大的那个点,但是这容易受异常值的影响。 AD检验考虑了分布上每个点处的差值。
    • 在Python中可通过scipy包直接进行KS检验:scipy.stats.anderson(x, dist= ‘norm’),x为待检验的样本集,dist用来指明已知分布的类型,可选值与ks检验中可选值一致。返回三个结果: 第一个为统计值,第二个为评判值,第三个为每个评判值对应的显著性水平。

    W检验

    • W检验(Shapiro-Wilk的简称)是基于两个分布的相关性来进行判断,会得出一个类似于皮尔逊相关系数的值。 值越大,说明两个分布越相关,越符合某个分布。
    • 在Python中可通过scipy包直接进行W检验:scipy.stats.shapiro(x),x为待检验的样本集,上面的代码会返回两个结果:W值和其对应的p_value。shapiro是专门用于正态性检验的,所以不需要指明分布类型。且 shapiro 不适合做样本数>5000的正态性检验。

    判断完后,若数据不符合正态分布又当如何呢?后续小编将继续总结将非正态分布数据转换为正态分布的方法。

    展开全文
  • 正态分布: 若随机变量x服从有个数学期望为μ,方差为σ2的正态分布,记为N(μ,σ) 其中期望值决定密度函数的位置,标准差决定分布的幅度,当υ=0,σ=0 时的...#构造一组随机数据 s = pd.DataFrame(np.random.randn.

    正态分布:

    若随机变量x服从有个数学期望为μ,方差为σ2 的正态分布,记为N(μ,σ)

    其中期望值决定密度函数的位置,标准差决定分布的幅度,当υ=0,σ=0 时的正态分布是标准正态分布

    判断方法有画图/k-s检验

    画图:

    #导入模块
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline
    
    #构造一组随机数据
    s = pd.DataFrame(np.random.randn(1000)+10,columns = ['value'])
    
    #画散点图和直方图
    fig = plt.figure(figsize = (10,6))
    ax1 = fig.add_subplot(2,1,1)  # 创建子图1
    ax1.scatter(s.index, s.values)
    plt.grid()
    
    ax2 = fig.add_subplot(2,1,2)  # 创建子图2
    s.hist(bins=30,alpha = 0.5,ax = ax2)
    s.plot(kind = 'kde', secondary_y=True,ax = ax2)
    plt.grid()

    结果如下:

    使用ks检验:

    #导入scipy模块
    from scipy import stats
    
    """
    kstest方法:KS检验,参数分别是:待检验的数据,检验方法(这里设置成norm正态分布),均值与标准差
    结果返回两个值:statistic → D值,pvalue → P值
    p值大于0.05,为正态分布
    H0:样本符合  
    H1:样本不符合 
    如果p>0.05接受H0 ,反之 
    """
    
    s = pd.DataFrame(np.random.randn(1000)+10,columns = ['value'])
    u = s['value'].mean()  # 计算均值
    std = s['value'].std()  # 计算标准差
    stats.kstest(s['value'], 'norm', (u, std))

    结果是KstestResult(statistic=0.01441344628501079, pvalue=0.9855029319675546),p值大于0.05为正太分布

    展开全文
  • 这篇文章主要讲讲如何判断数据是否符合正态分布。主要分为两种方法:描述统计方法和统计检验方法。描述统计方法描述统计就是用描述的数字或图表来判断数据是否符合正态分布。常用的方法有Q-Q图、P-P图、直方图、茎叶...
  • 也就是两个人同时来决定个事,而最终的决定权在2,2决定是不是服从正态分布。 比如1说,h=0假设符合正态分布。而2说,p<0.05。那么就拒绝了1的说法,那么就不服从正态分布。 比如说,h=1假设不
  • 正态分布:若随机变量x服从有个数学期望为μ,方差为σ2 的正态分布,记为N(μ,σ)其中期望值决定密度函数的位置,标准差决定分布的幅度,当υ=0,σ=0 时的正态分布是标准正态分布判断方法有画图/k-s检验画图:#导入...
  • 验证是否正态分布的方法分为两类:肉眼判断假设检验肉眼判断肉眼判断当然是句玩笑话,我们不能只凭看两眼数据就认定是否符合正态分布了,我们是通过其与正态分布数据相比较,并不是直接做个大仙,...
  • 正态分布广泛存在于自然现象、生产、生活的方方面面,例如试卷命题难度,产品的使用寿命、农作物产量...很多时候,在进行数据分析工作时,首先要看的就是数据是服从何种概率分布,而正态分布则是最重要的种概率分...
  • 本文主要分两个部分,(1)判别当前数据是否满足正态分布;(2)介绍几种非正态分布转化为正态分布的方法; 1. 正态分布判别 常用的正态分布判别方法主要有三种方法: (1)直方图:直方图(Histogram)又称质量...
  • 看SPSS如何检验数据是否服从正态分布微生物生态学研究往往是“三分靠实验,七分靠分析”,很多分析的前提是需要你的数据服从正态分布。如何检验数据是否服从正态分布呢?在SPSS中,正态分布的检验方法有:计算偏度...
  • 打开Minitab之后 点击Stat>Basic Statistics> Normality Test  分析之后若 P value(P值)>0.05,说明此组数据服从正态分布
  • QQ图判断一分布是否正态分布

    万次阅读 多人点赞 2018-01-27 10:01:56
    常用的有一个分位数叫,百分位数,它是指如果将一组数据从小到大排序,并计算相应的累计百分位,则某一百分位所对应数据的值就称为这一百分位的百分位数。 QQ图是一种散点图,对应于正态分布的QQ图,就是由标准正态...
  • 1.根据偏度系数和峰度系数判断。SPSS 菜单栏,Analyze...0.05,服从正态分布。查看Q-Q图进一步确认。若偏度系数Skewness=-0.333;峰度系数Kurtosis=0.886;两个系数都小于1,可认为近似于正态分布。 或者通过Analyze—D
  • 在对数据进行处理前,有事需要判断数据是否正态分布,比如线性回归,比如使用3-sigma判断数据是否异常。常用的正态分布检测方法:Shapiro-Wilk testShapiro-Wilk test是种在频率上统计检验中检验正态性的方法。...
  • 给定序列X=(x1,x2,x3,...,xn),判断是否数据序列X符合正态分布。 二、方法 常见已知分布的检验方法:kstest、jbtest、lillietest、chi2gof等,这里使用使用Lilliefors检验进行描述。 语法: 1:h =...
  • 正态性分布检验 ...x为你要检验的数据。... %频数直方图(肉眼看是否左右对称,中间多,...%正态性检验(离散点是否分布在条直线上,表明样本来自正态分布,否则是非正态分布) 方法2衍生:{{{以下方法
  • matlab的Q-Q图能检验数据是否服从正态分布,或者近似正态分布。它认为,如果两个分布都是同类的,那么他们的分位数之间应该有线性关系。 如果某个分布跟标准正态分布相近,那么它的分位数与正态分布的分位数,应该...
  • 数据来源:样本均值,顺序统计量,样本中位数, 样本方差,样本标准差,直方图,核密度估计曲线,经验分布函数图,箱形图;matlab实现 (1)检验每组数据是否...% 第一组数据正态分布判断  [mu,sigma]=nor...
  • 什么是正态分布 关于什么是正态分布,早在中学时老师就讲过了。通俗来讲,就是当我们把数据绘制成频率直方图,所构成曲线的波峰位于中间,两边...如下图,是数据统计实例中出现的正态分布数据: 为什么要做正...
  • matlab 判断是否符合正态分布 lillietest

    万次阅读 多人点赞 2018-08-19 11:37:36
    lillietest  Lilliefors检验 常用语法  [h,p]=lillietest(X) ... 返回值h为假设,只有0和1两种情况,h=0假设符合正态分布,h=1假设不符合正态分布  返回值p为方差概率,也可以说事情的发生概率,p&...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 12,335
精华内容 4,934
关键字:

判断一组数据是否正态分布