精华内容
下载资源
问答
  • grafana导入模板显示N/A

    2020-08-13 18:36:51
    我是通过zabbix+grafana安装的服务器监控系统,在grafana用zabbix有图形界面,在网上找模板导入后却显示N/A?怎么解啊

    我是通过zabbix+grafana安装的服务器监控系统,在grafana用zabbix有图形界面,在网上找模板导入后却显示N/A?怎么解啊在这里插入图片描述

    展开全文
  • 图形模板  主机模板(Host templates),它是图像模板和数据查询的一个集合,描述了监控某一类型的机器需要生成那些图像。  数据模板(Data templates),它描述了 Cacti 存储哪些数据到指定类型的 RRD 文件。...

    Cacti定义了三种类型的模板,分别是

    • 主机模板

    • 数据模板

    • 图形模板

        主机模板(Host templates),它是图像模板和数据查询的一个集合,描述了监控某一类型的机器需要生成那些图像。

        数据模板(Data templates),它描述了 Cacti 存储哪些数据到指定类型的 RRD 文件。该模板与 RRDTool 工具的 create 命令相关。

        图形模板(Graph templates),描述了生成的一张图像应该是什么样子的。包括使用哪些数据模板、展示哪些元素、是否使用 CDEF 进行计算汇总。


    同时也定义数据收集方法: 

        数据输入方法(Data input methods),数据模板基于数据输入方法,数据输入方法描述了 Cacti 获取监控数据的各种方法。其中最常用的就是 SNMP,但这里我们要用到一些自定义的模板。

        数据查询(Data queries),它是一种特殊的获取监控数据的方式,它所获取的监控数据一般是某一方面的一系列数据,比如网络接口信息。一般包括一个 XML 文件,其中定义了要获取的数据,以及获取方法(一般是一个命令或脚本)。


        在实际的工作工程中,我们可能需要监控更多的指标。此时该怎么办呢?其实cacti官方提供了许多模板,而且很多志愿者也提供了大量的模板,我们可以直接下载,解压缩,然后导入模板,直接使用。

    cacti官方网站 -> forums -> Scripts and Templates, 这里的模板应有尽有,基本能够满足我们的监控需求。

    wKioL1QCcWizS3TGAAIJPsazeY0162.jpg

    下面我们就来看一看如何使用模板?


    添加主机模板(Linux / Windows 类似)

    首先,基本上我们使用的所有模板都可以到官方的站点上下载到:

    http://forums.cacti.net/viewforum.php?f=12&sid=fe2532345bf037678cb1e9fb07b40f16

    http://docs.cacti.net/templates

       

        当我们下载某个模板的时候,请一定要仔细的阅读其 Installation(相当重要),可以避免很多不必要的错误。举个例子,比如我要下载cacti087e_linux_generic-20100519-yrg.zip, 然后,其作者给出了详细的安装说明:

    Installation

    1. Unzip the download

    2. Via cacti web console, click on “Import Templates” and import the file “cacti_host_template_*.xml”

    3. Create new device using the new imported host template

    4. Check new graphs

    OK, 我们演示一下,如果添加并使用模板。

    1、添加模板

    Import Templates -> 浏览 -> Import, 然后就OK了。

    wKiom1PoZ2iwd6hkAALYEQ3NXCI071.jpg

    2、使用模板

    添加设备:Devices -> Add , 然后主要编辑两个地方

    1. General Host Options

    2. SNMP Options

    wKiom1PoaOCiiOGcAAHuc1r1iVs529.jpg

    为主机创建图形

    wKioL1Poau7BLh-1AAI2scir3aQ921.jpg

    然后勾选,需要创建哪些图形:

    wKiom1PoalKD0quCAAGmQrWCeug323.jpg

    然后,再把此设备添加到Graph Trees, 方便管理

    Graph Trees -> 选择一个Tree Name -> Add -> Tree Item Type(Host) -> Create

    wKioL1PobQ3hmcWUAAIBxS3OVkM989.jpg

    就这么简单,那么等一会儿就会出图了。


    添加图形模板

        导入方式和主机模板的导入方式相同。导入后,可以在console -> templates -> Graph Templates中查看。

        我们以添加cacti_graph_template_linux_server_-_processes.xml.gz 为例,演示一下,如何添加并使用图形模板。下载,并查看其Installation.

    Installation

    • unzip the file

    $ gzip -d cacti_graph_template_linux_server_-_processes.xml.gz
    • use Console-> Import/Export -> Import Templates to import the XML file


    这里,导入的过程就不截图演示了, 和上面导入主机模板的步骤一样。

    如何把添加的图形模板,应用到特定的主机上呢?

    Graph Management -> Host标签选择一个主机 -> Add -> Selected Graph Template -> Create

    wKioL1Poe2CC0ztdAAFJhQanjlw657.jpg

    如何把主机上添加的图形模板删除呢?

    Graph Management -> 选择主机 -> 选择 -> 然后 choose an action: Delete

    wKioL1QB4neChunPAAT0HjeG8fo597.jpg

    在下一步,我们选择第一个选项,保留数据源,只删除图形模板。

    wKioL1QB4rShy5RxAAE_f1QPDuc917.jpg



    cacti之自定义监控脚本

        如果在cacti官方论坛上,找不到合适的模板,这该如何是好? 此时可能就需要我们自定义了。   

    在前面的文章中,已经提到。cacti数据收集方法主要有两类:

    • Data Queries         主要是定义好的xml文件

    • Data Input Methods   主要是 scripts, command (最常用)


    cacti自定义监控脚本进行监控的具体流程如下:

    1. 自定义数据收集方法,脚本(xml, scripts, command)

    2. 数据收集了如何保存呢?数据模板。数据模板定义了:怎么通过数据收集方法获取数据,获取的数据如何保存,以及保存在什么地方。(也就是调用rrdtool create , rrdtool update)

    3. 把数据模板应用到特定的device上,就会创建数据源

    4. 有了数据源,那么就可以绘图了。图形模板或者自定义,应用到相应的数据源上。(rrdtool graph)


    以下是cacti官方文档:

    http://docs.cacti.net/manual:087:3a_advanced_topics.1_data_input_methods

    任何可以通过脚本来获取数据的设备都可以使用cacti来监控。


    下面就来演示一下,进行自定义监控的整个流程。

    1、创建数据收集脚本

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    [root@bogon ~] # vi tcpconn.sh
    #!/bin/bash
    # $1: hostname or ip
    # $2: snmp community
    if [[ $ # -ne 2 ]];then
        echo "Usage: $0 [hostname | IP]  snmp_community"
        exit
    fi
    SNMPNETSTAT= /usr/bin/snmpnetstat
    ESTABLISHED=$(${SNMPNETSTAT} -v2c -c $2 -Can -Cp tcp $1 | grep -i 'established' | wc -l)
    echo -n "established:$ESTABLISHED"
    ## 为脚本添加可执行权限
    # chmod +x tcpconn.sh
    ## 把脚本复制到cacti安装目录的scripts目录下(重要)
    # cp tcpconn.sh /web/cacti/scripts/

    注意数据收集方法的输出格式比较特殊,而且规定必须是这样才行

        官方文档这样描述: Data inputmethods with more than one output field are handled a bit differently whenwriting scripts. Scripts that output more than one value should be formattedlike the following:

    1
    <fieldname_1>:<value_1>  <fieldname_2>:<value_2>  ...  <fieldname_n>:<value_n>

    2、cacti上添加数据收集方法

    wKiom1QB6dLTBWrmAAJMty4RhVo786.jpg

    接下来,填入相应的信息。

    wKioL1QB7BOBCLhgAAHsJ8MTOqo977.jpg

    怎么执行我们的脚本呢? /bin/bash。 脚本的具体路径呢?可以引用<path_cacti>。我们的脚本需要传递参数,该如何传递呢?

    • <path_cacti>是一个宏,引用cacti的安装目录

    • 如果脚本需要接受参数,请用<>括起来

    然后点击"Create",下面的Input Fields, Output Fields,分别对应参数输入以及脚本的输出。

    wKiom1QB6-_SI2HAAAF10ydCyBg347.jpg

    有几个Input Fields就需要Add几次,同样有多少个Output Fields也需要Add多少次。

    添加Input Fields

    wKiom1QB7S-T2VQ7AAIiwllJqbM909.jpg

    我们看到,cacti已经定义了许多Speial Type Code。它们类似于宏,我们能够继承它并能够取得相应device相关的信息。我们知道图形和数据收集方法都必须关联到特定的device上,在定义device时,就会指定其hostname等相关信息。如果我们没有提供输入的参数,就让它自动去继承device的那些宏。如果使用hostname,那么此脚本应用到哪个设备上,就会获得那个设备的hostname。如果snmp_community,那么就会自动引用我们在添加设备时,指定的那个community。

    比如,我在定义device时,填入的信息如下

    wKioL1QB7zfxIrPbAAMfgwfxB4c401.jpg

    那么,此时的Special Type Code: hostname==127.0.0.1, snmp_community==public

    添加Output Fields

    wKiom1QB7_qBIF69AAElXDOw4O4625.jpg

    注意,当我们接收到一个数据之后,就需要更新RRD文件,所以"Update RRD File"这里必须勾选。

    3、定义数据模板

        上一步中,我们定义了数据收集方法,那么收集到的数据如何保存呢?保存在什么地方?如何创建rrd文件? 这些都是数据模板完成的,所以接下来我们要定义数据模板。

    wKiom1QB8SOhnL6QAAJ8IFRhG3w135.jpg

    然后,下面的定义,我们可以参考其他的数据模板进行填写,如果不知道该怎么填,不妨先看看其他的数据模板是如何定义的。

        我们看到Name这里比较特殊 "|host_description|", 这样能自动获取device的Description。 以及"Internal Data Source Name",数据源的名称,注意其命名规则,a_zA_Z0-9_,并且不超过19个字符。

    wKiom1QB84aRigOyAALmJWMMXCk685.jpg

    4、当我们把数据模板应用到某个device上时,就创建数据源(Data Sources)

    注意,数据源一定是关联到某个device上的。我们必须指定Host,然后再Add

    wKioL1QB9bPj6eKEAAC3EzLljxM886.jpg

    然后选择对应的数据模板(刚才我们添加的)和需要关联的主机。

    wKiom1QB9RSir8YMAADPoIlSKi8202.jpg

    此步骤完成后,就会创建相应的rrd文件了。

    wKioL1QCeIvD_OiOAAFZ4GZFYYA553.jpg

    当然,这里的"Data Source Path"可以根据自己需要命名。然后稍等片刻,就会在/web/cacti/rra目录下创建rrd文件。

    5、添加图形模板

        图形模板,也可以参考其他的模板进行填写

    wKiom1QB9djC_u97AAGkDzAx3rM304.jpg

        填写一些关于图形的基本信息(name, title),其他保持默认或者根据自己需要填写。点击"创建"之后,我们还需要更详细的设置。

    wKioL1QCev7h4eUAAAE-dwuxvq0546.jpg

    "Graph Item"是什么? 图形项,相当于图形上的线条、区域块、注释等等元素。每一个Item表示一个元素。

    wKioL1QCfDHDGi0OAAMKuvLMQQs779.jpg

    然后Add "Graph Item Inputs"

    wKioL1QCgaOi2H-HAABHQJdGdFY852.jpg

    6、把图形模板关联到device

    console -> Graph Management -> 指定Host -> Add

    wKiom1QCfUPCvSwBAANP1bdYGow360.jpg

    好了,终于搞定了。

        如果想要显示下面这种效果,该怎么做?

    wKiom1QCf8rTl1hkAACMQxN2hls395.jpg

    重新编辑我们的graph templates, 点击我们需要更改的模板名称:

    wKioL1QCgcDj41o5AAC6g9FsQYw412.jpg

    在下面的设置中,"Graph Item Type"选择 GPRINT

    wKiom1QCgTCjnfNvAAJCncjSyao550.jpg

        OK,就先说到这里,更多更高级的功能,还希望大家去挖掘。

        我们在操作的过程中,其实思路是比较清晰的,但是面对众多的选项,却不知道如何是好,如果你了解rrdtool,这些都不是事儿,如果不了解,可能看起来就相当痛苦,因为你不知道具体在做什么?万丈高楼平地起,所以我还是建议各位去看看rrdtool是如何工作的。

    展开全文
  • matlab人脸识别论文

    万次阅读 多人点赞 2019-10-11 17:41:51
    一般来说,人脸识别系统包括图像提取、人脸定位、图形预处理、以及人脸识别(身份确认或者身份查找)。系统输入一般是一张或者一系列含有未确定身份的人脸图像,以及人脸数据库中的若干已知身份的人脸图像或者相应的...

    摘 要

     本文设计了一种基于BP神经网络的人脸识别系统,并对其进行了性能分析。该系统首先利用离散小波变换获取包含人脸图像大部分原始信息的低频分量,对图像数据进行降维;再由PCA算法对人脸图像进行主成分特征提取,进--步降低图像数据的处理量;最后使用经过训练后的BP神经网络对待测人脸进行分类识别。详细介绍了离散小波变换PCA特征提取以及BP神经网络分类设计。通过系统仿真实验与分析发现:人脸特征的提取是该系统的关键;同时,由于人脸灰度信息的统计特征与有监督训练BP神经网络分类器,使该系统只在固定类别,并且光照均匀的人脸识别应用场景中具有较高的识别准确率。因此,很难在复杂环境中应用。
    

    关键词:人脸识别;人工神经网络;离散小波变换; PCA; BP神经网络
    Abstract
    In this paper, a face recognition system based on BP neural network is designed and its performance is analyzed. The system first uses discrete wavelet transform to obtain the low-frequency components which contain most of the original information of the face image, and then uses PCA algorithm to extract the principal component features of the face image, progressively reducing the processing capacity of the image data. Finally, the trained BP neural network is used to classify and recognize the tested face. Discrete wavelet transform PCA feature extraction and BP neural network classification design are introduced in detail. Through the system simulation experiment and analysis, it is found that the extraction of facial features is the key of the system. At the same time, because of the statistical features of gray information and the supervised training of BP neural network classifier, the system only has a high recognition accuracy in fixed categories and uniform illumination of face recognition application scenarios. Therefore, it is difficult to apply in complex environment.

    Key words: face recognition; artificial neural network; discrete wavelet transform; PCA; BP neural network
    1绪论

      人脸识别是模式识别研究的一个热点,它在身份鉴别、信用卡识别,护照的核对及监控系统等方面有着I泛的应用。人脸图像由于受光照、表情以及姿态等因索的影响,使得同一个人的脸像矩阵差异也比较大。因此,进行人脸识别时,所选取的特征必须对上述因素具备-一定的稳定性和不变性。主元分析(PCA)方法是一种有效的特征提取方法,将人脸图像表示成一一个列向量,经过PCA变换后,不仅可以有效地降低其维数,同时又能保留所需要的识别信息,这些信息对光照、表情以及姿态具有一定的不敏感性。 在获得有效的特征向量后,关键问题是设计具有良好分类能力和鲁棒性的分类器、支持向量机(SVI )模式识别方法,兼顾调练误差和泛化能力,在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势。
    

    1.1人脸识别技术的细节

    一般来说,人脸识别系统包括图像提取、人脸定位、图形预处理、以及人脸识别(身份确认或者身份查找)。系统输入一般是一张或者一系列含有未确定身份的人脸图像,以及人脸数据库中的若干已知身份的人脸图像或者相应的编码,而其输出则是一系列相似度得分,表明待识别的人脸的身份。
    1.2人脸识别技术的广泛应用

    一项技术的问世和发展与人类的迫切需求是密切相关的,快速发展的社会经济和科学技术使得人类对安全(包括人身安全、隐私保护等)得认识越来越重视。人脸识别得一个重要应用就是人类的身份识别。一-般来说, 人类得身份识别方式分为三类:
    1.特征物品,包括各种证件和凭证,如身份证、驾驶证、房门钥匙、印章等;
    2.特殊知识,包括各种密码、口令和暗号等;

    3.人类生物特征,包括各种人类得生理和行为特征,如人脸、指纹、手形、掌纹、虹膜. DNA、签名、语音等。前两类识别方式属于传统的身份识别技术,其特点是方便、快捷,但致命的缺点是安全性差、易伪造、易窃取。特殊物品可能会丢失、偷盗和复制,特殊知识可以被遗忘、混淆和泄漏。相比较而言,由于生物特征使人的内在属性,具有很强的自身稳定性和个体差异性,因此生物特征是身份识别的最理想依据。基于以上相对独特的生物特征,结合计算机技术,发展了众多的基于人类生物特征的身份识别技术,如DNA识别技术、指纹识别技术、虹膜识别技术、语音识别技术和人脸识别技术等。生物识别技术在上个世纪已经有了- -定得发展,其中指纹识别技术已经趋近成熟,但人脸识别技术的研究还处于起步阶段。指纹、虹膜、掌纹等识别技术都需要被识别者的配合,有的识别技术还需要添置复杂昂贵的设备。人脸识别可以利用已有的照片或是摄像头远距离捕捉图像,无需特殊的采集设备,系统的成本低。并且自动人脸识别可以在当事人毫无觉察的情况下完成身份确认识别工作,这对反恐怖活动有非常重要的意义。基于人脸识别技术具有如此多的优势,因此它的应用前最非常广阔,已成为最具潜力的生物特征识别技术之一
    1.3人脸识别技术的难点

      虽然人类可以毫不困难地根据人脸来辨别一个人,但是利用计算机进行完全自动的人脸识别仍然有许多困难。人脸模式差异性使得人脸识别成为-个非常困难的问题,表现在以下方面:
    
      1.人脸表情复杂,人脸具有多样的变化能力,人的脸上分布着Ii十多块面部肌肉,这些肌肉的运动导致不同面部表情的出现,会造成人脸特征的显著改变。
    
      2.随着年龄而改变,随着年龄的增长,皱纹的出现和面部肌肉的松驰使得人脸的结构和纹理都将发生改变。
    
      3.人脸有易变化的附加物,例如改变发型,留胡须,戴帽子或眼镜等饰物。4.人脸特征遮掩,人脸全部、部分遮掩将会造成错误识别。
    
      5.人脸图像的畸变,由于光照、视角、摄取角度不同,可能造成图像的灰度。
    

    1.4国内外研究状况

    人脸识别是人类视觉最杰出的能力之-。 它的研究涉及模式识别、图像处理、生物学、心理学、认知科学,与基于其它生物特征的身份鉴别方法以及计算机人机感知交互领域都有密切联系。人脸识别早在六七十年代就引起了研究者的强烈兴趣。20世纪60年代,Bledsoe 提出了人脸识别的半自动系统模式与特征提取方法。70年代,美、英等发达国家开始重视人脸识别的研究工作并取得进展。1972 年,Harmon 用交互人脸识别方法在理论上与实践上进行了详细的论述。同年,Sakai 设计了人脸图像自动识别系统。80年代初
    T. Minami 研究出了优于Sakai的人脸图像自动识别系统。但早期的人脸识别一般都需要人的某些先验知识,无法摆脱人的干预。进入九十年代,由于各方面对人脸识别系统的迫切需求,人臉识别的研究变的非常热门。人脸识别的方法有了重大突破,进入了真正的机器自动识别阶段,如Kartbunen-Loeve变换等或新的神经网络技术。人脸识别研究

    得到了前所未有的重视,国际上发表有关人脸识别等方面的论文数量大幅度增加,仅从1990年到2000年之间,sCl 及EI可检索到的相关文献多达数千篇,这期间关于人脸识别的综述也屡屡可见。国外有许多学校在研究人脸识别技术,研究涉及的领域很广。这些研究受到军方、警方及大公司的高度重视和资助,国内的一些知名院校也开始从事人脸识别的研究。

      人脸识别是当前模式识别领域的一个前沿课题,但目前人脸识别尚处于研究课题阶段,尚不是实用化领域的活跃课题。虽然人类可以毫不困难地由人脸辨别一个人,但利用计算机进行完全自动的人脸识别存在许多困难,其表现在:人脸是非刚体,存在表情变化:人脸随年龄增长面变化:发型、眼镜等装饰对人脸造成遮挡:人脸所成图像受光照、成像角度、成像距离等影响。人脸识别的困难还在于图像包括大量的数据,输入的像素可能成百上千,每个像素都含有各自不同的灰度级,由此带来的计算的复杂度将会增加。现有的识别方法中,通过从人脸图像中提取出特征信息,来对数据库进行检索的方法速度快,而利用拓扑属性图匹配来确定匹配度的方法则相对较快。
    

    1.5人脸识别的研究内容

    人脸识别技术(AFR)就是利用计算机技术,根据数据库的人脸图像,分析提取出有效的识别信息,用来“辨认”身份的技术。人脸识别技术的研究始于六十年代末七十年代初,其研究领城涉及图像处理、计算机视觉、模式识别、计算机智能等领城,是伴随着现代化计算机技术、数据库技术发展起来的综合交叉学科。
    1.5.1人脸识别研究内容

      人脸识别的研究范围广义上来讲大致包括以下hi个方面的内容。
    
      1.人脸定位和检测(Face Detection) :即从动态的场景与复杂的背景中检测出人臉的存在并且确定其位置,最后分离出来。这一任务主要受到光照、噪声、面部倾斜以及各种各样遮挡的影响。
    
      2.人脸表征(Face Representation) (也称人脸特征提取) :即采用某种表示方法来表示检测出人脸与数据库中的已知人脸。通常的表示方法包括几何特征(如欧氏距离、曲率、角度)、代数特征(如矩阵特征向量)、固定特征模板等。
    
      3.人脸识别(Face Recogni tion) :即将待识别的人脸与数据库中已知人脸比较,得出相关信息。这一过程的核心是选择适当的人脸表征方法与匹配策略。
    
      4.表情姿态分析(Expression/Gesture Analysis) :即对待识别人脸的表情或姿态信息进行分析,并对其加以归类。
    
    
      5.生理分类(Physical Classi fication) :即对待识别人脸的生理特征进行分析,得出其年龄、性别等相关信息,或者从几幅相关的图像推导出希望得到的人脸图像,如从父母图像推导出孩子脸部图像和基于年龄增长的人脸图像估算等。
    
      人臉识别的研究内容,从生物特征技术的应用前景来分类,包括以下两个方面:人脸验证与人脸识别。
    
      1.人脸验证((Face Veri ficat ion/Authenticat ion):即是回答“是不是某人?"的问题.它是给定一幅待识别人脸图像,判断它是否是某人的问题,属于一对一的两类模式分类问题,主要用于安全系统的身份验证。
    
      2.人脸识别(Face 。Recognition) :即是回答“是谁”的问题。它是给定-幅待识别人脸图像,再已有的人脸数据库中,判断它的身份的问题。它是个“-对多”的多类模式分类问题,通常所说的人脸识别即指此类问题,这也是本文的主要研究内容。
    

    1.5.2人脸识别系统的组成

      在人脸识别技术发展的几十年中,研究者们提出了多种多样的人脸识别方法,但大部分的人脸识别系统主要由三部分组成:图像预处理、特征提取和人脸的分类识别。一个完整的自动人脸识别系统还包括人脸检测定位和数据库的组织等模块,如图1.1.其中人脸检测和人脸识别是整个自动人脸识别系统中非常重要的两个环节,并且相对独立。下面分别介绍这两个环节。
    

    人脸检测与定位,检测图像中是否由人脸,若有,将其从背景中分割出来,并确定其在图
    像中的位置。在某些可以控制拍摄条件的场合,如警察拍罪犯照片时将人脸限定在标尺内,此时人脸的定位很简单。证件照背景简单,定位比较容易。在另一些情况下,人脸在图像
    中的位置预先是未知的,比如在复杂背景下拍摄的照片,这时人脸的检测与定位将受以下因素的影响: :

      1.人脸在图像中的位置、角度、不固定尺寸以及光照的影响:
    
      2.发型、眼睛、胡须以及人脸的表情变化等,3.图像中的噪声等。
    
      特征提取与人脸识别,特征提取之前一般都要敌几何归一化和灰度归一化的工作。前者指根据人脸定位结果将图像中的人脸变化到同一位置和大小:后者是指对图像进行光照补偿等处理,以克服光照变化的影响,光照补偿能够一定程度的克服光照变化的影响而提高识别率。提取出待识别的人脸特征之后,即进行特征匹配。这个过程是一对多或者一对一的匹配过程,前者是确定输入图像为图象库中的哪一个人(即人脸识别),后者是验证输入图像的人的身份是否属实(人脸验证).  
    

    以上两个环节的独立性很强。在许多特定场合下人脸的检测与定位相对比较容易,因此“特征提取与人脸识别环节”得到了更广泛和深入的研究。近几年随着人们越来越关心各种复杂的情形下的人臉自动识别系统以及多功能感知研究的兴起,人脸检测与定位才作为一个独立的模式识别问题得到了较多的重视。本文主要研究人脸的特征提取与分类识别的问题。

    2基于bp神经网络的人脸识别算法

      虽然人脸识别方法的分类标准可能有所不同,但是8前的研究主要有两个方向,一类是从人脸图像整体(Holistic Approaches)出发,基于图像的总体信息进行分类识别,他重点考虑了模式的整体属性,其中较为著名的方法有:人工神经网络的方法、统计模式的方法等。另一类是基于提取人脸图像的几何特征参数(Feature-Based Approaches), 例如眼、嘴和鼻子的特征,再按照某种距离准则进行分类识别。这种方法非常有效,因为人脸不是刚体,有着复杂的表情,对其严格进行特征匹配会出现困难。面分别介绍- -些常 用的方法,前两种方法属于从图像的整体方面进行研究,后三种方法主要从提取图像的局部特征讲行研究。
    
    
      2.1基于特征脸的方法
    

    特征脸方法(cigenface)是从生元分析方法PCA c Principal ComponentAnalysis 导出的一种人脸分析识别方法,它根据一-组人脸图像构造主元子空间,由于主元具有人脸的形状也称作特征脸。识别时将测试图像投影到主元子空间上得到了-组投影系数,然后和各个已知人的人脸图像进行比较识别,取得了很好的识别效果。在此基础上出现了很多特征脸的改进算法。

      特征脸方法原理简单、易于实现,它把人脸作为一个整体来处理,大大降低了识别复杂度。但是特征脸方法忽视了人脸的个性差异,存在着一定的理论缺陷。研究表明:特征脸方法随光线角度及人脸尺寸的影响,识别率会有所下降。
    

    2.2基于bp神经网络的方法

    一、实验要求采用三层前馈BP神经网络实现标准人脸YALE数据库的识别,编程语言为C系列语言。
    二、BP神经网络的结构和学习算法实验中建议采用如下最简单的三层BP神经网络,输入层为,有n个神经元节点,输出层具有m个神经元,网络输出为,隐含层具有k个神经元,采用BP学习算法训练神经网络。BP神经网络的结构BP网络在本质上是一种输入到输出的映射,它能够学习大量的输入与输出之间的映射关系,而不需要任何输入和输出之间的精确的数学表达式,只要用已知的模式对BP网络加以训练,网络就具有输入输出对之间的映射能力。BP网络执行的是有教师训练,其样本集是由形如(输入向量,期望输出向量)的向量对构成的。在开始训练前,所有的权值和阈值都应该用一些不同的小随机数进行初始化。BP算法主要包括两个阶段:

    2.2.1向前传播阶段

    ①从样本集中取一个样本(Xp,Yp),将Xp输入网络,其中Xp为输入向量,Yp为期望输出向量。
    ②计算相应的实际输出Op。在此阶段,信息从输入层经过逐级的变换,传送到输出层。这个过程也是网络在完成训练后正常运行时执行的过程。在此过程中,网络执行的是下列运算:

    (2) 向后传播阶段
    ①计算实际输出Op与相应的理想输出Yp的差;
    ②按极小化误差的方法调整权矩阵。这两个阶段的工作一般应受到精度要求的控制

    (1)作为网络关于第p个样本的误差测度(误差函数)。

    (2)如前所述,之所以将此阶段称为向后传播阶段,是对应于输入信号的正常传播而言的,也称之为误差传播阶段。为了更清楚地说明本文所使用的BP网络的训练过程,首先假设输入层、中间层和输出层的单元数分别是N、L和M。X=(x0,x1,…,xN-1)是加到网络的输入矢量,H=(h0,h1,…,hL-1)是中间层输出矢量,Y=(y0,y1,…,yM-1)是网络的实际输出矢量,并且用D=(d0,d1,…,dM-1)来表示训练组中各模式的目标输出矢量。输出单元i到隐单元j的权值是Vij,而隐单元j到输出单元k的权值是Wjk。另外用θk和Φj来分别表示输出单元和隐单元的阈值。于是,中间层各单元的输出为:

    (3)而输出层各单元的输出是:

    其中f(*)是激励函数,采用S型函数:

    2.2.2在上述条件下,网络的训练过程如下:

    (1) 选定训练集。由相应的训练策略选择样本图像作为训练集。
    (2) 初始化各权值Vij,Wjk和阈值Φj,θk,将其设置为接近于0的随机值,并初始化精度控制参数ε和学习率α。
    (3) 从训练集中取一个输入向量X加到网络,并给定它的目标输出向量D。
    (4) 利用式(3)计算出一个中间层输出H,再用式(4)计算出网络的实际输出Y。
    (5) 将输出矢量中的元素yk与目标矢量中的元素dk进行比较,计算出M个输出

    误差项:

    对中间层的隐单元也计算出L个误差项:

    (6) 依次计算出各权值和阈值的调整量:

    (8) 当k每经历1至M后,判断指标是否满足精度要求:E≤ε,其中E是总误差函数。

    如果不满足,就返回(3),继续迭代。如果满足,就进入下一步。
    (9) 训练结束,将权值和阈值保存在文件中。这时可以认为各个权值已经达到稳定,分类器形成。再一次进行训练时,直接从文件导出权值和阈值进行训练,不需要进行初始化。

    YALE数据库是由耶鲁大学计算视觉与扼制中心创立,包括15位志愿者,每个人有11张不同姿势、光照和表情的图片,共计165张图片,图片均为80*100像素的BMP格式图像。我们将整个数据库分为两个部分,每个人的前5幅图片作为网络的训练使用,后6副图片作为测试使用。测试样例:

    输入输出:

      神经网络在人脸识别应用中有很长的历史。早期用于人脸识别的神经网络主要是Kohonen自联想映射神经网络,用于人脸的“回忆”。所谓“回忆”是指当输入图像上的人脸受噪声污染严重或部分缺损时,能用Kohonen网络恢复出原来完整的人脸。Intrator 等人用一个无监督/监督混合神经网络进行人脸识别。其输入是原始图像的梯度图像,以此可以去除光照的变化。监督学习目的是寻找类的特征,有监督学习的目的是减少训练样本被错分的比例。这种网络提取的特征明显,识别率高,如果用几个网络同时运算,求其平均,识别效果还会提高。
    
      与其他类型的方法相比,神经网络方法在人脸识别上有其独到的优势,它避免了复:杂的特征提取工作,可以通过学习的过程获得其他方法难以实现的关于人脸识别的规律和规则的隐性表达。此外,神经网络以时示方式处理信息,如果能用硬件实现,就能显著提高速度。神经网络方法除了用于人脸识别外,还适用于性别识别、种族识别等。
    

    2.3弹性图匹配法

    弹性图匹配方法是-种基于动态链接结构DLA C Dynamic Link Architecture的方法。它将人脸用格状的稀疏图表示,图中的节点用图像位置的Gabor小波分解得到的特征向量标记,图的边用连接节点的距离向量标记。匹配时,首先J找与输入图像最相似的模型图,再对图中的每个节点位置进行最佳匹配,这样产生-一个变形图,其节点逼近模型图的对应点的位置。弹性图匹配方法对光照、位移、旋转及尺度变化都敏感。此方法的主要缺点是对每个存储的人臉需计算其模型图,计算量大,存储量大。为此,Wiskott 在原有方法的基础上提出聚東图匹配,部分克服了这些缺点。在聚束图中,所有节点都已经定位在相应目标上。对于大量数据库,这样可以大大减少识别时间。另外,利用聚束图还能够匹配小同人的最相似特征,因此可以获得关于未知人的性别、胡须和眼镜等相关信息。
    2.4基于模板匹配的方法
    模板匹配法是一-种经典的模式识别方法,这种方法大多是用归一一化和互相关,直接计算两副图像之间的匹配程度。由于这种方法要求两副图像上的目标要有相同的尺度、取向和光照条件,所以预处理要做尺度归一化和灰度归一化的工作。最简单的人脸模板是将人脸看成-一个椭圆,检测人臉也就是检测图像中的椭圆。另一种方法是将人脸用一-组独立的小模板表示,如眼睛模板、嘴巴模板、鼻子模板、眉毛模板和下巴模板等。但这些模板的获得必须利用各个特征的轮廓,而传统的基于边缘提取的方法很难获得较高的连续边缘。即使获得了可靠度高的边缘,也很难从中自动提取所需的特征量。模板匹配方法在尺度、光照、旋转角度等各种条件稳定的状态下,它的识别的效果优于其它方法,但它对光照、旋转和表情变化比较敏感,影响了它的直接使用。2.5基于人脸特征的方法人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以作为人脸识别的重要特征。几何特征最早是用于人脸检测轮廓的描述与识别,首先根据检测轮廓曲线确定若干显著点,并由这些显著点导出- -组用于识别的特征度量如距离、角度等。采用儿何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征。
    定位眼睛往往是提取人脸几何特征的第-步。由于眼睛的对称性以及眼珠呈现为低灰度值的圆形,因此在人脸图像清晰瑞正的时候,眼睛的提取是比较容易的。但是如果人脸图像模糊,或者噪声很多,则往往需要利用更多的信息(如眼睛和眉毛、鼻子的相对位置等),而且.这将使得眼睛的定位变得很复杂。而且实际图像中,部件未必轮廓分明,有时人用眼看也只是个大概,计算机提取就更成问题,因而导致描述同-一个人的不同人脸时,其模型参数可能相差很大,面失去识别意义。尽管如此,在正确提取部件以及表情变化微小的前提下,该方法依然奏效,因此在许多方面仍可应用,如对标准身份证照片的应用。

    2.5九个人脸库介绍

    1. FERET人脸数据库
      http://www.nist.gov/itl/iad/ig/colorferet.cfm
      由FERET项目创建,此图像集包含大量的人脸图像,并且每幅图中均只有一个人脸。该集中,同一个人的照片有不同表情、光照、姿态和年龄的变化。包含1万多张多姿态和光照的人脸图像,是人脸识别领域应用最广泛的人脸数据库之一。其中的多数人是西方人,每个人所包含的人脸图像的变化比较单一。

    2. CMU Multi-PIE人脸数据库
      http://www.flintbox.com/public/project/4742/
      由美国卡耐基梅隆大学建立。所谓“PIE”就是姿态(Pose),光照(Illumination)和表情(Expression)的缩写。CMU Multi-PIE人脸数据库是在CMU-PIE人脸数据库的基础上发展起来的。包含337位志愿者的75000多张多姿态,光照和表情的面部图像。其中的姿态和光照变化图像也是在严格控制的条件下采集的,目前已经逐渐成为人脸识别领域的一个重要的测试集合。

    3. YALE人脸数据库(美国,耶鲁大学)
      http://cvc.cs.yale.edu/cvc/projects/yalefaces/yalefaces.html
      由耶鲁大学计算视觉与控制中心创建,包含15位志愿者的165张图片,包含光照、表情和姿态的变化。
      Yale人脸数据库中一个采集志愿者的10张样本,相比较ORL人脸数据库Yale库中每个对象采集的样本包含更明显的光照、表情和姿态以及遮挡变化。

    4. YALE人脸数据库B
      https://computervisiononline.com/dataset/1105138686
      包含了10个人的5850幅在9种姿态,64种光照条件下的图像。其中的姿态和光照变化的图像都是在严格控制的条件下采集的,主要用于光照和姿态问题的建模与分析。由于采集人数较少,该数据库的进一步应用受到了比较大的限制。

    5. MIT人脸数据库
      由麻省理工大学媒体实验室创建,包含16位志愿者的2592张不同姿态(每人27张照片),光照和大小的面部图像。

    6. ORL人脸数据库
      https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
      由英国剑桥大学AT&T实验室创建,包含40人共400张面部图像,部分志愿者的图像包括了姿态,表情和面部饰物的变化。该人脸库在人脸识别研究的早期经常被人们采用,但由于变化模式较少,多数系统的识别率均可以达到90%以上,因此进一步利用的价值已经不大。
      ORL人脸数据库中一个采集对象的全部样本库中每个采集对象包含10幅经过归一化处理的灰度图像,图像尺寸均为92×112,图像背景为黑色。其中采集对象的面部表情和细节均有变化,例如笑与不笑、眼睛睁着或闭着以及戴或不戴眼镜等,不同人脸样本的姿态也有变化,其深度旋转和平面旋转可达20度。

    7. BioID人脸数据库
      https://www.bioid.com/facedb/
      包含在各种光照和复杂背景下的1521张灰度面部图像,眼睛位置已经被手工标注。

    8. UMIST图像集
      由英国曼彻斯特大学建立。包括20个人共564幅图像,每个人具有不同角度、不同姿态的多幅图像。

    9. 年龄识别数据集IMDB-WIKI
      https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/
      包含524230张从IMDB和Wikipedia爬取的名人数据图片。应用了一个新颖的化回归为分类的年龄算法。本质就是在0-100之间的101类分类后,对于得到的分数和0-100相乘,并将最终结果求和,得到最终识别的年龄

    3matlab分析人脸方法介绍
    人脸识别之一:查找图片中的人脸并用方框圈出
    这种类似于智能手机拍照时,屏幕里那个框任务头部的红框。大致步骤为:获取RGB图片—>转换为灰度图像—>图像处理—>人脸识别。代码如下:clear all
    clc

    %获取原始图片
    i=imread(‘face.jpg’);
    I=rgb2gray(i);
    BW=im2bw(I); %利用阈值值变换法将灰度图像转换成二进制图像
    figure(1);
    imshow(BW);
    %最小化背景
    [n1 n2]=size(BW);
    r=floor(n1/10);
    c=floor(n2/10);
    x1=1;x2=r;
    s=r*c;

    for i=1:10
    y1=1;y2=c;
    for j=1:10
    if(y2<=c || y2>=9c) || (x11 || x2r10)
    loc=find(BW(x1:x2,y1:y2)==0);
    [o p]=size(loc);
    pr=o*100/s;
    if pr<=100
    BW(x1:x2,y1:y2)=0;
    r1=x1;r2=x2;s1=y1;s2=y2;
    pr1=0;
    end
    imshow(BW);
    end
    y1=y1+c;
    y2=y2+c;
    end
    x1=x1+r;
    x2=x2+c;
    end
    figure(2)
    subplot(1,2,1);
    imshow(BW)
    title(‘图像处理’);
    %人脸识别
    L=bwlabel(BW,8);
    BB=regionprops(L,‘BoundingBox’);
    BB1=struct2cell(BB);
    BB2=cell2mat(BB1);

    [s1 s2]=size(BB2);
    mx=0;
    for k=3:4:s2-1
    p=BB2(1,k)*BB2(1,k+1);
    if p>mx && (BB2(1,k)/BB2(1,k+1))<1.8
    mx=p;
    j=k;
    end
    end
    subplot(1,2,2);
    title(‘人脸识别’);
    imshow(I);
    hold on;
    rectangle(‘Position’,[BB2(1,j-2),BB2(1,j-1),BB2(1,j),BB2(1,j)],‘EdgeColor’,‘r’)实验效果图:

             从实验效果图中,可以看出红框框出了人脸部分。
    

    人脸识别之二:由输入的人像识别出数据库中人像
    这种情况类似于手机人脸解锁,通过当前的人脸去和保存的人脸做比对来实现解锁等功能;从网上看了好多资料,由于个人能力有限大多都没仿真出来,最后通过学习PCA算法,了解到可通过PCA算法对输入矩阵降维,提取特征值和特征向量的方式来做人脸比对。具体的PCA的东西在这里不作介绍,主要介绍一下如何实现人脸比对。
    大致步骤:制作人脸数据样本—>PCA提取样本数据特征值—>人脸比对1.人脸样本
    从网上搜集了10张人脸图片,来制作成样本。

                         %读取转换10张图片,生成数据矩阵function ImgData = imgdata()  
    

    %导入图片
    picture1 = rgb2gray(imread(‘1.jpg’));
    picture2 = rgb2gray(imread(‘2.jpg’));
    picture3 = rgb2gray(imread(‘3.jpg’));
    picture4 = rgb2gray(imread(‘4.jpg’));
    picture5 = rgb2gray(imread(‘5.jpg’));
    picture6 = rgb2gray(imread(‘6.jpg’));
    picture7 = rgb2gray(imread(‘7.jpg’));
    picture8 = rgb2gray(imread(‘8.jpg’));
    picture9 = rgb2gray(imread(‘9.jpg’));
    picture10 = rgb2gray(imread(‘10.jpg’));
    [m,n] = size(picture1);
    picture_ten = {picture1,picture2,picture3,picture4,picture5,picture6,picture7,picture8,picture9,picture10};
    for i=1:10
    %把mn的矩阵变换成1(mn)的矩阵
    ImgData(i,:) = reshape(picture_ten{i},1,m
    n);
    end
    %数据范围缩小到0到1之间
    ImgData = double(ImgData)/255;

    PCA分析function Cell_ten = PCA(imgdata,k)
    [m,n] = size(imgdata);
    img_mean = mean(imgdata); %计算每列平均值
    img_mean_ten = repmat(img_mean,m,1); %复制m行平均值至矩阵img_mean_ten
    Z = imgdata - img_mean_ten;
    T = Z’Z;%协方差矩阵
    [V,D] = eigs(T,k); %计算T中最大的前k个特征值与特征向量
    img_new = imgdata
    V*D; %低维度下的各个人脸的数据
    Cell_ten = {img_new,V,D};3.通过输入测试人脸从数据库中找到相对应人脸function face= facefind(Cell_ten,testdata)%此函数代码借鉴于他人,还未征求其同意,这里就暂时略过这里testdata是测试图片的数据4.主程序调用img=imgdata(); %图片矩阵数据
    Cell_ten=PCA(img,2);% PCA
    face1=facefind(Cell_ten,imread(‘test.jpg’));%识别
    subplot(1,2,1)
    imshow(‘test.jpg’)
    title(‘测试图像’)
    subplot(1,2,2)
    imshow(strcat(num2str(face1),’.jpg’))
    title(‘数据库图像’)测试效果: 使用这个方式可以实现简单的人脸识别,但精确度不高;

    4 分析算法
    在人脸识别系统中有许多关键环节,其中最重要的莫过于特征提取。利用主成分分析法(PCA)进行特征提取是目前应用最多的提取方法。作为一种科学的统计方法,它在模式识别、信号处理、数字图像处理等等领域都有广泛涉猎。基于PCA中空间原始数据主要特征提取,减少数据冗余的思想,一些在低维特征空间的数据被处理,并合理保留了原始数据中有用的信息,数据空间中维数过高的问题也得以解决。
    4.1  主成分分析的基本原理

    实际上主成分分析就是一种数学降维演算方法,用若干个综合变量来代替原本更多的变量,让这些综合变量尽可能的实现对原有变量信息的取代,并保持彼此之间不存在关联。这种多变量化为少数相互无关的变量且信息量不变的统计分析方法就叫做主成分分析法。
      假设F1表示原变量的首个线性组合所组成的主要成分指标,就有F1=a11X1+a21X2+…ap1Xp。根据这个数学式可知,如果在每一个主成分中提取一个信息量,即可用方差(F1)进行度量,随着方差F1的增大,F1所包含的信息也就越多,同时它的线性组合选取也可表示为X1、X2…XP,它们都被称为方差F1中的第一主成分。如果第一主成分不足以代表原有的P个变量信息时,就可以考虑选取F2,即第二个线性组合,借由它来反映原本的有效信息。在F2中可以不显示第一主成分中已有的信息,以数学语言来表达要求的话即Cov(F1,F2)=0,其中F2为第二主成分。所以按照实际原变量的变化需求,就可以构造出多个主成分指标。
      4.2人脸识别的技术特点

    人脸识别是模式识别中的重要分支,它是指通过计算机系统来分析人脸图像,从中获取有价值的识别信息,从而辨识身份。所以说从技术特点上来看,人脸识别具有以下几个关键特色。
     1、PCA算法
    算法大致步骤:
    设有m条n维数据。
    1)将原始数据按列组成n行m列矩阵X;
    2)将X的每一行(这里是图片也就是一张图片变换到一行)进行零均值化,即减去这一行的均值(样本中心化和标准化);将所有的样本融合到一个矩阵里面特征向量就是变换空间的基向量U=[u1,u2,u3,u4,…],脑袋里面要想到一个样本投影变换就是该空间的一个点,然后对于许多点可以用KNN等不同的方法进行分类。
    3)求出协方差矩阵C=1mXXTC=1mXXT C=\frac {1 }{m } XX^TC=m1XXT;
    4)求出协方差矩阵的特征值及对应的特征向量;
    5)将特征向量按对应特征值大小从上到下按行排列成矩阵,取前k行组成矩阵P;
    6)Y=PXY=PX Y=PXY=PX即为降维到kk kk维后的数据。
      对数据进行中心化预处理,这样做的目的是要增加基向量的正交性,便于高维度向低纬度的投影,即便于更好的描述数据。
      对数据标准化的目的是消除特征之间的差异性,当原始数据不同维度上的特征的尺度不一致时,需要标准化步骤对数据进行预处理,使得在训练神经网络的过程中,能够加速权重参数的收敛。
      过中心化和标准化,最后得到均值为0,标准差为1的服从标准正态分布的数据。
      求协方差矩阵的目的是为了计算各维度之间的相关性,而协方差矩阵的特征值大小就反映了变换后在特征向量方向上变换的幅度,幅度越大,说明这个方向上的元素差异也越大(越有投影的必要,矩阵相乘的过程就是投影),故而选取合适的前k个能以及小的损失来大量的减少元数据的维度。

    2、PCA原理推导
    基于K-L展开的PCA特征提取:

    5.算法优化方法
    我用了三种方法对其进行优化
    1.采用动量梯度下降算法训练 BP 网络。
    训练样本定义如下:
    输入矢量为
    p =[-1 -2 3 1
    -1 1 5 -3]
    目标矢量为 t = [-1 -1 1 1]
    2. 采用贝叶斯正则化算法提高 BP 网络的推广能力。在本例中,我们采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。其中,样本数据可以采用如下MATLAB 语句生成:
    输入矢量:P = [-1:0.05:1];
    目标矢量:randn(’seed’,78341223);
    T = sin(2piP)+0.1randn(size§);
    3. 采用“提前停止”方法提高 BP 网络的推广能力。对于和例 2相同的问题,在本例中我们将采用训练函数 traingdx 和“提前停止”相结合的方法来训练 BP 网络,以提高 BP 网络的推广能力。在利用“提前停止”方法时,首先应分别定义训练样本、验证样本或测试样本,其中,验证样本是必不可少的。在本例中,我们只定义并使用验证样本,即有
    验证样本输入矢量:val.P = [-0.975:.05:0.975]
    验证样本目标矢量:val.T = sin(2
    pival.P)+0.1randn(size(val.P))
    值得注意的是,尽管“提前停止”方法可以和任何一种 BP 网络训练函数一起使用,但是不适合同训练速度过快的算法联合使用,比如 trainlm 函数,所以本例中我们采用训练速度相对较慢的变学习速率算法 traingdx 函数作为训练函数。
    参考文献

    [1] HongZiquan.AlgbricFeatureExcaciofmftfoReonino[JPatteo Recognition. 1991. 22 (1) :43~44.
    [2] Yuille A L Detcction Templates for Face Recognitio[JCognitive Neuroscience , 1991. 191-200
    [3]卢春雨张长水局城区城特征的快速人脸检测法[D北京:清华大学学报.1999.96 (1) ;4-6.
    [4]陈刚,减飞虎实用人脸识别系统的本征脸法实现[D]2001年5月230():45-46.
    [
    5]杜平,徐大为,刘重庆,基F整体特征的人脸识别方法的研究[12003年6月49 (3) ;382-383.
    [6] Chow G, Li X. Towards A System for Automatic Facial Feature Detctio[U] 1993. 2903)2-3.
    [7]杨变若,王煎法,杨未来人脸全局特iE识别研究[Z]1997年11月3(5):; 871-875.
    [8]边肇棋,张学工阎平凡等模式识别D]北京:清华大学出版社2000 302)16-17.

    致 谢

      从毕业设计的选题到论文的指导到最后定稿,期间遇到了无数的困难和阻碍,也曾想过对自己降低要求,也曾想过放弃最初想要坚持的设计,但是最后在孙老师和同学的鼓励和陪伴下,努力克服了所有的困难,独立完成了毕业设计和论文的书写。尤其是要感射我的论文指导老师孙老师,不厌其烦的对我的设计进行指导修改,耐心的帮助我改进设计帮助我搜集相关的资料,感谢孙老师如母亲--般的关怀,在孙老师身上不仅学习到了对学术严谨的态度,更被孙老师亲切无私的个人魅力所感染。
    
      还要感谢我的同学和其他所有的老师,他们严谨的学术态度,宽容待人严于律己的处世风范都使我受益良多。
    
    展开全文
  • zabbix添加监控主机/监控模板/聚合图形/触发器

    千次阅读 多人点赞 2019-11-13 19:14:11
    文章目录添加监控主机配置监控模板 添加监控主机 在zabbix配置好服务端后,把要监控的机器添加到监控中 安装官网的yum源: rpm -Uvh ...

    zabbix添加监控主机

    在zabbix配置好服务端后,把要监控的机器添加到监控中

    安装官网的yum源:

    rpm -Uvh https://repo.zabbix.com/zabbix/4.0/rhel/7/x86_64/zabbix-release-4.0-2.el7.noarch.rpm
    

    安装zabbix-agent:

    yum -y install zabbix-agent
    

    #被监控的机器只需要安装zabbix-agent包即可

    修改配置文件:

    vi /etc/zabbix/zabbix_agentd.conf 
    

    修改Server和ServerActive配置项的地址为zabbix服务端IP即可

    启动zabbix-agent服务:

    systemctl start zabbix-agent
    

    查看监听端口:

    [root@centos ~]# netstat -lntp |grep 10050
    tcp        0      0 0.0.0.0:10050           0.0.0.0:*               LISTEN      9966/zabbix_agentd  
    tcp6       0      0 :::10050                :::*                    LISTEN      9966/zabbix_agentd 
    

    #10050端口已被监听,服务端zabbix监听端口为10051

    进入zabbix前端管理页面添加主机:
    在这里插入图片描述
    定义主机名,IP地址,选择群组:
    在这里插入图片描述

    zabbix监控模板配置

    添加好监控主机后,需要配置应用集、监控项、触发器、图形、自动发现,可以使用zabbix自带的监控模板(所有的自带模板存放于templates群组中),也可以自定义(应用集中包含监控项,监控项关联触发器、图形、自动发现等配置)

    自定义监控模板:

    1.创建自定义模板

    点击配置→模板→创建模板
    在这里插入图片描述
    定义模板名称以及所属群组添加自定义模板:
    在这里插入图片描述
    #接下来就可以去别的模板里去复制每个应用集对应的监控项、触发器、图形等配置到自定义模板

    2.克隆现有模板

    已Template OS Linux模板为例,克隆一个新的自定义模板

    点击全克隆:
    在这里插入图片描述
    定义好新模板名称与群组后点击添加即可:
    在这里插入图片描述
    克隆完后即可显示在模板界面:
    在这里插入图片描述
    取消并清理链接的模板:
    在这里插入图片描述
    此时即可删除不需要的应用集,监控项,触发器,图形等(当监控项关联触发器时,需要先删除触发器)

    定义好的模板要应用在被监控的主机上可以将模板加入被监控主机的群组,也可针对单台主机链接模板使用

    点击配置→主机→点击需要应用该模板的主机名称
    在这里插入图片描述
    点击模板→选择要使用的模板→点击添加后即可:
    在这里插入图片描述
    添加完模板后主机页面该主机的应用集、监控项、触发器等列就会显示相应的数值
    在这里插入图片描述
    #可用性ZBX为绿色表示可以正常监控,为红色表示有问题(IP错误或防火墙原因等)

    点击监测→最新数据→选择主机后即可查看每个应用集中的监控项监控的值:
    在这里插入图片描述
    点击监测→图形→选择主机→选择图形项以及时间区间
    在这里插入图片描述
    即可查看对应的监控图:
    在这里插入图片描述

    zabbix聚合图形配置

    zabbix中会根据监控的数据生成图形更直观的显示,聚合图形的作用就是将多个图形放在一起展示,更方便查看监控数据

    点进监测→聚合图形→创建→定义聚合图形名称,行数列数:
    在这里插入图片描述
    添加成功后即可在页面显示,点击构造函数后进入如下页面:
    在这里插入图片描述
    点击更改即可选择要添加的图形以及高度宽度等参数:
    在这里插入图片描述
    在点击选择按钮后可以选择指定群组中指定机器的图形:
    在这里插入图片描述
    配置完成后在聚合图形页面点击对应的名称即可查看:
    在这里插入图片描述
    #如需将聚合图形添加到监测首页的仪表板中,在对应的聚合图形中点击右上角的星即可(前提是仪表板有"常用的聚合图形"这一模块)

    zabbix触发器配置

    触发器根据监控项监控的结果来判断是否报警,触发器的设置可以针对单台主机或某个配置模板

    在主机界面点击触发器后即可进入触发器界面,右上角选择群组后,指定主机名给指定的主机添加触发器(报警规则),也可以指定一个模板,给模板添加触发器,这样使用了该模板的主机都会生效
    在这里插入图片描述
    定义触发器名称、严重等级以及表达式:
    在这里插入图片描述
    #定义表达式选择对应的监控项、判断符号、判断的值即可

    添加完后点击对应主机/模板的触发器按钮即可进入页面查看:
    在这里插入图片描述

    zabbix中文名称报错/图形乱码问题处理

    1.中文名称报错

    当添加监控项、图形、聚合图形等监控配置时,会报错,无法添加,原因是数据库字符集在创建的时候没有指定为utf8

    例:查看触发器表triggers的字符集,结果显示字符集为latin1

    在这里插入图片描述
    处理方法:

    1.编辑配置文件/etc/my.cnf添加以下内容:

    character_set_database = utf8
    character_set_server = utf8
    

    2.导出数据库:

    [root@zabbix ~]# mysqldump -uroot -p --default-character-set=utf8 zabbix > zabbixbak.sql
    

    3.编辑导出的.sql文件,替换latin1为utf8:
    在这里插入图片描述
    4.导入数据库即可:

    [root@zabbix ~]# mysql -uroot -p --default-character-set=utf8 zabbix < zabbixbak.sql 
    

    2.zabbix图形乱码

    当图形名称以中文命名时,或者图形中包含中文命名的监控项目,触发器时,查看图形时监控项目名称等信息会变成小方框:
    在这里插入图片描述
    解决方法:

    1.查看zabbix字体库配置:

    vi /usr/share/zabbix/include/defines.inc.php 
    

    2.搜索fonts:
    在这里插入图片描述
    #可以看到当前字体库存放目录assets/fonts,当前字体库graphfont

    3.进入C:\Windows\Fonts拷贝一个中文字体库到该目录下:

    [root@zabbix ~]# mv LanTing_Regular.ttf /usr/share/zabbix/assets/fonts/
    [root@zabbix ~]# cd !$
    cd /usr/share/zabbix/assets/fonts/
    [root@zabbix fonts]# ll
    总用量 3572
    lrwxrwxrwx 1 root root      33 11月 13 11:57 graphfont.ttf -> /etc/alternatives/zabbix-web-font
    -rw-r--r-- 1 root root 3656952 11月 14 16:53 LanTing_Regular.ttf
    

    4.更改原字体库:

    [root@zabbix fonts]# mv graphfont.ttf graphfont.ttf.bak
    

    5.将上传的中文字体库软连接为graphfont.ttf:

    [root@zabbix fonts]# ln -s ./LanTing_Regular.ttf graphfont.ttf
    

    图形中的中文字体即可正常显示:
    在这里插入图片描述

    展开全文
  • 测试开发笔记

    万次阅读 多人点赞 2019-11-14 17:11:58
    141 BREAK \ CONTINUE 141 函数 143 定义: 143 调用: 143 第十七章 单元测试 144 单元测试概念: 144 单元测试静态测试: 144 单元测试动态测试: 144 测试评价准则: 144 逻辑覆盖率 144 单元测试策略 145 ⑴ ...
  • SpringCloud

    千次阅读 2019-11-18 08:54:06
    • Hystrix dashboard,Turbine 负责监控 Hystrix的熔断情况,并给予图形化的展示 • Spring Cloud Confifig 提供了统一的配置中心服务 • 当配置文件发生变化的时候,Spring Cloud Bus 负责通知各服务去获取最新...
  • TensorFlow入门

    千次阅读 多人点赞 2019-04-23 10:09:29
    这些数据“线”可以输运“size可动态调整”的多维数据数组,即“张量”(tensor)。张量从图中流过的直观图像是这个工具取名为“Tensorflow”的原因。一旦输入端的所有张量准备好,节点将被分配到各种计算设备完成...
  • C#基础教程-c#实例教程,适合初学者

    万次阅读 多人点赞 2016-08-22 11:13:24
    在项目类型(P)编辑框中选择Visual C#项目,在模板(T)编辑框中选择控制台应用程序,在名称(N)编辑框中键入e1,在位置(L)编辑框中键入D:\csarp,必须预先创建文件夹D:\csarp。也可以单击浏览按钮,在打开文件对话框中...
  • 一、相关概念Cacti定义了三种类型的模板,分别是主机模板数据模板图形模板主机模板(Host templates),它是图形模板和数据查询的一个集合(Associated Graph Templates + Associated Data Queries),描述了监控某...
  • 达梦数据库提供了图形化界面进行数据表导出导入,下面对这些功能做下演示说明: 打开图形化界面:安装目录–>tool目录–>运行./manager 打开后的界面: 导出步骤一: 导出步骤二: 选择要存放的目录,填写...
  • java 小程序 自己学习

    千次阅读 2015-11-22 15:25:18
    模板制作器——该网站应用允许用户输入各种颜色代码、元素、尺寸,来为PHPBB、Invision Board、MySpace之类的应用创建模板文件。 验证码生成器——应该在登录时见过有数字有字母的验证码图片吧?这可以防止自动登录...
  • Linux上安装 tensorflow (重在阐述导入错误) 以:AttributeError: module ‘pandas’ has no attribute ‘core’为例。 本文声明: 1.本人学生一枚,懂得不多,只希望这篇文章给你带来启发。 2.网上...
  • Linux实用教程(第三版)

    万次阅读 多人点赞 2019-08-27 22:55:59
    现在FirewallD可以动态管理防火墙,支持动态配置,不用重启服务。 通过将网络划分成不同的区域,制定出不同区域之间的访问控制策略,以此来控制不同程度区域间传送的数据流。比如互联网是不可信任的区域,而内部网络...
  • pdf模板工具JaspersoftStudio,JasperReport

    千次阅读 2019-02-01 13:32:01
    pdf模板工具JaspersoftStudio,JasperReport 概述 Jaspersoft Studio是JasperReports库和JasperReports服务器的基于Eclipse的报告设计器; 它可以作为Eclipse插件或作为独立的应用程序使用。Jaspersoft Studio允许.....
  • 我们先打开一张CAD模板图,准备保存我们点击文件菜单下的另存为------然后弹出保存对话框,再选择-----右上角工具(英文版选Tools)------安全选项(英文版选security options)弹出另外一个对话框,在---用于打开此图形...
  • STM32CubeMX是ST意法半导体推出的STM32系列芯片图形可视化配置工具,用户可以通过图形化向导为Cortex-M系列MCU生成初始化代码工程模板。 相较于Keil创建工程模板,STM32CubeMX步骤少、上手快,但生成的工程模板比较...
  • Java导入Excel工具类使用教程

    千次阅读 热门讨论 2019-03-26 11:06:43
    本工具类提供了Excel导入功能,通过反射机制将Excel中数据映射到实体类中,从而获取Excel数据,工具类依赖`org.apache.poi`包。支持RESTful API,支持Spring MVC中使用。 本工具类支持功能: - 支持File类型导入 ...
  • 3:图形制作,首先声明我是JavaBean的为iREPORT分享到人人设计模板的数据源;  ①打开iREPORT分享到人人,点击文件,点击新,弹出下面页面 我选择的a4纸,打开这个模板点击 点击完成,会弹出下面的界面 开始配置数据...
  • 图形学基础概念笔记(一)

    千次阅读 2020-05-31 19:51:09
    图形学笔记 常见专有名词 显卡和GPU GPU和CPU的区别? 主流CPU(Central Processing Unit,中央处理器)芯片上有四级缓存,消耗了大量晶体管,在运行时需要大量电力;主流GPU(Graphics Processing Unit,图形处理器)...
  • JEECG 3.7.7 闪电版本发布,提供5套主流UI代码生成器模板!此版本为性能和表单UI深化加强版本,简称闪电版本 (闪电般的速度,主流的Bootstrap表单风格)。平台性能访问速度提升至少3倍,表单提供Bootstrap风格,新...
  • Cacti 创建和使用模板

    2012-12-05 19:48:48
    Cacti 提供了一个工具为数据,图形和...u 定义一个图形模板 u 定义一个主机模板 u 为设备分配一个主机模板 u 导入或者导出模板 u 参考模板库 现在开始啦…… 模板介绍 Cacti 拥有一个模板,可以用来简单的创...
  • 避免手工一个一个重新配置的繁琐跟配置错误疏漏等情况。也同时进行下配置文件的导出备份工作。 参考资料 官方文档 Kibana 用户手册 » 管理 » 管理保存的搜索、可视化组件和仪表板 具体步骤 本次示例以导出可视化...
  • 几年后,由计算机科学家Leslie Lamport创建的LaTeX宏语言通过简化对文档类型及其逻辑组成部分(如节,段落,列表,图形和标题)的识别,将TeX标记提升到结构化文档领域。 诸如LaTeX之类的标记语言在学...
  • java excel导入和导出(poi,jxl)

    千次阅读 2017-09-02 18:15:43
    来自:http://blog.csdn.NET/jerehedu/article/details/45195359 一、介绍 当前B/S模式已成为应用开发的主流,而在企业办公系统中,...这样在我们实际的开发中,很多时候需要实现导入、导出Excel的应用。 目前,比
  • 通过模板将数据导入到Word中

    千次阅读 2011-04-28 18:17:00
    // 如果图形是从另一个平台(例如,Macintosh)导入的,则 true 表示仅保存导入图形的 Windows 版本。 Object SaveFormsData = false; // 如果为 true,则将用户在窗体中输入的数据另存为数据记录。 Object ...
  • HFS模板开发

    2018-08-17 12:24:00
    痉挛模板, 节, 符号 & 变量帮助需要更多帮助 吗?看看 下面这些链接-模板是模型痉挛用于构建 HTML 页面。 -它分为几个部分, 每个部分描述最终 HTML 页面的一部分。 -此模板必须提供所有部分才能正常工作。 -...
  • 5 模板工具Jaspersoft Studio 5.1 概述 Jaspersoft Studio是JasperReports库和JasperReports服务器的基于Eclipse的报告设计器; 它可以作为Eclipse插件或作为独立的应用程序使用。Jaspersoft Studio允许您创建包含...
  • 毕业论文写作Tips

    千次阅读 2016-03-10 10:53:10
    定制文稿:直接在Word中格式化引文和图形,利用文稿模板直接书写合乎杂志社要求的文章。 引文编排:可以自动帮助我们编辑参考文献的格式。 简单来说,不在需要我们在手动输入文献格式和名称,只需要在网络...
  • 后端实现图形验证码验证时,需要先使用第三方包生成验证码,同时保存到Redis中,最后响应到前端注册页,需要配置好Redis;前端需要生成uuid,并获取验证码图片和显示,还需要对验证码长度进行验证。短信验证码逻辑为...
  • java POI Excel数据导入数据库

    千次阅读 2018-11-22 22:27:45
    毕竟存在本来这个单元格是要写数字的,结果给你写了一堆英文,导入存储失败,就要提醒到这个单元格填写内容错误了。 还有批量导入存表的时候,切记要加事务处理,否则第一次导入 100 条数据失败了,却还是存了 50...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 11,767
精华内容 4,706
关键字:

动态图形模板导入错误