精华内容
下载资源
问答
  • %一个求包络线和包络谱的程序%现代希尔伯特变换解调分析:%带通滤波;希尔伯特变换获得信号时域的包络线;用fft变换获得包络谱%如何获得包络线?%信号经希尔伯特变换不能直接得到包络,设信号x的希尔伯特变换为y,则...

    %

    一个求包络线和包络谱的程序

    %

    现代希尔伯特变换解调分析:

    %

    带通滤波;希尔伯特变换获得信号时域的包络线;用

    fft

    变换获得包络谱

    %

    如何获得包络线?

    %

    信号经希尔伯特变换不能直接得到包络,设信号

    x

    的希尔伯特变换为

    y

    ,则平方和

    %x.^2+y.^2(

    或者再开根号,直接取平方和的效果为好

    )

    才是信号

    x

    的包络。

    %

    构造实验数据

    clear all;close all;

    t=0:0.005:1*pi;

    fs=10000;

    s=4*sin(2*200*pi*t).*(sin(2*4500*pi*t))+25*(sin(2*4500*pi*t));

    figure(1);

    subplot(211);plot(t,s);title('

    原始信号

    ');

    %

    运用小波方法滤波

    [c,l]=wavedec(s,1,'db10');

    d1=wrcoef('d',c,l,'db10');

    a1=0;

    subplot(212);plot(d1);title('

    滤波后重构的高频信号

    ');

    %

    希尔伯特变换求包络线

    y=hilbert(d1);

    y1=abs(d1+y*j);               %

    这是取得包络线的三种方程。看一看哪种效果好。

    %y1=abs(y);                     %

    或者

    z=x.^2+y.^2;

    有的取得是

    abs(y),

    但是不推荐用。

    %y1=d1.^2+y.^2;                 %

    通过分析,

    该方程在包络谱中的效果最好,

    即取二者平

    方和。

    figure(2);

    subplot(211);

    hold on

    plot(t,s);

    plot(t,y1,'r');title('

    包络线

    ');

    hold off

    %FFT

    求包络谱

    N=1024;

    p=abs(fft(y1,N));

    subplot(212);

    plot((0:N/2-1)/N*fs,p(1:N/2));%

    只需取到半频,即

    fs/2

    %f=(0:N-1)*fs/N; plot(f,p);   %

    横坐标是在

    fs

    上,其中以

    fs/2

    为轴中心对称。

    title('

    包络谱

    ');xlabel('

    频率

    ');ylabel('

    功率谱

    ');

    %

    对比信号直接的傅里叶变换功率谱与包络谱

    展开全文
  • 在此背景下,提出了扩展的包络条件来适应C0连续的曲线包络计算,并证明了在C1连续条件下扩展包络条件是传统包络条件的充分非必要条件;在此基础上,提出了一种新的任意非凸平面多边形变形包络计算方法。最后,...
  • 针对当前车辆动态包络线的获取主要通过计算手段这一情况,设计了高速列车动态包络线测量系统。系统基于双目视觉测量原理,利用大功率线激光瞬时光源构造测量特征,通过高速采集、处理、解算能反映列车动态偏移的被测...
  • 我们不必再去计算另外两个抛物线的方程,根据如下对称性, 蓝色抛物线和红色抛物线的交点,也是蓝色抛物线和正三角形一条高的交点。 这条高的方程很容易求,从而和抛物线的交点为(-1/6,2√3/9)。过程略。 连接三个...

    如图,对一个边长为1的单位正三角形,在初始时刻,三个动点各自位于三角形的三个顶点处。随后同时出发,以相同的速度沿着三角形的边运动。三个动点的连线在运动的过程中始终形成一个新的,小一点的正三角形。效果如下:

    24509f4e78df721acdcb7fca80ed12ac.gif
    b4d56a61ab47d8bc24a396972877579c.png

    求中间空白区域的面积。

    分析

    直观上来看,中间空白区域很像一个莱洛三角形(如下图深色部分),但稍微分析一下,就知道这一定不是莱洛三角形

    316d527c7dc34e6c41fdb9b3bd55806f.png

    莱洛三角形的三条边是三条对应60°圆周角的圆弧,而围出空白区域的三条曲边,我们不妨取其中的一条看看。如下,

    7cb0b9255827369b714c6204da013932.gif

    这明显不是圆弧,看上去更像一条抛物线。

    事实上,如果学过微积分或微分几何,很容易通过解析几何的方法计算曲线族的包络:

    e8b2ee7da24c77770447e14a8929ebea.png

    建立上图所示的坐标系,AB=BC=AC=1。点E和点F是两个动点。满足AF+AE=1。设AF=t,则

    83f65502c2252bface873624021e2876.png

    于是直线EF的点斜式方程为

    31efc46fe32253830dfb69798914f531.png

    b4fc1dc833bd4e819f078ef6e80dfaf3.png

    我们就得到了一组含有参数t的直线族

    f940ffcd8af34bb75a5ab437c958b80e.png

    它的包络曲线的方程为

    1b8c9d0493fc26c1fbf0ff3921c6ef49.png

    消去参数t,可得

    6ec50b2ad6e4162f5a2e24e8ecd7ac7e.png

    这是一个开口向下,以y轴为对称轴,(0,√3/4)为顶点,且经过点(-1/2,0)和(1/2,0)的 抛物线!

    根据对称性,另外两条包络曲线也是形状相同的抛物线。

    既然要计算面积,就需要知道他们交点的坐标。

    我们不必再去计算另外两个抛物线的方程,根据如下对称性,

    1ecc2e2dc0fde12ee39a243fb576357f.png

    蓝色抛物线和红色抛物线的交点,也是蓝色抛物线和正三角形一条高的交点。

    这条高的方程很容易求,从而和抛物线的交点为(-1/6,2√3/9)。过程略。

    b0605c6a3b8e43913359716e1c3c5e86.png

    连接三个交点,这样待求面积转化为一个边长为1/3的正三角形和三个小曲边三角形的面积。

    e077d0ecf8fa88bc54c84e4918298f18.png

    大功告成。

    过程稍显复杂。难点主要在于包络曲线的计算。

    如果已经知道是抛物线,那么直接根据抛物线经过的三个特殊点(也就是正三角形底边的两个顶点B和C,底边上中位线的中点D)得到其方程,就不必求偏导联立方程组计算了。

    35a42bb762fa0433e21d6880d942a0cb.png

    怎样确定这是一条抛物线呢?

    注意到求出的抛物线恰好以三角形的中心为焦点,再联系抛物线的光学几何性质,不难得到其切线恰好将三角形的周长按1:2分成两部分。根据同一法立得,包络曲线正是这条抛物线。

    最后,将题目稍作改编,难度就比较小,且适合高中生做:

    d253e73a2aa69c02d17ad4a39dfe9c27.png

    对上图所示正三角形,一条抛物线经过其两个顶点。抛物线以该三角形的中心为焦点,以该三角形的高为对称轴。取抛物线上位于在三角形内部的任意一点,做切线DE。

    证明:线段DE将正三角形的周长按固定比1:2分成两部分。

    这个问题留给你们。

    展开全文
  • 遥感图像包络线去除

    千次阅读 2018-06-03 16:02:01
     (2)以最大值点作为包络线的一个端点,计算该点与长波方向(波长增长的方向)各个极大值连线的斜率,以斜率最大点作为包络线下一个端点,再以此点为起点循环,直至最后一点; (3)以最大值点作为包选线的一个...
    包络线去除是光谱识别中一个重要的步骤,算法如下:
        (1)通过求导得到光谱曲线上所有极大值点,即“峰”值点,然后比较大小,得到极大值点中的最大值点;
        (2)以最大值点作为包络线的一个端点,计算该点与长波方向(波长增长的方向)各个极大值连线的斜率,以斜率最大点作为包络线下一个端点,再以此点为起点循环,直至最后一点;
        (3)以最大值点作为包选线的一个端点,向短波(波长减少的方向)进行类似计算,以斜率最小点为下个端点,再以此点为起点循环,直至曲线上的开始点;

        (4)沿长波方向连接所有端点,可形成曲线的包络线,用实际光谱反射率去除包络线上相应波段的反射率值,可得到包络线消除法归一化后的值。

    /**
        求取包络线,去除包络线(为了保存所有去除包络线数据)--->为了提高速度
        r:读取的光谱数据
        w:读取的波长
        h:输出的去包络线数据
    */
    
    template <typename T> void RsEnvelopingLine(T* r, float* w, float* h, int bands)
    {
        int i = 0, j = 1, m;
        int k = 0;
        float tempHH = 0;
        while (i < bands - 1)
        {
            if (j == bands - 1)
            {
                //从i-j循环
                float temp1 = ((float)r[j] - (float)r[i]) / (w[j] - w[i]);
                float temp2 = (float)r[i] - temp1 * w[i];
                for (k = i; k <= j; k++)
                {
                    tempHH = temp1 * w[k] + temp2;
                    if (tempHH == 0)
                    {
                        h[k] = 0.0f;
                    }
                    else
                    {
                        h[k] = (float)r[k] / tempHH;
                    }
                }
                break;
            }
            else
            {
                for (m = j + 1; m <bands; m++)
                {
                    float temp1 = ((float)r[j] - (float)r[i]) / (w[j] - w[i]);
                    float temp2 = (float)r[i] - temp1*w[i];
                    float y = temp1 * w[m] + temp2;
                    if (y >= r[m])
                    {
                        if (m == bands - 1)
                        {
                            //从i-j循环
                            for (k = i; k <= j; k++)
                            {
                                tempHH = temp1*w[k] + temp2;
                                if (tempHH == 0)
                                {
                                    h[k] = 0.0f;
                                }
                                else
                                {
                                    h[k] = (float)r[k] / tempHH;
                                }
                            }
                            i = j;
                            break;
                        }
                    }
                    else
                    {
                        break;
                    }
                }
            }
            j = j + 1;
        }
    }
    

    展开全文
  • MATLAB - 数字信号包络线的求取

    千次阅读 2021-01-20 16:59:24
    函数: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%...% 这个函数首先移除x的均值,然后在计算包络线之后再把它加回来。 % % 如果x是一个矩阵,那么包络线对x的每一列都是独立的。 % %%%%%%%%%%%%%%%%%%%%%%%%

    函数:

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % 返回输入序列x的上下包络线,作为其解析信号的大小。              %
    % x的解析信号是利用希尔伯特实现的离散傅里叶变换得到的。           %
    % 这个函数首先移除x的均值,然后在计算包络线之后再把它加回来。      %
    % 如果x是一个矩阵,那么包络线对x的每一列都是独立的。             %
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    [yupper,ylower] = envelope(x)
    
    
    
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % 返回用解析信号的大小确定的x的包络线。                        %
    % 解析信号通过使用长度为fl的Hilbert FIR滤波器对x进行滤波来计算。 %
    % 如果只指定两个参数,则使用此语法。                           %
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    [yupper,ylower] = envelope(x,fl,'analytic')
    
    
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % 返回x的上、下均方根包络。包络是使用长度wl样本的滑动窗口确定的。  %
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    [yupper,ylower] = envelope(x,wl,'rms')
    
    
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % 返回x的上峰和下峰包络线。                                  %
    % 包络线由至少np个样本分离的局部最大值上的样条插值确定。         %
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    [yupper,ylower] = envelope(x,np,'peak')
    
    
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % 在没有输出参数的情况下,绘制信号及其上下包络线。               %
    % 该语法接受以前语法中的任何输入参数。                         %
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    envelope(___)
    

    例1: [up,lo] = envelope(q)

    % 信号生成
    t = 0:1/2000:2-1/2000;
    q = chirp(t-2,4,1/2,6,'quadratic',100,'convex').*exp(-4*(t-1).^2);
    plot(t,q)
    
    
    % 包络线绘制
    [up,lo] = envelope(q);
    hold on
    plot(t,up,t,lo,'linewidth',1.5)
    legend('q','up','lo')
    hold off
    

    在这里插入图片描述
    例2: [up,lo] = envelope(q,100,'analytic');

    % 信号生成
    t = 0:1/1000:3;
    q1 = sin(2*pi*7*t).*exp(-t/2);
    q2 = chirp(t,30,2,5).*exp(-(2*t-3).^2)+2;
    q = [q1;q2]';
    plot(t,q)
    
    
    % 包络线绘制
    [up,lo] = envelope(q,100,'analytic');
    hold on
    plot(t,up,'-',t,lo,'--')
    hold off
    

    在这里插入图片描述

    例3:不同参数的包络线区别

    % 信号生成
    t = 0.5:-1/100:-2.49;
    z = airy(t*10).*exp(-t.^2);
    plot(z)
    
    % 无参数
    figure
    envelope(z)
    
    % 参数:analytic,使用50-tap Hilbert filter计算信号的包络线
    figure
    envelope(z,50,'analytic')
    
    % 参数:rms,使用40个样本的移动窗口来计算信号的RMS包络
    figure
    envelope(z,40,'rms')
    
    % 参数:peak,确定峰包络,在被至少10个样本分隔的局部极大值上使用非结点条件的样条插值。
    figure
    envelope(z,10,'peak')
    

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    在这里插入图片描述
    例4:不同采样点的影响

    在这里插入图片描述
    在这里插入图片描述

    在这里插入图片描述


    参考文献:

    展开全文
  • 计算当前点与左边所有点连线的斜率取斜率最小的连线的端点作为包络线的下一个端点,同时更新当前点为该端点,重复此过程,直到第一个点。 4.直到所有极大值点都加入包络线为止 MATLAB代码 main.m %Copyright (C) ...
  • 这个趋势包络线指标使用了ATR来做价格变化的计算
  • 使用ATR的趋势包络线指标计算了价格的变化,在计算之前加上对价格的平滑处理。
  • 自动包络通过计算最后 n 根柱线的标准偏差来自动调整通道大小。
  • 《oeasy教你玩转电脑系列之audition---更新到第四十八集 全季完》[原创视频][RMVB]状态: 精华资源 摘要: 发行时间: 2009年03月10日 对白语言: 普通话 文字语言: 简体中文 时间: 3月10日 发布 | 11月19日 更新 ...
  • 《oeasy教你玩转电脑系列之audition---更新到第四十八集 全季完》[原创视频][RMVB]状态: 精华资源 摘要: 发行时间: 2009年03月10日 对白语言: 普通话 文字语言: 简体中文 时间: 3月10日 发布 | 11月19日 更新 ...
  • 在深入研究和分析EMD算法的基础上,提出了一种基于波形匹配的端点效应处理方案,通过计算波形匹配度, 在平均包络线内部寻找与其端部变化趋势最为接近的子波,并用这段子波代替平均包络线的边缘部分, 使处理后的平均...
  • 桥梁内力包络图的仿真算法--摒弃了影响线概念的新方法,蒋中祥,,行列荷载作用下的内力包络图的计算是桥梁结构设计必须解决的一个重要问题。本文用计算机仿真的方法解决某些桥梁结构的内力包络
  • 《oeasy教你玩转电脑系列之audition---更新到第四十八集 全季完》[原创视频][RMVB]状态: 精华资源 摘要: 发行时间: 2009年03月10日 对白语言: 普通话 文字语言: 简体中文 时间: 3月10日 发布 | 11月19日 更新 ...
  • 最近厌恶了Matlab臃肿的体积和频繁的读写对我的Mac的损害,所以学习了一下Python这一轻量级的脚本,发现“Python自诞生那天就跟科学计算分不开”这个事实。无聊,写写心得。配置环境什么的还是弄了几个晚上的。在Mac...
  • 数据包络分析DEA

    2015-07-08 08:43:30
    数据包络分析,通俗简洁的讲,DEA是MACD(指数平滑指标异同移动平均线)的一部分,叫做异同平均数,另一部分是DIF(差离值),其中DIF是核心,DEA是辅助,具体计算公式请详见百度搜索MACD,还有请注意,各个网站给出...
  • 基于VC 6.0的最小包络图形绘制及其应用,李远彬,林小凤,最小包络线计算在计算机图形学中是一个很重要的方面,最小包络矩形、圆、正方形等等在实际中应用十分广泛。最小包络矩形普遍应
  • 包络拟合是经验模态分解(empirical mode decomposition,EMD)中非常关键的一步。针对经典EMD利用信号极值点的三...数值实验结果表明该方法的正交性及能量保存度指标有明显的改善,其拟合的包络线更接近于理想包络线
  • 分析推导二次包络蜗杆副,在中心距变位、传动比变位、蜗杆轴向变位情况下的空间啮合方程。运用MATLAB数值计算及图形化功能,在三参数变位和三种参数混合变位下,分析二次包络蜗杆副的接触线变化规律。
  • 为了实现三参数修正数字...运用MATLAB数值计算及图形化功能,得出了三参数修正和三参数组成的混合修正情况下,斜平面二次包络环面蜗杆副的接触线型式及接触线变化的规律,并结合实例分析了三参数修正时接触线型式变化情况.
  • 1. 简介 McCormick包络是一种用于双线性非线性规划问题的凸...通过凸松弛来放宽边界,以引入与原始目标函数不对应的解为代价,降低了求解问题的计算难度,即松弛问题中的最优解并不总是目标问题的最优解。解决凸问题将
  • 基质模型中的D膜探针

    2020-04-10 06:57:47
    可以从包络线计算得出的这种近似值中的近似自由能以惊人的精度与't Hooft耦合的所有值的精确结果相匹配。 另一个目标是说明等变量部分轨距固定程序的显着特性,这是形式主义的核心。 为此,我们使用一般的ξ-规来...
  • 使用MATLAB实现计算结果的图形表示

    千次阅读 2014-01-08 23:34:48
    通过本节熟习Matlab相关计算结果的图形表示指令。...例1:画出曲线y=exp(-t/3)*sin3t及其他的包络线y0=exp(-t/3). close all; clear all; clc; t =0:pi/50:4*pi; y0 = exp(-t/3); y = exp(-t/3).*
  • 线轮廓度的公差带是包络一系列直径为公差值t的圆的两包络线之间的区域。诸圆的圆心位于具有理论正确几何形状的线上。注:轮廓度的计算不是单纯的实际点和理论点的距离,而是实际点在理论点法线方向上的误差。如果...
  • 包络线的定义: 上面的解释太理科化,在经济学里就是各种需求曲线或供给曲线或其他曲线的顶点(所谓的峰点)连接起来形成的一条平滑曲线,就是“包络线”,看起来就像把许多抛物线“包”起来一样! 转载于:...
  • 用三次有理Bezier曲线构造叶轮后盖板流线,在给定流道过流断面面积变化规律的条件下,根据内切圆的包络线为其外公切线的原理,导出了叶轮前盖板流线计算公式。实践表明通过调整有理Bezier曲线的控制点和权因子可灵活地...
  • 这个版本的趋势包络线RSI指标有一点很大不同: 它没有使用固定值来做包络线计算,而是使用了所计算的RSI的标准差来做包络线计算
  • 只要经计算得知热阻θsa,便可从曲线中得出散热器的包络体积V,从而可以根据V参数去选择散热器的截面积和长度。 由于铝散热型材品种繁多,各叶片的距离也有很大的差异,因此按图给出的曲线选择散热器时应留有一定的...
  • 为了确定砂土地基中倾斜荷载作用下吸力式沉箱基础的极限抗拔承载力,利用极限包络线方法对其进行分析。基于25组模型试验得到水平、竖向以及倾斜荷载作用下吸力式沉箱基础的极限承载力,结合假定得到的水平、竖向极限...

空空如也

空空如也

1 2 3 4 5 6
收藏数 108
精华内容 43
关键字:

包络线计算