精华内容
下载资源
问答
  • 利用MATLAB进行数学建模

    万次阅读 多人点赞 2017-03-23 00:25:22
    利用已有程序 : a=polyfit(x,y,m) 多项式在 x 处的值 y 可用以下命令计算:   y=polyval ( a , x )   编写代码如下 运行结果: f1 =   43.2000 -148....

    一、用给定的多项式,如y=x3-6x2+5x-3,产生一组数据(xi,yii=1,2,…,n),再在yi上添加随机干扰(可用rand产生(0,1)均匀分布随机数,或用rands产生N(0,1)分布随机数),然后用xi和添加了随机干扰的yi作的3次多项式拟合,与原系数比较。

    分别作1246次多项式拟合,比较结果,体会欠拟合、过拟合现象。

     

    查找资料可知

    作多项式f(x)=a1xm+ …+amx+am+1拟合,可利用已有程序:

    a=polyfit(x,y,m)

    多项式在x处的值y可用以下命令计算:              

    y=polyvalax

     

    编写代码如下



    运行结果:

    f1 =

      43.2000 -148.8880

    f2 =

      10.5000  -72.3000   89.9870

    f4 =

       0.0000    1.0000   -6.0000   5.0000   -2.4130

    f6 =

    0.0000   -0.0000   0.0000    1.0000   -6.0000   5.0000   -2.4130


    运行后,比较拟合后多项式和原式的系数,发现四次多项式系数与原系数比较接近,四次多项式的四次项系数很小。作图后,发现一次和二次多项式的图形与原函数的差别比较大,属于欠拟合的情况,而四次多项式比较符合。六次多项式属于过拟合的情况。

     

     

    练习2  用电压V=10伏的电池给电容器充电,电容器上t时刻的电压为  ,其中V0是电容器的初始电压,是充电常数。试由下面一组tV数据确定V0

    分别应用非线性最小二乘拟合以及非线性回归命令求解,并作比较,体会统计回归与拟合方法的区别。

     

    1. 用非线性最小二乘拟合求解:



     

    两种方法确定的V0一样。

    统计回归可以判断拟合的效果,用统计回归可以分析可靠性,而拟合只是对数据点的拟合,不能用数据说明拟合的可靠性,只能从图形来判别。



    练习三

    在某海域测得一些点(x,y)处的水深z由下表给出,船的吃水深度为5英尺,估计在矩形区域(75200*-50150)里的哪些地方船要避免进入。

    用插值方法作海底曲面图.作出水深小于5的海域范围,z=5的等高线.

     

    展开全文
  • MATLAB数学建模(一):MATLAB与数学建模

    万次阅读 多人点赞 2018-10-26 21:32:06
     MATLAB数学建模中的使用情况:MATLAB 是公认的最优秀的数学模型求解工具,在数学建模竞赛中超过 95% 的参赛队使用 MATLAB 作为求解工具,在国家奖队伍中,MATLAB使用率几乎 100%。虽然比较知名的数模软件不.....

      以下内容为学习笔记,更多的内容请访问原链接:https://mp.weixin.qq.com/s/QVm2bByl5IR2BdZCHmnB7w?

           MATLAB在数学建模中的使用情况:MATLAB 是公认的最优秀的数学模型求解工具,在数学建模竞赛中超过 95% 的参赛队使用 MATLAB 作为求解工具,在国家奖队伍中,MATLAB 的使用率几乎 100%。虽然比较知名的数模软件不只 MATLAB。

         使用MATLAB的原因

    1. MATLAB 的数学函数全,包含人类社会的绝大多数数学知识。

    2. MATLAB 足够灵活,可以按照问题的需要,自主开发程序,解决问题。

    3. MATLAB易上手,本身很简单,不存在壁垒。掌握正确的 MATLAB 使用方法和实用的小技巧,在半小时内就可以很快地变成            MATLAB 高手了

         如何正确使用MATLAB去进行编程:

          正确且高效的 MATLAB 编程理念就是以问题为中心的主动编程。我们传统学习编程的方法是学习变量类型、语法结构、算法以及编程的其他知识,因为学习时候是没有目标的,也不知道学的知识什么时候能用到,收效甚微。而以问题为中心的主动编程,则是先找到问题的解决步骤,然后在 MATLAB 中一步一步地去实现。在每步实现的过程中,遇到问题查找知识(互联网时代查询知识还是很容易的),定位方法,再根据方法,查询 MATLAB 中的对应函数,学习函数用法,回到程序,解决问题。在这个过程中,知识的获取都是为了解决问题的,也就是说每次学习的目标都是非常明确的,学完之后的应用就会强化对知识的理解和掌握,这样即学即用的学习方式是效率最高,也是最有效的方式。最重要的是,这种主动的编程方式会让学习者体验到学习的成就感的乐趣,有成就感,自然就强化对编程的自信了。这种内心的自信和强大在建模中会发挥意想不到的力量,所为信念的力量。

        数学建模竞赛中的 MATLAB 水平要求:

    要想在全国大学生数学建模竞赛中拿到国奖, MATLAB 技能是必备的。 具体的技能水平应达到:

    1)了解 MATLAB 的基本用法,包括几个常用的命令,如何获取帮助,脚本结构,程序的分节与注释,矩阵的基本操作,快捷绘图方式;

    2)熟悉 MATLAB 的程序结构,编程模式,能自由地创建和引用函数(包括匿名函数);

    3)熟悉常见模型的求解算法和套路,包括连续模型,规划模型,数据建模类的模型;

    4)能够用 MALTAB 程序将机理建模的过程模拟出来,就是能够建立和求解没有套路的数学模型。 

    要想达到如上要求, 不能按照传统的学习方式一步一步地学习, 而要结合上述提到的学习理念制定科学的训练计划。

    展开全文
  • 北航出版的。卓金武主编,经典书籍, 学习如何利用MATLAB进行数学建模的好资料
  • Matlab数学建模

    2019-09-26 08:40:52
    (2)掌握Matlab数学建模的第一个小实例—评估股票价值与风险。 (3)掌握Matlab数学建模的回归算法。 二、实例演练。 1、谈谈你对Matlab与数学建模竞赛的了解。 Matlab在数学建模中使用广泛:MATLAB 是公认的最...

    一、学习目标。

    (1)了解Matlab与数学建模竞赛的关系。

    (2)掌握Matlab数学建模的第一个小实例—评估股票价值与风险。

    (3)掌握Matlab数学建模的回归算法。

    二、实例演练。

    1、谈谈你对Matlab与数学建模竞赛的了解。

    Matlab在数学建模中使用广泛:MATLAB 是公认的最优秀的数学模型求解工具,在数学建模竞赛中超过 95% 的参赛队使用 MATLAB 作为求解工具,在国家奖队伍中,MATLAB 的使用率几乎 100%。虽然比较知名的数模软件不只 MATLAB。

    人们喜欢使用Matlab去数学建模的原因:

    (1)MATLAB 的数学函数全,包含人类社会的绝大多数数学知识。

    (2)MATLAB 足够灵活,可以按照问题的需要,自主开发程序,解决问题。

    (3)MATLAB易上手,本身很简单,不存在壁垒。掌握正确的 MATLAB 使用方法和实用的小技巧,在半小时内就可以很快地变成 MATLAB 高手了。

    正确且高效的 MATLAB 编程理念就是以问题为中心的主动编程。我们传统学习编程的方法是学习变量类型、语法结构、算法以及编程的其他知识,因为学习时候是没有目标的,也不知道学的知识什么时候能用到,收效甚微。而以问题为中心的主动编程,则是先找到问题的解决步骤,然后在 MATLAB 中一步一步地去实现。在每步实现的过程中,遇到问题查找知识(互联网时代查询知识还是很容易的),定位方法,再根据方法,查询 MATLAB 中的对应函数,学习函数用法,回到程序,解决问题。在这个过程中,知识的获取都是为了解决问题的,也就是说每次学习的目标都是非常明确的,学完之后的应用就会强化对知识的理解和掌握,这样即学即用的学习方式是效率最高,也是最有效的方式。最重要的是,这种主动的编程方式会让学习者体验到学习的成就感的乐趣,有成就感,自然就强化对编程的自信了。这种内心的自信和强大在建模中会发挥意想不到的力量,所为信念的力量。

    数学建模竞赛中的 MATLAB 水平要求:

    要想在全国大学生数学建模竞赛中拿到国奖, MATLAB 技能是必备的。 具体的技能水平应达到:

    1)了解 MATLAB 的基本用法,包括几个常用的命令,如何获取帮助,脚本结构,程序的分节与注释,矩阵的基本操作,快捷绘图方式;

    2)熟悉 MATLAB 的程序结构,编程模式,能自由地创建和引用函数(包括匿名函数);

    3)熟悉常见模型的求解算法和套路,包括连续模型,规划模型,数据建模类的模型;

    4)能够用 MALTAB 程序将机理建模的过程模拟出来,就是能够建立和求解没有套路的数学模型。

    要想达到如上要求, 不能按照传统的学习方式一步一步地学习, 而要结合上述提到的学习理念制定科学的训练计划。

    2、已知股票的交易数据:日期、开盘价、最高价、最低价、收盘价、成交量和换手率,试用某种方法来评价这只股票的价值和风险。如何用MATLAB去求解该问题?(交易数据:点击此处获取数据

    解题步骤:

    第一阶段:从外部读取数据

    Step1.1:把数据文件sz000004.xls拖曳进‘当前文件夹区’,选中数据文件sz000004.xls,右键,将弹出右键列表,很快可发现有个“导入数据”菜单,如图 1 所示。

    图1. 启动导入数据引擎示意图

    Step1.2:单击“导入数据”这个按钮,则很快发现起到一个导入数据引擎,如图 4 所示。

    图2. 导入数据界面

    Step1.3:观察图 2,在右上角有个“导入所选内容”按钮,则可直接单击之。马上我们就会发现在 MATLAB 的工作区(当前内存中的变量)就会显示这些导入的数据,并以列向量的方式表示,因为默认的数据类型就是“列向量”,当然您可以可以选择其他的数据类型,大家不妨做几个实验,观察一下选择不同的数据类型后会结果会有什么不同。至此,第一步获取数据的工作的完成。

     

    第二阶段:数据探索和建模

    现在重新回到问题,对于该问题,我们的目标是能够评估股票的价值和风险,但现在我们还不知道该如何去评估,MATLAB 是工具,不能代替我们决策用何种方法来评估,但是可以辅助我们得到合适的方法,这就是数据探索部分的工作。下面我们就来尝试如何在 MATLAB 中进行数据的探索和建模。

    Step2.1:查看数据的统计信息,了解我们的数据。具体操作方式是双击工具区(直接双击这三个字),此时会得到所有变量的详细统计信息。通过查看这些基本的统计信息,有助于快速在第一层面认识我们所正在研究的数据。当然,只要大体浏览即可,除非这些统计信息对某个问题都有很重要的意义。数据的统计信息是认识数据的基础,但不够直观,更直观也更容易发现数据规律的方式就是数据可视化,也就是以图的形式呈现数据的信息。下面我们将尝试用 MATLAB 对这些数据进行可视化。

    由于变量比较多,所以还有必要对这些变量进行初步的梳理。对于这个问题,我们一般关心收盘价随时间的变化趋势,这样我们就可以初步选定日期(DateNum)和收盘价(Pclose)作为重点研究对象。也就是说下一步,要对这这两个变量进行可视化。

    对于一个新手,我们还不知道如何绘图。但不要紧,新版 MATLAB 提供了更强大的绘图功能——“绘图”面板,这里提供了非常丰富的图形原型,如图 3 所示。

    图3 MATLAB绘图面板中的图例

    要注意,需要在工作区选中变量后绘图面板中的这些图标才会激活。接下来就可以选中一个中意的图标进行绘图,一般都直接先选第一个(plot)看一下效果,然后再浏览整个面板,看看有没有更合适的。下面我们进行绘图操作。

    Step2.2:选中变量 DataNum 和 Pclose,在绘图面板中单机 plot 图标,马上可以得到这两个变量的可视化结果,如图 4 所示,同时还可以在命令窗口区看到绘制此图的命令:

    >> plot(DateNum,Pclose)

    图4 通过 plot 图标绘制的原图

    这样我们就知道了,下次再绘制这样的图直接用 plot 命令就可以了。一般情况下,用这种方式绘图的图往往不能满足我们的要求,比如我们希望更改:

    (1)曲线的颜色、线宽、形状;

    (2)坐标轴的线宽、坐标,增加坐标轴描述;

    (3)在同个坐标轴中绘制多条曲线。

    此时我们就需要了解更多关于命令 plot 的用法,这时就可以通过 MATLAB 强大的帮助系统来帮助我们实现期望的结果。最直接获取帮助的两个命令是 doc 和 help,对于新手来说,推荐使用 doc,因为 doc 直接打开的是帮助系统中的某个命令的用法说明,不仅全,而且有应用实例,这样就可以“照猫画虎”,直接参考实例,从而将实例快速转化成自己需要的代码。

    接下来我们就要考虑如何评估股票的价值和风险呢?

    对于一只好的股票,我们希望股票的增幅越大越好,体现在数学上,就是曲线的斜率越大越好。

    对于风险,则可用最大回撤率来描述更合适,什么是最大回撤率?

    最大回撤率的公式可以这样表达:

    D为某一天的净值,i为某一天,j为i后的某一天,Di为第i天的产品净值,Dj则是Di后面某一天的净值

    drawdown=max(Di-Dj)/Di,drawdown就是最大回撤率。其实就是对每一个净值进行回撤率求值,然后找出最大的。可以使用程序实现。最大回撤率越大,说明该股票的风险越高。所以最大回撤率越小,股票越好。

    斜率和最大回撤率不妨一个一个来解决。我们先来看如何计算曲线的斜率。对于这个问题,比较简单,由于从数据的可视化结果来看,数据近似成线性,所以不妨用多项式拟合的方法来拟合该改组数据的方程,这样我们就可以得到斜率。

    Step2.3:通过polyfit()多项式拟合的命令,并计算股票的价值,具体代码为:

    >> p = polyfit(DateNum,Pclose,1); % 多项式拟合

    >> value = p(1) % 将斜率赋值给value,作为股票的价值

    value =

    0.1212

    代码分析:%后面的内容是注释。polyfit()有三个参数,前两个大家都能明白是什么意思,那第三个参数是什么意思呢?它表示多项式的阶数,也就是最高次数。比如:在本例中,第三个参数为1,说明其为一次项,即一次函数。第三个参数为你要拟合的阶数,一阶直线拟合,二阶抛物线拟合,并非阶次越高越好,看拟合情况而定。polyfit()返回阶数为 n 的多项式 p(x) 的系数,p 中的系数按降幂排列。在本例中的P(1)指的是最高项的系数,即斜率。

    Step2.4:用相似的方法,可以很快得到计算最大回撤的代码:

    >> MaxDD = maxdrawdown(Pclose); % 计算最大回撤

    >> risk = MaxDD % 将最大回撤赋值给risk,作为股票的风险

    risk =

    0.1155

    代码分析:最大回撤率当然计算的是每天收盘时的股价。最大回撤率越大,说明该股票的风险越高。所以最大回撤率越小,股票越好。

    到此处,我们已经找到了评估股票价值和风险的方法,并能用 MALTAB 来实现了。但是,我们都是在命令行中实现的,并不能很方便地修改代码。而 MATLAB 最经典的一种用法就是脚本,因为脚本不仅能够完整地呈现整个问题的解决方法,同时更便于维护、完善、执行,优点很多。所以当我们的探索和开发工作比较成熟后,通常都会将这些有用的程序归纳整理起来,形成脚本。现在我们就来看如何快速开发解决该问题的脚本。

    Step2.5:像 Step1.1 一样,重新选中数据文件,右键并单击“导入数据”菜单,待启动导入数据引擎后,选择“生成脚本”,然后就会得到导入数据的脚本,并保存该脚本。

    脚本源代码中有些地方要注意:

    %%在matlab代码中的作用是将代码分块,上下两个%%之间的部分作为一块,在运行代码的时候可以分块运行,查看每一块代码的运行情况。常用于调试程序。%%相当于jupyter notebook中的cell。

    %后的内容是注释。

    每句代码后面的分号作用为不在命令窗口显示执行结果。

    脚本源代码:

    %% 预测股票的价值与风险
    
    %% 导入数据
    clc, clear, close all
    % clc:清除命令窗口的内容,对工作环境中的全部变量无任何影响 
    % clear:清除工作空间的所有变量 
    % close all:关闭所有的Figure窗口
    
    % 导入数据
    [~, ~, raw] = xlsread('sz000004.xlsx', 'Sheet1', 'A2:H7');
    % [num,txt,raw],~表示省略该部分的返回值
    % xlsread('filename','sheet', 'range'),第二个参数指数据在sheet1还是其他sheet部分,range表示单元格范围
    
    % 创建输出变量
    data = reshape([raw{:}],size(raw));
    % [raw{:}]指raw里的所有数据,size(raw):6 x 8 ,该语句把6x8的cell类型数据转换为6x8 double类型数据
    
    % 将导入的数组分配列变量名称
    Date = data(:, 1); % 第一个参数表示从第一行到最后一行,第二个参数表示第一列
    DateNum = data(:, 2);
    Popen = data(:, 3);
    Phigh = data(:, 4);
    Plow = data(:, 5);
    Pclose = data(:, 6);  
    Volum = data(:, 7); % Volume 表示股票成交量的意思,成交量=成交股数*成交价格 再加权求和
    Turn = data(:, 8); % turn表示股票周转率,股票周转率越高,意味着该股股性越活泼,也就是投资人所谓的热门股
    
    % 清除临时变量data和raw
    clearvars data raw;
    
    %% 数据探索
    
    figure % 创建一个新的图像窗口
    plot(DateNum, Pclose, 'k'); % 'k',曲线是黑色的,打印后不失真
    datetick('x','mm-dd'); % 更改日期显示类型。参数x表示x轴,mm-dd表示月份和日。yyyy-mm-dd,如2018-10-27
    xlabel('日期') % x轴
    ylabel('收盘价') % y轴
    figure
    bar(Pclose) % 作为对照图形
    
    %% 股票价值的评估
    
    p = polyfit(DateNum, Pclose, 1); % 多项式拟合
    % polyfit()返回阶数为 n 的多项式 p(x) 的系数,p 中的系数按降幂排列
    P1 = polyval(p,DateNum); % 得到多项式模型的结果
    figure
    plot(DateNum,P1,DateNum,Pclose,'*g'); % 模型与原始数据的对照, '*g'表示绿色的*
    value = p(1) % 将斜率赋值给value,作为股票的价值。p(1)最高项的次数
    
    %% 股票风险的评估
    MaxDD = maxdrawdown(Pclose); % 计算最大回撤
    risk = MaxDD  % 将最大回撤赋值给risk,作为股票的风险

    3、回归算法演练。

    (1)一元线性回归

    [ 例1 ] 近 10 年来,某市社会商品零售总额与职工工资总额(单位:亿元)的数据见表1,请建立社会商品零售总额与职工工资总额数据的回归模型。

    该问题是典型的一元回归问题,但先要确定是线性还是非线性,然后就可以利用对应的回归方法建立他们之间的回归模型了,具体实现的 MATLAB 代码如下:

    (1)输入数据

    %% 输入数据
    clc, clear, close all
    % 职工工资总额
    x = [23.8,27.6,31.6,32.4,33.7,34.90,43.2,52.8,63.8,73.4];
    % 商品零售总额
    y = [41.4,51.8,61.7,67.9,68.7,77.5,95.9,137.4,155.0,175.0];

    (2)采用最小二乘回归

    %% 采用最小二乘法回归
    % 作散点图
    figure
    plot(x,y,'r*') % 散点图,散点为红色
    xlabel('x(职工工资总额)','fontsize',12)
    ylabel('y(商品零售总额)','fontsize',12)
    set(gca, 'linewidth',2) % 坐标轴线宽为2
    
    % 采用最小二乘法拟合
    Lxx = sum((x-mean(x)).^2); %在列表运算中,^与.^不同
    Lxy = sum((x-mean(x)).*(y-mean(y)));
    b1 = Lxy/Lxx;
    b0 = mean(y) - b1 * mean(x);
    y1 = b1 * x + b0;
    
    hold on % hold on是当前轴及图像保持而不被刷新,准备接受此后将绘制的图形,多图共存
    plot(x,y1, 'linewidth',2);

    运行本节程序,会得到如图5所示的回归图形。在用最小二乘回归之前,先绘制了数据的散点图,这样就可以从图形上判断这些数据是否近似成线性关系。当发现它们的确近似在一条线上后,再用线性回归的方法进行回归,这样也更符合我们分析数据的一般思路。

    图5

    (3)采用 LinearModel.fit 函数进行线性回归

    %% 采用 LinearModel.fit 函数进行线性回归
    m2 = LinearModel.fit(x, y)
    

    运行结果如下:

    m2 =

    Linear regression model:

    y ~ 1 + x1
    Estimated Coefficients:

    Estimate SE tStat pValue

    (Intercept) -23.549 5.1028 -4.615 0.0017215

    x1 2.7991 0.11456 24.435 8.4014e-09

    R-squared: 0.987, Adjusted R-Squared 0.985

    F-statistic vs. constant model: 597, p-value = 8.4e-09

    如下图,我们只需记住-23.594是一次函数的中x的系数,2.7991是一次函数中的常数项即可,其它的不用理会。

    4)采用 regress 函数进行回归

    %% 采用 regress 函数进行回归
    Y = y'
    X = [ones(size(x,2),1),x']
    [b,bint,r,rint,s] = regress(Y,X)

    运行结果如下:

    b =

    -23.5493

    2.7991

    我们只需记住-23.594是一次函数的中x的系数,2.7991是一次函数中的常数项即可,其它的不用理会。

    (2)一元非线性回归

    [ 例2 ] 为了解百货商店销售额 x 与流通率(这是反映商业活动的一个质量指标,指每元商品流转额所分摊的流通费用)y 之间的关系,收集了九个商店的有关数据(见表2)。请建立它们关系的数学模型。

    为了得到 x 与 y 之间的关系,先绘制出它们之间的散点图,如图 2 所示的“雪花”点图。由该图可以判断它们之间的关系近似为对数关系或指数关系,为此可以利用这两种函数形式进行非线性拟合,具体实现步骤及每个步骤的结果如下:

    (1)输入数据

    %% 输入数据
    clc, clear all, close all
    x = [1.5, 4.5, 7.5,10.5,13.5,16.5,19.5,22.5,25.5];
    y = [7.0,4.8,3.6,3.1,2.7,2.5,2.4,2.3,2.2];
    plot(x, y, '*', 'linewidth', 1) % 这里的linewidth指的是散点大小
    set(gca,'linewidth',2) % 设置坐标轴的线宽为2
    xlabel('销售额x/万元','fontsize',12)
    ylabel('流通率y/%','fontsize',12)

    (2)对数形式非线性回归

    %% 对数形式非线性回归
    m1 = @(b,x) b(1) + b(2)*log(x);
    nonlinfit1 = fitnlm(x,y,m1,[0.01;0.01])
    b = nonlinfit1.Coefficients.Estimate;
    Y1 = b(1,1) + b(2,1)*log(x);
    hold on 
    plot(x, Y1, '--k', 'linewidth',2)

    运行结果如下:

    nonlinfit1 =

    Nonlinear regression model:

    y ~ b1 + b2*log(x)

    Estimated Coefficients:

    Estimate SE tStat pValue

    b1 7.3979 0.26667 27.742 2.0303e-08

    b2 -1.713 0.10724 -15.974 9.1465e-07

    R-Squared: 0.973, Adjusted R-Squared 0.969

    F-statistic vs. constant model: 255, p-value = 9.15e-07

    (3)指数形式非线性回归

    %% 指数形式非线性回归
    m2 = 'y ~ b1*x^b2';
    nonlinfit2 = fitnlm(x,y,m2, [1;1])
    b1 = nonlinfit2.Coefficients.Estimate(1,1);
    b2 = nonlinfit2.Coefficients.Estimate(2,1)
    Y2 = b1*x.^b2;
    hold on;
    plot(x,Y2,'r','linewidth',2)
    legend('原始数据','a+b*lnx','a*x^b') % 图例
    

    运行结果如下:

    nonlinfit2 =

    Nonlinear regression model:

    y ~ b1*x^b2

    Estimated Coefficients:

    Estimate SE tStat pValue

    b1 8.4112 0.19176 43.862 8.3606e-10

    b2 -0.41893 0.012382 -33.834 5.1061e-09

    R-Squared: 0.993, Adjusted R-Squared 0.992

    F-statistic vs. zero model: 3.05e+03, p-value = 5.1e-11

    在该案例中,选择两种函数形式进行非线性回归,从回归结果来看,对数形式的决定系数为 0.973 ,而指数形式的为 0.993 ,优于前者,所以可以认为指数形式的函数形式更符合 y 与 x 之间的关系,这样就可以确定他们之间的函数关系形式了。

    2.多元回归

    1.多元线性回归

    [ 例3 ] 某科学基金会希望估计从事某研究的学者的年薪 Y 与他们的研究成果(论文、著作等)的质量指标 X1、从事研究工作的时间 X2、能成功获得资助的指标 X3 之间的关系,为此按一定的实验设计方法调查了 24 位研究学者,得到如表3 所示的数据( i 为学者序号),试建立 Y 与 X1 , X2 , X3 之间关系的数学模型,并得出有关结论和作统计分析。

    该问题是典型的多元回归问题,但能否应用多元线性回归,最好先通过数据可视化判断他们之间的变化趋势,如果近似满足线性关系,则可以执行利用多元线性回归方法对该问题进行回归。具体步骤如下:

    (1)作出因变量 Y 与各自变量的样本散点图

    作散点图的目的主要是观察因变量 Y 与各自变量间是否有比较好的线性关系,以便选择恰当的数学模型形式。图3 分别为年薪 Y 与成果质量指标 X1、研究工作时间 X2、获得资助的指标 X3 之间的散点图。从图中可以看出这些点大致分布在一条直线旁边,因此,有比较好的线性关系,可以采用线性回归。绘制图3的代码如下:

    %% 作出因变量Y与各自变量的样本散点图
    % x1,x2,x3,Y的数据
    x1=[3.5 5.3 5.1 5.8 4.2 6.0 6.8 5.5 3.1 7.2 4.5 4.9 8.0 6.5 6.5 3.7 6.2 7.0 4.0 4.5 5.9 5.6 4.8 3.9];
    x2=[9 20 18 33 31 13 25 30 5 47 25 11 23 35 39 21 7 40 35 23 33 27 34 15];
    x3=[6.1 6.4 7.4 6.7 7.5 5.9 6.0 4.0 5.8 8.3 5.0 6.4 7.6 7.0 5.0 4.0 5.5 7.0 6.0 3.5 4.9 4.3 8.0 5.0];
    Y=[33.2 40.3 38.7 46.8 41.4 37.5 39.0 40.7 30.1 52.9 38.2 31.8 43.3 44.1 42.5 33.6 34.2 48.0 38.0 35.9 40.4 36.8 45.2 35.1];
    % 绘图,三幅图横向并排
    subplot(1,3,1),plot(x1,Y,'g*')
    subplot(1,3,2),plot(x2,Y,'k+')
    subplot(1,3,3),plot(x3,Y,'ro')
    

    绘制的图形如下:

    (2)进行多元线性回归

    这里可以直接使用 regress 函数执行多元线性回归,注意以下代码模板,以后碰到多元线性问题直接套用代码,具体代码如下:

    %% 进行多元线性回归
    n = 24; m = 3; % 每个变量均有24个数据,共有3个变量
    X = [ones(n,1),x1',x2',x3'];
    [b,bint,r,rint,s]=regress(Y',X,0.05) % 0.05为预定显著水平,判断因变量y与自变量之间是否具有显著的线性相关关系需要用到。
    

    运行结果如下:

    b =
    
       18.0157
        1.0817
        0.3212
        1.2835
    
    
    bint =
    
       13.9052   22.1262
        0.3900    1.7733
        0.2440    0.3984
        0.6691    1.8979
    
    
    r =
    
        0.6781
        1.9129
       -0.1119
        3.3114
       -0.7424
        1.2459
       -2.1022
        1.9650
       -0.3193
        1.3466
        0.8691
       -3.2637
       -0.5115
       -1.1733
       -1.4910
       -0.2972
        0.1702
        0.5799
       -3.2856
        1.1368
       -0.8864
       -1.4646
        0.8032
        1.6301
    
    
    rint =
    
       -2.7017    4.0580
       -1.6203    5.4461
       -3.6190    3.3951
        0.0498    6.5729
       -4.0560    2.5712
       -2.1800    4.6717
       -5.4947    1.2902
       -1.3231    5.2531
       -3.5894    2.9507
       -1.7678    4.4609
       -2.7146    4.4529
       -6.4090   -0.1183
       -3.6088    2.5859
       -4.7040    2.3575
       -4.8249    1.8429
       -3.7129    3.1185
       -3.0504    3.3907
       -2.8855    4.0453
       -6.2644   -0.3067
       -2.1893    4.4630
       -4.4002    2.6273
       -4.8991    1.9699
       -2.4872    4.0937
       -1.8351    5.0954
    
    
    s =
    
        0.9106   67.9195    0.0000    3.0719

    看到如此长的运行结果,我们不要害怕,因为里面很多数据是没用的,我们只需提取有用的数据。

    在运行结果中,很多数据我们不需理会,我们真正需要用到的数据如下:

    b =
    
       18.0157
        1.0817
        0.3212
        1.2835
    
    s =
    
        0.9106   67.9195    0.0000    3.0719

    回归系数 b = (β0,β1,β2,β3) = (18.0157, 1.0817, 0.3212, 1.2835),回归系数的置信区间,以及统计变量 stats(它包含四个检验统计量:相关系数的平方R^2,假设检验统计量 F,与 F 对应的概率 p,s^2 的值)。观察表4的数据,会发现它来源于运行结果中的b和s:

    根据β0,β1,β2,β3,我们初步得出回归方程为:

    如何判断该回归方程是否符合该模型呢?有以下3种方法:

    1)相关系数 R 的评价:本例 R 的绝对值为 0.9542 ,表明线性相关性较强。

    2)F 检验法:当 F > F1-α(m,n-m-1) ,即认为因变量 y 与自变量 x1,x2,...,xm 之间有显著的线性相关关系;否则认为因变量 y 与自变量 x1,x2,...,xm 之间线性相关关系不显著。本例 F=67.919 > F1-0.05( 3,20 ) = 3.10。

    3)p 值检验:若 p < α(α 为预定显著水平),则说明因变量 y 与自变量 x1,x2,...,xm之间显著地有线性相关关系。本例输出结果,p<0.0001,显然满足 p<α=0.05。

    以上三种统计推断方法推断的结果是一致的,说明因变量 y 与自变量之间显著地有线性相关关系,所得线性回归模型可用。s^2 当然越小越好,这主要在模型改进时作为参考。

    3. 逐步回归

    [ 例4 ] (Hald,1960)Hald 数据是关于水泥生产的数据。某种水泥在凝固时放出的热量 Y(单位:卡/克)与水泥中 4 种化学成品所占的百分比有关:

    在生产中测得 12 组数据,见表5,试建立 Y 关于这些因子的“最优”回归方程。

    对于例 4 中的问题,可以使用多元线性回归、多元多项式回归,但也可以考虑使用逐步回归。从逐步回归的原理来看,逐步回归是以上两种回归方法的结合,可以自动使得方程的因子设置最合理。对于该问题,逐步回归的代码如下:

    %% 逐步回归
    X=[7,26,6,60;1,29,15,52;11,56,8,20;11,31,8,47;7,52,6,33;11,55,9,22;3,71,17,6;1,31,22,44;2,54,18,22;21,47,4,26;1,40,23,34;11,66,9,12];   %自变量数据
    Y=[78.5,74.3,104.3,87.6,95.9,109.2,102.7,72.5,93.1,115.9,83.8,113.3];  %因变量数据
    stepwise(X,Y,[1,2,3,4],0.05,0.10)% in=[1,2,3,4]表示X1、X2、X3、X4均保留在模型中
    

    程序执行后得到下列逐步回归的窗口,如图 4 所示。

    图4

    在图 4 中,用蓝色行显示变量 X1、X2、X3、X4 均保留在模型中,窗口的右侧按钮上方提示:将变量X4剔除回归方程(Move X4 out),单击 Next Step 按钮,即进行下一步运算,将第 4 列数据对应的变量 X4 剔除回归方程。单击 Next Step 按钮后,剔除的变量 X3 所对应的行用红色表示,同时又得到提示:将变量 X3 剔除回归方程(Move X3 out),单击 Next Step 按钮,这样一直重复操作,直到 “Next Step” 按钮变灰,表明逐步回归结束,此时得到的模型即为逐步回归最终的结果。最终结果如下:

    4. 逻辑回归

    [ 例5 ] 企业到金融商业机构贷款,金融商业机构需要对企业进行评估。评估结果为 0 , 1 两种形式,0 表示企业两年后破产,将拒绝贷款,而 1 表示企业 2 年后具备还款能力,可以贷款。在表 6 中,已知前 20 家企业的三项评价指标值和评估结果,试建立模型对其他 5 家企业(企业 21-25)进行评估。

    对于该问题,很明显可以用 Logistic 模型来回归,具体求解程序如下:

    程序中需要用到的数据文件logistic_ex1.xlsx已上传github:https://github.com/xiexupang/mathematical-modeling/tree/master/%E5%9B%9E%E5%BD%92/%E9%80%BB%E8%BE%91%E5%9B%9E%E5%BD%92

    % logistic回归
    
    %% 导入数据
    clc,clear,close all
    X0 = xlsread('logistic_ex1.xlsx','A2:C21'); % 前20家企业的三项评价指标值,即回归模型的输入
    Y0 = xlsread('logistic_ex1.xlsx','D2:D21'); % 前20家企业的评估结果,即回归模型的输出
    X1 = xlsread('logistic_ex1.xlsx','A2:C26'); % 预测数据输入
    
    %% 逻辑函数
    GM = fitglm(X0,Y0,'Distribution','binomial');
    Y1 = predict(GM,X1);
    
    %% 模型的评估
    N0 = 1:size(Y0,1); % N0 = [1,2,3,4,……,20]
    N1 = 1:size(Y1,1); % N1 = [1,2,3,4,……,25]
    plot(N0',Y0,'-kd'); % N0'指的是对N0'进行转置,N0'和Y0的形式相同,该行代码绘制的是前20家企业的评估结果
    % plot()中的参数'-kd'的解析:-代表直线,k代表黑色,d代表菱形符号
    hold on;
    scatter(N1',Y1,'b'); % N1'指的是对N1'进行转置,N1'和Y1的形式相同
    xlabel('企业编号');
    ylabel('输出值');

    得到的回归结果与原始数据的比较如图5所示。

    图5

    三、总结与感悟。

    总结:通过这次学习,我了解到Matlab在数学建模竞赛中使用广泛;在评估股票价值与风险的小实例中,我掌握了用Matlab去建模的基本方法和步骤;在回归算法的学习过程中,我掌握了一元线性回归、一元非线性回归、多元线性回归、逐步回归、逻辑回归的算法。

    感悟:正确且高效的 MATLAB 编程理念就是以问题为中心的主动编程。我们传统学习编程的方法是学习变量类型、语法结构、算法以及编程的其他知识,因为学习时候是没有目标的,也不知道学的知识什么时候能用到,收效甚微。而以问题为中心的主动编程,则是先找到问题的解决步骤,然后在 MATLAB 中一步一步地去实现。在每步实现的过程中,遇到问题查找知识(互联网时代查询知识还是很容易的),定位方法,再根据方法,查询 MATLAB 中的对应函数,学习函数用法,回到程序,解决问题。在这个过程中,知识的获取都是为了解决问题的,也就是说每次学习的目标都是非常明确的,学完之后的应用就会强化对知识的理解和掌握,这样即学即用的学习方式是效率最高,也是最有效的方式。最重要的是,这种主动的编程方式会让学习者体验到学习的成就感的乐趣,有成就感,自然就强化对编程的自信了。这种内心的自信和强大在建模中会发挥意想不到的力量,所为信念的力量。

    转载于:https://www.cnblogs.com/shenben/p/11246747.html

    展开全文
  • matlab读取/保存excel文件file=xlsread('文件路径',第几个sheet,'读入数据的范围')例如:data = xlsread('e:anaconda_code\A.csv',1,'A1:B4')xlswrite(('e:anaconda_code\A.csv',data,1,'A1:B4') data是写入的数据...

    matlab读取/保存excel文件file=xlsread('文件路径',第几个sheet,'读入数据的范围')

    例如:data = xlsread('e:anaconda_code\A.csv',1,'A1:B4')

    xlswrite(('e:anaconda_code\A.csv',data,1,'A1:B4')  data是写入的数据

    matlab与txt交互读取:load('***.txt')

    保存:

    a = linspace(3,30,8);

    save d:\exper.txt a -ascii    把变量 a 以ascii码储存在D盘的exper.txt文件中

    更常用的:

    书P6有介绍,需要的时候去看

    matlab导入数据 GUI操作:

    直接点击“导入数据” 然后选中需要的数据导入就行

    数据拟合:

    代码:

    多项式拟合:polyfit(X,Y,N)  N是拟合的最高次幂

    polyval(P,XI)  XI是要求的点的横坐标,P是polyfit返回的多项式的值>> x=[1 2 3 4 5 6 7 8 9];

    >> y=[ 9 7 6 3 -1 2 5 7 20 ];

    >> P = polyfit(x,y,3);

    >> xi = 0:.2 :10

    >> yi=polyval(P,xi);

    >> plot(xi,yi,x,y,'r*');

    bb1ba7241ef9

    拟合数据和原始数据的对照

    GUI操作(R2016B):

    点开APP的curve Fitting

    X data Ydata选择拟合的数据

    bb1ba7241ef9

    右侧选择用什么拟合

    这里使用多项式拟合 最高阶为3.

    custom equation可以自己写方程拟合

    exponential是指数函数

    bb1ba7241ef9

    每一个下面都有Equation告诉你用的是什么函数然后最小二乘拟合

    打开Fit Options 会发现 里面有一个撸棒性的选项,个人猜测是为了防止过拟合选择不同的拟合方法https://blog.csdn.net/meng4411yu/article/details/8851187根据这篇文章大概猜测,默认off是最小二乘法,但是数据的噪声多了之后,需要正则化,所以选用Bisquare做稳健回归估计。

    bb1ba7241ef9

    显示误差

    最后点Fit选项的Save to workspace

    展开全文
  • 原来使用matlab做科学运算,后来发现python更加全面,就转到python上来。下面详细的给有需求的朋友们分析下。先放结论:MATLAB对于数模比赛各种尝试很方便。长远考虑Python用处大。核心功能两者差不多,都是脚本语言...
  • 使用 Matlab 解决数学建模问题

    千次阅读 多人点赞 2018-12-06 00:35:37
    linprog() 的使用1.3. 应用例子 1. 线性规划函数:linprog() 1.1. linprog() 的标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。 Matlab 中规定线性...
  • matlab数学建模中的应用 详细介绍了matlab数学建模中的巨大作用和使用方法
  • 基于matlab的数学建模竞赛计算 基于 MATLAB的数学建模竞赛计算• 计算在建模竞赛中的作用• 数学建模竞赛中的数学软件• MATLAB数学建模工具箱• 数学建模 MATLAB命令及建模应用1数学建模计算计算在建模竞赛中的作用...
  • 本篇文章主要实现使用MATLAB实现实现数学建模中的数据拟合 文章目录一、多项式拟合:polyfit,polyval1. 示例说明2. 多项式拟合公式二、非线性拟合:lsqcurvefit,lsqnonlin1. 用法说明2. 示例说明:lsqcurvefit2. ...
  • matlab数学建模资料。适合新手。资源系统全面,希望大家好好利用和学习。如有问题,可联系本人。最后祝大家学业有成!!!!!!!!!!!!!!!!!
  • 本文主要是说在建模的过程中怎样运用数学软件
  • % MATLAB数学建模工具箱 % % 本工具箱主要包含三部分内容 % 1. MATLAB常用数学建模工具的中文帮助 % 2. 贡献MATLAB数学建模工具(打*号) % 3. 中国大学生数学建模竞赛历年试题MATLAB程序 % 数据拟合 % interp1 - ...
  • matlab教程数学建模

    2009-12-26 17:42:14
    详细的对函数的使用进行了 讲解,适用于初学者,及建模人员查阅
  • MATLAB数学建模中的应用PDF版,包含上下两册和源代码
  • MATLAB数学建模工具箱

    2021-03-31 20:00:17
    贡献MATLAB数学建模工具(打*号) % 3. 中国大学生数学建模竞赛历年试题MATLAB程序 % % 安装步骤 % 1. 将MATHMODL.zip解压缩至matlab11\toolbox\; % 2. 启动Matlab,利用Path Browser中的Add path菜单将 % matlab11\...
  • 车床利润问题二、MATLAB求解线性规划:linprog1. 示例 12. 示例 23. 示例 3 一、线性规划问题及模型建立 线性规划问题就是求多变量线性函数在线性约束条件下的最优值。满足约束条件的解称为可行解,所有可行解构成的...
  • matlab7.0数学建模软件

    2011-11-28 11:56:40
    matlab7.0是一个很专业的数学建模软件,在相关专业中有举足轻重的地位,本软件是完整版,无删减 ,加正常激活序号号,需要指出的是这个软见在win7上运行安装不畅
  • 电路板设计问题二、MATLAB 解非线性规划1. 示例 1:拟合问题2. 示例 2:电路板设计问题3. 示例 3 一、非线性规划问题及模型建立 1. 拟合问题 问题:找 R 和 t 之间的函数关系 R=at+b? 2. 电路板设计问题 在...
  • matlab数学建模实例

    2010-10-19 21:42:25
    实例分析 数模必备 是利用M解决数模的中级教程
  • matlab论文----数学建模.doc 1对MATLAB的总结2数学建模序言31、案例背景3二、理论基础4三、案例的建模过程5四、MATLAB求解9五、参考文献122上大学以来,我所过得很多科目在最后结尾的部分都会提到用MATLAB来解决,在...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 12,763
精华内容 5,105
关键字:

利用matlab进行数学建模

matlab 订阅