精华内容
下载资源
问答
  • 多用户检测中匹配滤波器的研究与实现,赵彦龙,李艳萍,首先简要介绍匹配滤波器在多用户检测中的作用,以及多用户检测匹配滤波器的基本结构和工作原理,在此基础上提出了一种基于FPGA(Fiel
  • 当扼流圈插入电路后,其提供噪声抑制效果,不但取决于扼流圈阻抗ZF大小,也与扼流圈所在电路前后阻抗(即源阻抗和...这里,我们特别提出噪声失配概念有利于对噪声与噪声滤波器相互作用分析(见后面应用原理部分)。
  • 最佳接收机

    2019-01-16 09:53:37
    运用MATLAB软件工具,仿真随机数字信号在经过高斯白噪声... 2、熟悉匹配滤波器的工作原理。 3、研究相关解调的原理与过程。 4、理解高斯白噪声对系统的影响。 5、了解如何衡量接收机的性能及匹配滤波器参数设置方法。
  • 利用在讨论巴特勒特中分定理,可以对(关于中心线)完全对称初始原理图(包括元件值)进行阻抗不相等设计。但是,事实并非永远如此。除此之外,在第II章中有不相等阻抗全极点滤波器表格仅包含了终端阻抗比为...
  • 雷达线性调频信号脉冲压缩处理

    万次阅读 多人点赞 2019-11-09 14:46:48
    本文首先介绍了匹配滤波器的工作原理,特性特点;其次介绍了LFM 信号的形式以及matlab 的仿真情况,然后从雷达信号处理上进行改进,最后在对LFM 信号进行matlab 仿真,对LFM 在加噪前后脉冲压缩匹配滤波的仿真情况...

    一、设计目的和意义

    掌握雷达测距的工作原理,掌握匹配滤波器的工作原理及其白噪声背景下的匹配滤波的设计,线性调频信号是大时宽频宽积信号; 其突出特点是匹配滤波器对回波的多普勒频移不敏感以及更好的低截获概率特性。LFM 信号在脉冲压缩体制雷达中广泛应用;利用线性调频信号具有大带宽、长脉冲的特点,宽脉冲发射已提高发射的平均功率保证足够的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲已提高距离分辨率, 较好的解决了雷达作用距离和距离分辨率之间的矛盾。而利用脉冲压缩技术除了可以改善雷达系统的分辨力和检测能力,还增强了抗干扰能力、灵活性,能满足雷达多功能、多模式的需要。

    二、设计原理

    1、 匹配滤波器

    匹配滤波器(match filter)是最佳线性滤波器的一种,该滤波器的准则是输出信噪比最大,常用于通信、雷达等系统的接收机中,下面对其冲激响应/系统函数进行推导。
    设该滤波器传递函数为H(f)H(f),冲激响应为h(t)h(t),输入信号为
    r(t)=s(t)+n(t)

    其中s(t)为输入信号,n(t)为高斯白噪声。设输入信号的频谱密度函数为S(f),而高斯白噪声的单边功率谱为n0/2,其中n0为高斯白噪声单边功率谱密度。 该信号通过匹配滤波器输出如图1.1所示
    001
    其中:
    S(t)=Acos(2πf_0 t+πμt^2) (0≤t≤τ)
    h(t)=ks_t^
    (t_0-t)
    H(f)=kS_t^
    (f)e^(-j2πft_0 )
    τ^’=1/B=1/μτ
    **

    在通信系统中,滤波器是其中重要部件之一,滤波器特性的选择直接影响数字信号的恢复。在数字信号接收中,滤波器的作用有两个方面,使滤波器输出有用信号成分尽可能强;抑制信号外带噪声,使滤波器输出噪声成分尽可能小,减少噪声对信号判决的影响。对最佳线形滤波器的设计有两种准则其中一种是是滤波器输出信噪比在某一特定时刻达到最大,由此而导出的最佳线性滤波器成为匹配滤波器。在数字通信中,匹配滤波器具有广泛的应用。因此匹配滤波器是指滤波器的性能与信号的特性取得某种一致,使滤波器输出端的信号瞬时功率与噪声平均功率的比值最大。

    在信号处理中,匹配滤波器可以用来解调基频带脉冲信号,基频带脉冲信号意指信号内容为同一波形信号乘上一个常数,在每个周期出现,每个周期中代表着或多或少的信息量。匹配滤波器解调出来的结果其SNR
    (Signal Noise Ratio)为最大的,匹配滤波器需要事先知道:1.传送的信号;2.信号的同步。这样才能解调出传送的信号。

    此外,匹配滤波器也可用于模式识别、相似度测试(similarity measure)。

    2、线性调频信号

    线性调频信号指持续期间频率连续线性变化的信号,是一种常用的雷达信号。可以采用如下数学表达式表示:

    S(t)=Acos(2πf_0 t+πμt^2) (0≤t≤τ)

    其中:f0为中心频率;k=B/为调频频率;B为频率变化范围;tao为脉冲宽度;a(t)为线性调频脉冲的包络。

    线性调频信号通过对载波频率进行调制以增加信号的发射带宽并在接收时实现脉冲压缩。由于线性调频信号具有较高的距离分辨力,当在速度上无法区分多目标时,可以通过增加目标距离测试解决多目标的分辨问题;同时在抗干扰方面,线性调频信号可以在距离上区分干扰和目标,因而可以有效地对抗拖曳式干扰,这使得线性调频信号在雷达波形设计中得到了广泛的应用。由于线性调频信号是通过一个发射脉冲实现距离高分辨的,因此该信号对目标多普勒频移不敏感,即使回波信号有较大的多普勒频移,脉冲压缩系统仍能起到压缩的作用。这将大大简化信号处理系统。

    线性调频信号经过压缩处理接收后的信号幅度峰值是原来发射信号峰值的D的1/2次方(D为脉压比,等于脉冲宽度与B的乘积)倍,即输出脉冲峰值功率比输入脉冲峰值功率增大了D倍。在要求发射机输出功率一定的情况下,接收机输出的目标回波信号经过匹配滤波压缩处理,具有窄的脉冲宽度和更高的峰值功率,前者提高距离分辨率而后者符合探测距离远的要求,这便充分体现了脉压体制独特的优越性。从反侦察的角度来说,脉压雷达比普通雷达具有更强的生存能力。由于线性调频信号的幅度和信噪比更小,由侦察方程可知,同等灵敏度的侦察机其侦察距离为原来的D的负1/2次方,所以在雷达应用领域,脉压雷达具有功率优势,应用前景十分广阔。

    3、LFM 信号的脉冲压缩

    脉冲压缩技术是匹配滤波理论和相关接收理论的一个很好的实际应用。它的提出很好的解决了这样的一个问题:在发射端发射大时宽、带宽信号,以提高信号的速度测量精度和速度分辨力,而在接收端,将宽脉冲信号压缩为窄脉冲,以提高雷达对目标的距离分辨精度和距离分辨力。

    三、MATLAB具体仿真

    匹配滤波在通信和雷达等系统中有很多应用,其中以雷达系统中的脉冲压缩较为典型,本文以雷达系统中的脉冲压缩(pulse compress)为例,进行仿真。

    在雷达目标检测中,希望距离分辨率和探测威力都足够大。而距离分辨率与发射波形的时宽成反比,探测威力(能量)与发射波形的时宽成正比。若发射波形为方波,其时宽τ与带宽B乘积约等于1,说明距离分辨率和探测威力是相互矛盾的。此时采用线性调频信号,可以很好的解决这个矛盾。
    对于一个理想的脉冲压缩系统, 要求发射信号具有非线性的相位谱, 并使其包络接近矩形;其中 S(t )就是信号 s(t)的复包络。由傅立叶变换性质, S(t)与 s(t)具有相同的幅频特性,只是中心频率不同而已。因此, Matlab 仿真时,只需考虑S(t)。

    下面对脉冲压缩进行仿真,仿真参数设置如下

    参数 取值
    信号带宽 40MHz
    信号时宽 20μs
    脉冲周期 2ms
    采样频率 20MHz
    信噪比 20dB
    目标距离 T∗fs/2

    以下Matlab 程序产生的线性调频信号,并作出其时域波形和幅频特性,如图:
    001
    对应代码:

    %%demo of chirp signal
    T=20e-6;
    B=40e6;%chirp frequency modulation bandwidth 30MHz
    K=B/T; %chirp slope
    Fs=2*B;Ts=1/Fs; %sampling frequency and sample spacing
    N=T/Ts;
    t=linspace(-T/2,T/2,N);
    St=exp(j*pi*K*t.^2); %generate chirp signal
    subplot(211)
    plot(t*1e6,St);
    xlabel('Time in u sec');
    title(' 线性调频信号');
    grid on;axis tight;
    subplot(212)
    freq=linspace(-Fs/2,Fs/2,N);
    plot(freq*1e-6,fftshift(abs(fft(St))));
    xlabel('Frequency in MHz');
    title(' 线性调频信号的幅频特性');
    grid on;axis tight;
    
    

    以下Matlab 程序段仿真了LFM信号的脉冲压缩,仿真结果如图:
    在这里插入图片描述
    图中,时间轴进行了归一化,(t /(1/ B)= t *B)。图中反映出理论与仿真结果吻合良好。
    对应代码:

    %%demo of chirp signal after matched filter
    T=20e-6;
    B=40e6; %chirp frequency modulation bandwidth 30MHz
    K=B/T; %chirp slope
    Fs=10*B;Ts=1/Fs; %sampling frequency and sample spacing
    N=T/Ts;
    t=linspace(-T/2,T/2,N);
    St=exp(j*pi*K*t.^2); %chirp signal
    Ht=exp(-j*pi*K*t.^2); %matched filter
    Sot=conv(St,Ht); %chirp signal after matched filter
    subplot(211)
    L=2*N-1;
    t1=linspace(-T,T,L);
    Z=abs(Sot);Z=Z/max(Z); %normalize
    Z=20*log10(Z+1e-6);
    Z1=abs(sinc(B.*t1)); %sinc function
    Z1=20*log10(Z1+1e-6);
    t1=t1*B;
    plot(t1,Z,t1,Z1,'r.');
    axis([-15,15,-50,inf]);grid on;
    legend('emulational','sinc');
    xlabel('Time in sec \times\itB');
    ylabel('幅度,dB');
    title(' 傅里叶变换后的线性调频信号');
    subplot(212) %zoom
    N0=3*Fs/B;
    t2=-N0*Ts:Ts:N0*Ts;
    t2=B*t2;
    plot(t2,Z(N-N0:N+N0),t2,Z1(N-N0:N+N0),'r.');
    axis([-inf,inf,-50,inf]);grid on;
    set(gca,'Ytick',[-13.4,-4,0],'Xtick',[-3,-2,-1,-0.5,0,0.5,1,2,3]);
    xlabel('Time in sec \times\itB');
    ylabel('幅度,dB');
    title(' 傅里叶变换后的线性调频信号(Zoom)');
    
    

    以下Matlab 程序段仿真了线性调制信号和噪声的生成,仿真结果如图:
    003
    对应代码:

    % 加白噪声后的线性调频信号
    T=20e-6;
    B=40e6; %chirp frequency modulation bandwidth 30MHz
    K=B/T; %chirp slope
    Fs=2*B;Ts=1/Fs; %sampling frequency and sample spacing
    N=T/Ts;
    t=linspace(0,T,N);
    St=exp(j*pi*K*t.^2);
    subplot(211)
    plot(t*1e6,St);
    xlabel('Time in u sec');
    title(' 线性调频信号');
    grid on;axis tight;
    SNR=20;
    x=awgn(St, 5); %generate chirp signal
    subplot(212)
    plot(t*1e6,x);
    xlabel('Time ');
    title(' 加噪后的线性调频信号');
    grid on;axis tight;
    
    

    实际实际雷达系统中, LFM 脉冲的处理过程如图:
    005
    雷达回波信号 sr (t )经过正交解调后, 得到基带信号,再经过匹配滤波脉冲压缩后就可以作出判决。正交解调原理如图:
    006
    雷达回波信号经正交解调后得两路相互正交的信号I(t) 和Q(t)。一种数字方法处理的的匹配滤波原理如图:
    007
    以下为经过脉冲压缩输出的已加噪声的线性调频信号(模拟雷达回波信号)的matlab仿真结果,仿真结果如图:
    009

    四、小结

    本文首先介绍了匹配滤波器的工作原理,特性特点;其次介绍了LFM 信号的形式以及matlab 的仿真情况,然后从雷达信号处理上进行改进,最后在对LFM 信号进行matlab 仿真,对LFM 在加噪前后脉冲压缩匹配滤波的仿真情况进行详细的分析,明确了脉冲压缩技术不但降低了对雷达发射机峰值功率的要求, 也解决雷达作用距离和距离分辨力之间的矛盾; 在对低截获概率雷达信号处理中将有广阔的应用前景。

    参考文献

    【1】信号与系统(第二版) 西安交通大学出版社
    【2】matlab 基础与编程入门(第二版)西安电子科技大学出版社
    【3】随机信号分析(第一版) 科学出版社
    【4】雷达原理(第三版)西安电子科技大学出版社

    展开全文
  • GSM手机射频工作原理与电路分析RF DBTELRF DBTEL Outline匹配网络Matching收发双工器Diplexer声表面波滤波器(SAW)平衡网络Balance锁相环PLL收发器Transceiver衰减网络Attenuation功率控制环路APC滤波网络Filter其它...
  • BG822CX的工作原理 如图1所示,BG822CX收发芯片主要集成了两大部分电路:接收部分Rx和发射部分Tx。接收机集成了包括低噪声放大器,混频器,VGA 和LPF在内的所有模块。发射机集成了包括 LPF,VGA,多相滤波器,调制...
  • 雷达方框图此方框图...接收机使用匹配滤波器对脉冲压缩的雷达调制波形进行处理,从而提高了雷达的分辨率和测量距离。相位累加器通过检测多普勒频移,从而显示目标的速度。整个雷达系统的工作通过与稳定的相干振荡...

    230b62a52e5d73a453b6f5c1272a23c6.png

    雷达方框图

    此方框图代表了一种通用的雷 达系统设计。发射机产生的调制波 形经上变频后,通过多个发射/接收 (T/R)模块和天线单元发射出去,这 些T/R模块和天线单元完成对波束的电子控制和波束成形。

    雷达回波经同一天线接收下来。接收机使用匹配滤波器对脉冲压缩的雷达调制波形进行处理,从而提高了雷达的分辨率和测量距离。相位累加器通过检测多普勒频移,从而显示目标的速度。

    整个雷达系统的工作通过与稳定的相干振荡器(COHO)和稳定的本地振荡器(STLO)同步,从而使其性能最优。

    830c02c39da3f5a0baa4acaf61b3ece1.png

    主要的单基地雷达的基本方程式

    578606072456dca12e94a4f83c4ce500.png

    5a594a4653b26083d9305e4d6be251dc.png

    fd800c2ea1e3a6a45bb152f89347af71.png

    314f202f7954d62803bc629cef5a9933.png

    44e4e795d4086ccc0f47fde052c19a90.png

    脉冲宽度和脉冲重复频率(PRF)

    通过在功率、脉冲重复、脉冲宽度和脉冲调制之间进行权衡,可实现距离和分辨率的最优组合。对于简单的射频脉冲,距离分辨率与脉冲宽度呈反比变化,但是窄脉冲会提高对峰值功率的要求。同样,最大确定距离与 PRF 呈反比变化。但 是,脉冲调制对这些关系具有根本的影响。

    a6c14a25b4a079a5fd57a94b29a125f5.png

    脉冲压缩技术

    通过采用脉冲压缩技术(调制), 发射具有较低峰值功率的宽脉冲 (平均功率高,作用距离大) 却可不牺牲距离分辨率。接收机对接收到的 (宽)脉冲进行脉冲压缩处理,恢复窄脉冲的高距离分辨率并最大程度地扩大探测范围。该模糊图标明了定位精度(横轴)和多普勒频移容限(纵轴)。

    2c60996288a99e557a87d8e5c7ce7049.png

    注:*模糊图上的脉冲宽度是指雷达检测器输出端的脉冲宽度。

    标准雷达频段字母术语表

    国际通用表

    642fcda5b75989c48fc2a9754925c8e7.png

    标准雷达频带字母术语表经 IEEE 标准 521-2002 (IEEE 雷达频段标准字母命名规范)许可进行再版, IEEE 版权所有, 2003 年。 IEEE 对按照描述方式放置和使用仪器不承担任何责任或义务。

    关于最新的雷达信息,您可点击:

    雷达www.keysight.com

    与商用电子和通信技术一样,从完全模拟设计到模拟/数字混合设计的演进正推动雷达系统的功能和性能不断进步。

    f214eddf9787c004c9c8bb4f0c924662.png
    雷达脉冲分析 | 是德科技www.keysight.com
    eef225d1ea0988283c7d1fd72efc3073.png

    在时域、频域和调制域中对 FM 线性调频和脉冲射频调制信号进行全方位的雷达分析。

    E8740A 汽车雷达信号生成与分析解决方案www.keysight.com
    6e2079ee805afcca10724e7e66b5d1ca.png

    Keysight E8740A 汽车雷达研发解决方案能够生成和分析 24GHz、77 GHz 和 79 GHz 各种频率范围内的汽车雷达信号,并能根据测试要求,提供从 2.5 GHz 到 5 GHz 以上的可扩展的分析带宽。

    展开全文
  • MATLAB数字信号处理(2)LFM脉冲雷达回波处理仿真

    万次阅读 多人点赞 2019-03-13 15:41:24
    将上学期的“气象雷达原理与系统”课程报告放到blog上。 摘要 线性调频(LFM)信号是应用...本设计实现了对线性调频(LFM)脉冲压缩雷达的工作原理仿真,在MATLAB 平台中模拟一个叠加的线性调频回波信号,对该...

    将上学期的“气象雷达原理与系统”课程报告放到blog上。


    摘要

    线性调频(LFM)信号是应用广泛的一种波形,主要优点是脉冲压缩的形状和信噪比对多普勒频移不敏感,即在目标速度未知的情况下,用匹配滤波器仍可以实现回波信号的脉冲压缩,这将大大有利于雷达对目标的探测和信号处理效率的提高。本设计实现了对线性调频(LFM)脉冲压缩雷达的工作原理仿真,在MATLAB 平台中模拟一个叠加的线性调频回波信号,对该信号分别进行采样解调、滤波抽取、脉冲压缩,提取出其中包含的测量物体的距离信息,实验效果良好。


    Abstract

    The linear frequency modulation (LFM) signal is a widely used waveform. The main advantage is that the shape and signal-to-noise ratio of pulse compression are not sensitive to Doppler shift. That is, if the target speed is unknown, the matched filter is still used. Pulse compression of the echo signal can be achieved, which will greatly benefit the radar’s detection of the target and the improvement of signal processing efficiency. This design realizes the simulation of the working principle of linear frequency modulation (LFM) pulse compression radar. In the MATLAB platform, a superimposed chirp echo signal is simulated, and the signal is sampled, demodulated, filtered and compressed, and the distance information of the measured object is extracted. The experimental results are good.


    1、引言

    1.1 作用距离和距离分辨力

    作用距离和距离分辨力是雷达最重要的两个技术指标。作用距离取决于发射信号的能量,发射信号的能量又与发射脉冲的功率和发射时间(即脉冲宽度)成正比。前者受发射管峰值功率和传输线功率损耗等的限制,成本高且调节范围有限。因此,在发射机峰值功率受限的情况下,只能通过增加脉冲宽度的方法来增加信号能量以增大雷达的作用距离。

    雷达的距离分辨力取决于发射信号带宽,带宽越大,距离分辨力越好。传统脉冲雷达发射的是单频信号,脉冲宽度越窄,信号带宽就越宽,距离分辨率就越好。然而发射窄脉冲必然导致平均功率下降,进而减小雷达的作用距离。因此,传统的脉冲雷达中,增大作用距离和提高雷达的分辨力之间存在矛盾。

    为了兼顾雷达的作用距离和距离分辨力,发射信号应同时具备大时宽和大带宽的特点,为此,研究人员利用复杂波形来替代传统的单频脉冲信号。在发射端调制信号的频率或相位以增大信号的带宽,并发射大时宽的信号以保证作用距离。在接收端通过匹配滤波器,将接收到的宽脉冲信号进行脉冲压缩得到窄脉冲信号,提高距离分辨率,从而兼顾了作用距离和距离分辨力。这是雷达隐蔽、抗干扰、区分多目标的重要手段。研究最早且应用最广泛的复杂波形便是线性调频信号。

    1.2 线性调频信号

    雷达波形设计中,采用线性调频信号的优势在于信号产生方便,同时当目标回波存在多普勒频移时脉压结果变化较小,缺点是经过脉压处理后副瓣较高,固定为13.6dB,虽然可以通过加窗的方法对其进行抑制,但同时对信号的其他特性也会带来损失,另外在时宽带宽积小于20时,主瓣副瓣比会变小,导致性能恶化。

    线性调频信号的产生方法在早期雷达中使用的是通过全通移相网络、压控振荡器或色散延迟线的方法,后来采用声表面波器件通过模拟手段形成。而新一代雷达一般则使用DDS技术直接合成。脉冲压缩处理方法在现代雷达中一般采用数字方式进行。有两类方式,一类是在频域上进行处理,将零中频回波信号进行快速傅里叶变换然后与发射信号的频谱相乘,然后再进行逆傅里叶变换得出结果;另一类是时域处理法,将零中频信号与回波信号进行卷积直接得出结果。

    早期,由于FPGA硬件水平较低,无法进行大量的乘法并行运算,所以主要使用DSP以第一类方法为主。目前随着FPGA的设计制造工艺水平逐步提高,使用FPGA来实现各种雷达信号处理算法乃至整个雷达信号处理系统成为了一种数字信号处理的发展趋势。
    本文设计实现了对线性调频(LFM)脉冲压缩雷达的工作原理仿真,在MATLAB 平台中模拟一个叠加的线性调频回波信号,对该信号分别进行采样解调、滤波抽取、脉冲压缩,提取出其中包含的测量物体的距离信息。


    2、原理分析

    2.1 LFM 脉冲雷达原理分析

    雷达是利用无线电波来检测目标并测定目标的有无、目标斜距、目标角位置、目标相对速度等的装置。雷达发射机的任务是产生符合要求的雷达波形,然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。

    假设目标与雷达的相对距离为 R,雷达发射信号s(t) ,传播速度为光速C ,则经过时间R/C后电磁波到达目标,照射到目标上的电磁波可写成:s(t-R/C)。电磁波与目标相互作用,一部分电磁波被目标散射,被反射的电磁波为σ·s(t-R/C),其中σ为目标的雷达散射截面(RCS)。再经过时间R/C后,被雷达接收天线接收的信号为σ·s(t-2 R/C)。
    在这里插入图片描述

    图 2.1 雷达等效于 LTI 系统

    如果将雷达天线和目标看作一个系统,便得到如图 2.1 的等效,而且这是一个 LTI(线性时不变)系统。

    等效 LTI 系统的冲激响应可写成:

    █(h(t)=∑_(i=1)^M▒σ_i  δ(t-τ_i )#(2.1) )
    M 表示目标的个数,σ_i是目标散射特性,τ_i是光速在雷达与目标之间往返一次的时间:
    在这里插入图片描述
    式中, Ri 为第 i 个目标与雷达的相对距离。雷达发射信号 s(t) 经过该 LTI 系统,得输出信号(即雷达的回波信号)sr (t) :
    在这里插入图片描述
    从雷达回波信号sr (t)提取出表征目标特性的τ_i(表征相对距离)的常用方法如图2.2所示。
    在这里插入图片描述

    图 2.2 雷达回波信号处理

    以上便是线性调频(LFM)脉冲压缩雷达的工作原理。

    2.2数字下变频原理分析

    本设计中可以选用降低采样率来实现数字下变频的目的,原理如图2.3所示。
    在这里插入图片描述

    图 2.3 降低采样率实现数字下变频

    如果原信号采样率为f,则经过n点重采样处理后,采样频率变为f/n。

    2.3脉冲压缩原理分析

    脉冲压缩相当于让 sr(t) 通过雷达发射信号s(t)的匹配滤波器。s(t)的匹配滤波器hr (t)为:
    在这里插入图片描述
    于是进行滤波处理有:
    在这里插入图片描述
    对上式进行傅立叶变换:
    在这里插入图片描述
    如果选取合适的s(t),使它的幅频特性|S(jω)|为常数,那么2.6式可写为:
    在这里插入图片描述
    其傅立叶反变换为:
    在这里插入图片描述
    so (t)中包含目标的特征信息τi和σi。从so(t)中可以得到目标的个数M和每个目标相对雷达的距离:
    在这里插入图片描述
    实现脉冲压缩的方式有两种,一种是直接在时域卷积(滤波)法,另一种是在频域中进行处理,如图 2.4 所示。
    在这里插入图片描述

    图 2.4 频域脉冲压缩处理

    3、详细设计

    3.1 线性调频信号回波产生模块

    表3.1 关键系统参数
    参数 含义
    f 调频信号基础频率 10MHz
    fs 采样频率 100MHz
    ts 采样周期 1/fs
    B 调频范围 10MHz
    T 脉冲宽度 10μs
    c 信号传播速度 3×108m/s
    PRT 脉冲周期 500μs

    本系统中使用到的关键系统参数如表3.1所示。基于上述参数,本系统中使用的线性调频信号为:
    在这里插入图片描述
    本系统假设该线性调频信号检测到三个目标,距离分别为 10km,30km和31km。本模块使用到的主要信号如表3.2所示。

    表 3.2 回波信号生成模块信号
    信号 含义
    y 基础线性调频信号
    y1 10km 处的回波信号
    y2 30km 处的回波信号
    y3 31km 处的回波信号
    xt 叠加后的回波信号

    线性调频信号回波产生模块的程序设计流程图如图3.1所示。
    在这里插入图片描述

    图3.1 LFM信号回波产生模块程序流程图

    程序设计时先计算出三个距离所对应的传播时间,然后根据时间计算出其对应的序列长度,建立三个子信号分别作为三个距离上的回波信号。之后再设计一个 10μs 的 LFM 信号。每一个回波信号由传播时间、10μs的LFM信号、补零三部分组成,总时长为 PRT。最后将三个回波信号叠加起来。

    3.2 回波信号采样解调模块

    该模块使用一个基础频率的信号进行解调:
    在这里插入图片描述
    本模块使用到的主要信号如表3.3所示。

    表3.3 回波信号采样解调模块信号
    信号 含义
    xt LFM 叠加的回波信号
    yf 相干载波信号
    xrt 解调后的信号

    相干解调的过程只需要让 xt 和 yf 相乘即可,相乘结果即为解调出来的雷达信号。

    3.3 滤波抽取模块

    解调后的信号xrt中包含有两信号相乘的和频信号和差频信号,本模块滤除掉和频信号分量,之后对滤波后的信号重采样,以降低采样率达到数字下变频的目的。本模块使用到的主要信号如表 3.4 所示。

    表3.4 滤波抽取模块信号
    信号 含义
    xrt 解调后的信号
    firxrt 滤波后的信号
    xrtdown 数字下变频处理后的信号

    滤波抽取模块的程序设计流程图如图3.2所示。
    在这里插入图片描述

    图 3.2 滤波抽取模块程序流程图

    由于回波信号为10-20MHz,与10MHz的相干信号相乘,结果频谱应该包含 0-10MHz和20-30MHz两个频段,因此使用fdatool设计一个低通滤波器滤除掉20~30MHz的信号。滤波器通带频率15MHz,阻带频率18MHz,通带衰减1dB,阻带衰减1dB,将系数导出到工作空间供滤波处理调用。

    对滤波后的信号使用downsample函数进行4位的抽取,则抽取后的信号采样频率变为100Mhz/4=25MHz。

    3.4 脉冲压缩模块

    表3.5 脉冲压缩模块信号
    信号 含义
    xrtdown 数字下变频处理后的信号
    hdt 匹配滤波信号
    out 脉冲压缩处理后的信号

    脉冲压缩模块让下变频后的回波信号通过发射信号的匹配滤波器,提取出每个目标回波的距离信息。脉冲压缩有时域法和频域法两种。本模块使用到的主要信号如表3.5所示。匹配滤波信号hdt如公式3.3所示。
    在这里插入图片描述
    匹配滤波信号中的f0为0Hz。时域法进行脉冲压缩使用hdt与xrtdown直接进行卷积即可。频域法进行脉冲压缩按照图2.4中的原理框图处理。


    4、仿真分析

    4.1 回波产生模块仿真分析

    绘制出雷达回波信号的时域图与频域图,结果如图4.1所示。
    在这里插入图片描述

    图 4.1 雷达回波信号时域与频域

    时域中可以看到在10km、30km、31km处看到三个脉冲波形,其中在30km和 31km的交界处发生了信号叠加。频域中信号的频率范围在10MHz至20MHz间线性分布,符合预期设定。

    4.2 采样解调模块仿真分析

    在这里插入图片描述

    图 4.2 解调后信号时域图和频域图

    绘制出解调,即相乘后的信号时域和频域图,如图4.2所示。时域中可以仍然保留了10km、30km、31km处的三个脉冲波形信息。由于回波信号为10~20MHz,与10MHz的相干信号相乘,结果频谱应该包含0-10MHz和20-30MHz两个频段,因此该模块设计符合预期设定。

    4.3 滤波抽取模块仿真分析

    绘制对解调信号滤波后的信号频域如图4.3所示。
    在这里插入图片描述

    图 4.3 解调信号滤波后频域图

    经过低通滤波后,解调信号中的 20~30MHz 频段被滤除,只留下 0~10MHz频段信号。对该信号抽取后绘制频域如图4.4所示。
    在这里插入图片描述

    图4.4 抽取后信号频域图

    抽取后信号仍保留了0~10MHz的信号信息,但采样频率由100MHz降至25MHz,图4.3中最大频率为100MHz/2=50MHz,图4.4中最大频率为25MHz/2=12.5MHz,表明该模块设计符合预期设定。

    4.4 脉冲压缩模块仿真分析

    脉冲压缩处理后绘制信号的时域图如图4.5所示。
    在这里插入图片描述

    图 4.5 脉冲压缩后信号时域图

    原来每个距离的回波信号脉宽为10μs,经过脉冲压缩后,每个脉冲变为10μs/100=0.1μs。从图4.5中可以清楚的看到在10km、30km、31km处各有一个很窄的脉冲。脉冲压缩处理的能力也决定了雷达信号处理系统的距离分辨力大小, 压缩后脉冲越窄,距离分辨力越大。


    5、结束语

    本设计实现了对线性调频( LFM)脉冲压缩雷达的工作原理仿真,在MATLAB 平台中模拟一个叠加的线性调频回波信号,对该信号分别进行采样解调、滤波抽取、脉冲压缩,提取出其中包含的测量物体的距离信息,实验效果良好。

    脉冲压缩的原理就是使用一个发射信号与接收回波进行相关,可以将较宽的回波信号“压缩”成很窄的信号。压缩后的脉冲宽度决定了可以分辨的最小距离。例如两个目标的回波信号重叠在一起,在回波信号中无法直接分辨出两个目标的位置,未进行脉冲压缩的雷达距离分辨力 ΔR=(cτ)/2=c/(2B)。这种体制的雷达要提高距离分辨率必须减小脉冲宽度,脉宽减少会降低平均发射功率,使用线性调频信号进行脉冲压缩可以实现提高距离分辨率而保持平均发射功率。脉冲压缩后的距离分辨力 ΔR=(cτ’)/2<<(cτ)/2。


    MATLAB代码如下(fir.mat放不上来,按照文中参数使用FDATOOL工具设计导出即可):

    % written by 刘奇
    
    clc;
    clear;
    close all;
    
    f = 10000000;         %10MHz
    fs = 100e6;
    ts = 1 / fs;
    B = 10^7;
    T = 10^(-5);
    u = B / T;
    c = 3e8;
    PRT = 500e-6;
    
    
    r1 = 10000;   tao1 = 2*r1/c;  n1 = round(tao1 / ts);
    r2 = 30000;  tao2 = 2*r2/c;  n2 = round(tao2 / ts);
    r3 = 31000;  tao3 = 2*r3/c;  n3 = round(tao3 / ts);
    NN = PRT / ts;
    
    t1 = 0 : ts : T-ts;
    y = sin(2*pi*(f*t1+0.5*u*t1.^2));
    N = length(y);
    
    
    y1 = [zeros(1, n1), y, zeros(1, NN-n1-N)];
    y2 = [zeros(1, n2), y, zeros(1, NN-n2-N)];
    y3 = [zeros(1, n3), y, zeros(1, NN-n3-N)];
    xt = y1+y2+y3;
    figure;
    subplot(2, 1, 1);
    plot((0:length(xt)-1)*ts*c/2/1000, xt);
    xlabel('距离/km');
    xtfft = abs(fft(xt, 50000));
    subplot(2, 1, 2);
    fx=(0:length(xt)/2-1)*fs/length(xt);
    plot(fx/1e6, xtfft(1:length(xt)/2));
    xlabel('频率/MHz');
    
    % 对回波信号采样
    fs1 = 100e6;
    ts1 = 1/fs1;
    t2 = 0 : ts1 : (length(xt)-1)*ts1;
    xrt = xt .* sin(2*pi*f*t2);
    
    fx1=(0:length(xt)/2-1)*fs1/length(xt);
    figure;
    subplot(2, 1, 1);
    plot((0:length(xt)-1)*ts*c/2/1000, xrt);
    xlabel('距离/km');
    xrtfft = abs(fft(xrt, 50000));
    subplot(2, 1, 2);
    fx1=(0:length(xrt)/2-1)*fs1/length(xrt);
    plot(fx1/1e6, xrtfft(1:length(xrt)/2));
    xlabel('频率/MHz');
    
    load fir.mat
    firxrt = filter(Num, 1,  xrt);
    firfft = abs(fft(firxrt, 50000));
    figure;
    plot(fx1/1e6, firfft(1:length(firxrt)/2));
    xlabel('频率/MHz');
    xrtdown = downsample(firxrt, 4);
     value0=abs(fft(xrtdown));%FFT分析
    figure;
    fx1=(0:length(xrtdown)/2-1)*(fs1/4)/length(xrtdown);
    %plot((fx1(1:length(value0)))/1e6, value0);
    plot( fx1/1e6, value0(1:length(fx1)));
    xlabel('频率/MHz');
    
    T = 10^(-5);
    u = B / T;
    c = 3e8;
    fs = 25e6;
    ts = 1 / fs;
    t1 = 0 : ts : T-ts;
    hdt = sin(2*pi*(0*t1+0.5*u*t1.^2));
    figure;
    plot(hdt);
    
    replica = xrtdown;
    y = fliplr(hdt);
    % out = conv(replica, y);
    replica1= [replica,zeros(1,16384-length(replica))];
    y1 = [hdt,zeros(1,16384-length(hdt))];
    
    rfft = fft(replica1);
    yfft = fft(y1);
    out = abs(ifft((rfft.*conj(yfft))));
    figure;
    t = (0:length(xrtdown)-1)*ts*c/2/1000;
    plot(t, out(1:length(t)));
    xlabel('距离/km');
    
    展开全文
  • 本文主要介绍的是直接序列扩频技术,针对二进制的PSK调制解调技术,以及DSSS系统的抗干扰能力分析与直接序列扩频系统的同步方法,并进行了相关...最后,简要介绍了滑动相关捕获法和数字匹配滤波器捕获法的工作原理
  • 介绍了数字串行加法器的原理,说明了该加法器在FPGA上实现要点及其在匹配滤波器设计中应用。  关键词:加法器 位并行 数字串行 FPGA 匹配滤波器 与传统DSP相比,定制DSP具有速度更高、设计灵活、易于...
  • 3.1.1 高频小信号谐振放大器的工作原理 67 3.1.2 放大器性能分析 67 3.1.3 高频谐振放大器的稳定性 69 3.1.4 多级谐振放大器 71 3.1.5 高频集成放大器 72 3.2 高频功率放大器的原理和特性 74 3.2.1 工作原理 75 ...
  • 由于变频空调器的复杂性,在学习变频空调器的维修知识以前,我们先来了解变频空调器的工作原理及特点,在后面的文章中重点讲述变频空调器的电路、系统特点和维修方法。 一、变频空调的工作原理 1、 交流变频空调的基本...
  •  工作原理  因为MLX71120/21接收机内部有两个相同LNA和一个差分混频器输入,故可采用一个带有简单电容加载平衡环天线来实现匹配。这个LNA有一个公共输出调谐电路,每一个LNA可以驱动混频器一路。
  • 与传统加法器相比,数字串行加法器具有工作频率高、占用资源少、设计灵活等优点。介绍了数字串行加法器的原理,说明了该加法器在FPGA上实现要点及其在匹配滤波器设计中应用。
  • 7.1.1 基本工作原理 7.1.2 混频器性能参数 7.1.3 Gilbert混频器简介 7.1.4 一个实际BJTGilbert混频器 7.2 混频器设计与仿真实例 7.2.1 技术参数及设计目标 7.2.2 模型提取 7.2.3 拓扑结构 7.2.4 频谱和噪声...
  • LFM脉冲雷达回波处理仿真 版权协议,转载请附上原文出处链接和本声明。...摘要 线性调频(LFM)信号是应用广泛的一种波形,主要...本设计实现了对线性调频(LFM)脉冲压缩雷达的工作原理仿真,在MATLAB 平台中模拟一个叠

    LFM脉冲雷达回波处理仿真

    版权协议,转载请附上原文出处链接和本声明。本文链接:http://blog.csdn.net/FPGADesigner/article/details/88534024
    摘要

    线性调频(LFM)信号是应用广泛的一种波形,主要优点是脉冲压缩的形状和信噪比对多普勒频移不敏感,即在目标速度未知的情况下,用匹配滤波器仍可以实现回波信号的脉冲压缩,这将大大有利于雷达对目标的探测和信号处理效率的提高。本设计实现了对线性调频(LFM)脉冲压缩雷达的工作原理仿真,在MATLAB 平台中模拟一个叠加的线性调频回波信号,对该信号分别进行采样解调、滤波抽取、脉冲压缩,提取出其中包含的测量物体的距离信息,实验效果良好。


    Abstract

    The linear frequency modulation (LFM) signal is a widely used waveform. The main advantage is that the shape and signal-to-noise ratio of pulse compression are not sensitive to Doppler shift. That is, if the target speed is unknown, the matched filter is still used. Pulse compression of the echo signal can be achieved, which will greatly benefit the radar’s detection of the target and the improvement of signal processing efficiency. This design realizes the simulation of the working principle of linear frequency modulation (LFM) pulse compression radar. In the MATLAB platform, a superimposed chirp echo signal is simulated, and the signal is sampled, demodulated, filtered and compressed, and the distance information of the measured object is extracted. The experimental results are good.


    1、引言

    1.1 作用距离和距离分辨力

    作用距离和距离分辨力是雷达最重要的两个技术指标。作用距离取决于发射信号的能量,发射信号的能量又与发射脉冲的功率和发射时间(即脉冲宽度)成正比。前者受发射管峰值功率和传输线功率损耗等的限制,成本高且调节范围有限。因此,在发射机峰值功率受限的情况下,只能通过增加脉冲宽度的方法来增加信号能量以增大雷达的作用距离。

    雷达的距离分辨力取决于发射信号带宽,带宽越大,距离分辨力越好。传统脉冲雷达发射的是单频信号,脉冲宽度越窄,信号带宽就越宽,距离分辨率就越好。然而发射窄脉冲必然导致平均功率下降,进而减小雷达的作用距离。因此,传统的脉冲雷达中,增大作用距离和提高雷达的分辨力之间存在矛盾。

    为了兼顾雷达的作用距离和距离分辨力,发射信号应同时具备大时宽和大带宽的特点,为此,研究人员利用复杂波形来替代传统的单频脉冲信号。在发射端调制信号的频率或相位以增大信号的带宽,并发射大时宽的信号以保证作用距离。在接收端通过匹配滤波器,将接收到的宽脉冲信号进行脉冲压缩得到窄脉冲信号,提高距离分辨率,从而兼顾了作用距离和距离分辨力。这是雷达隐蔽、抗干扰、区分多目标的重要手段。研究最早且应用最广泛的复杂波形便是线性调频信号。

    1.2 线性调频信号

    雷达波形设计中,采用线性调频信号的优势在于信号产生方便,同时当目标回波存在多普勒频移时脉压结果变化较小,缺点是经过脉压处理后副瓣较高,固定为13.6dB,虽然可以通过加窗的方法对其进行抑制,但同时对信号的其他特性也会带来损失,另外在时宽带宽积小于20时,主瓣副瓣比会变小,导致性能恶化。

    线性调频信号的产生方法在早期雷达中使用的是通过全通移相网络、压控振荡器或色散延迟线的方法,后来采用声表面波器件通过模拟手段形成。而新一代雷达一般则使用DDS技术直接合成。脉冲压缩处理方法在现代雷达中一般采用数字方式进行。有两类方式,一类是在频域上进行处理,将零中频回波信号进行快速傅里叶变换然后与发射信号的频谱相乘,然后再进行逆傅里叶变换得出结果;另一类是时域处理法,将零中频信号与回波信号进行卷积直接得出结果。

    早期,由于FPGA硬件水平较低,无法进行大量的乘法并行运算,所以主要使用DSP以第一类方法为主。目前随着FPGA的设计制造工艺水平逐步提高,使用FPGA来实现各种雷达信号处理算法乃至整个雷达信号处理系统成为了一种数字信号处理的发展趋势。
    本文设计实现了对线性调频(LFM)脉冲压缩雷达的工作原理仿真,在MATLAB 平台中模拟一个叠加的线性调频回波信号,对该信号分别进行采样解调、滤波抽取、脉冲压缩,提取出其中包含的测量物体的距离信息。


    2、原理分析

    2.1 LFM 脉冲雷达原理分析

    雷达是利用无线电波来检测目标并测定目标的有无、目标斜距、目标角位置、目标相对速度等的装置。雷达发射机的任务是产生符合要求的雷达波形,然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。

    假设目标与雷达的相对距离为 R,雷达发射信号s(t) ,传播速度为光速C ,则经过时间R/C后电磁波到达目标,照射到目标上的电磁波可写成:s(t-R/C)。电磁波与目标相互作用,一部分电磁波被目标散射,被反射的电磁波为σ·s(t-R/C),其中σ为目标的雷达散射截面(RCS)。再经过时间R/C后,被雷达接收天线接收的信号为σ·s(t-2 R/C)。
    在这里插入图片描述

    图 2.1 雷达等效于 LTI 系统

    如果将雷达天线和目标看作一个系统,便得到如图 2.1 的等效,而且这是一个 LTI(线性时不变)系统。

    等效 LTI 系统的冲激响应可写成:

    █(h(t)=∑_(i=1)^M▒σ_i  δ(t-τ_i )#(2.1) )
    M 表示目标的个数,σ_i是目标散射特性,τ_i是光速在雷达与目标之间往返一次的时间:
    在这里插入图片描述
    式中, Ri 为第 i 个目标与雷达的相对距离。雷达发射信号 s(t) 经过该 LTI 系统,得输出信号(即雷达的回波信号)sr (t) :
    在这里插入图片描述
    从雷达回波信号sr (t)提取出表征目标特性的τ_i(表征相对距离)的常用方法如图2.2所示。
    在这里插入图片描述

    图 2.2 雷达回波信号处理

    以上便是线性调频(LFM)脉冲压缩雷达的工作原理。

    2.2数字下变频原理分析

    本设计中可以选用降低采样率来实现数字下变频的目的,原理如图2.3所示。
    在这里插入图片描述

    图 2.3 降低采样率实现数字下变频

    如果原信号采样率为f,则经过n点重采样处理后,采样频率变为f/n。

    2.3脉冲压缩原理分析

    脉冲压缩相当于让 sr(t) 通过雷达发射信号s(t)的匹配滤波器。s(t)的匹配滤波器hr (t)为:
    在这里插入图片描述
    于是进行滤波处理有:
    在这里插入图片描述
    对上式进行傅立叶变换:
    在这里插入图片描述
    如果选取合适的s(t),使它的幅频特性|S(jω)|为常数,那么2.6式可写为:
    在这里插入图片描述
    其傅立叶反变换为:
    在这里插入图片描述
    so (t)中包含目标的特征信息τi和σi。从so(t)中可以得到目标的个数M和每个目标相对雷达的距离:
    在这里插入图片描述
    实现脉冲压缩的方式有两种,一种是直接在时域卷积(滤波)法,另一种是在频域中进行处理,如图 2.4 所示。
    在这里插入图片描述

    图 2.4 频域脉冲压缩处理

    3、详细设计

    3.1 线性调频信号回波产生模块

    表3.1 关键系统参数
    参数含义
    f调频信号基础频率 10MHz
    fs采样频率 100MHz
    ts采样周期 1/fs
    B调频范围 10MHz
    T脉冲宽度 10μs
    c信号传播速度 3×108m/s
    PRT脉冲周期 500μs

    本系统中使用到的关键系统参数如表3.1所示。基于上述参数,本系统中使用的线性调频信号为:
    在这里插入图片描述
    本系统假设该线性调频信号检测到三个目标,距离分别为 10km,30km和31km。本模块使用到的主要信号如表3.2所示。

    表 3.2 回波信号生成模块信号
    信号含义
    y基础线性调频信号
    y110km 处的回波信号
    y230km 处的回波信号
    y331km 处的回波信号
    xt叠加后的回波信号

    线性调频信号回波产生模块的程序设计流程图如图3.1所示。
    在这里插入图片描述

    图3.1 LFM信号回波产生模块程序流程图

    程序设计时先计算出三个距离所对应的传播时间,然后根据时间计算出其对应的序列长度,建立三个子信号分别作为三个距离上的回波信号。之后再设计一个 10μs 的 LFM 信号。每一个回波信号由传播时间、10μs的LFM信号、补零三部分组成,总时长为 PRT。最后将三个回波信号叠加起来。

    3.2 回波信号采样解调模块

    该模块使用一个基础频率的信号进行解调:
    在这里插入图片描述
    本模块使用到的主要信号如表3.3所示。

    表3.3 回波信号采样解调模块信号
    信号含义
    xtLFM 叠加的回波信号
    yf相干载波信号
    xrt解调后的信号

    相干解调的过程只需要让 xt 和 yf 相乘即可,相乘结果即为解调出来的雷达信号。

    3.3 滤波抽取模块

    解调后的信号xrt中包含有两信号相乘的和频信号和差频信号,本模块滤除掉和频信号分量,之后对滤波后的信号重采样,以降低采样率达到数字下变频的目的。本模块使用到的主要信号如表 3.4 所示。

    表3.4 滤波抽取模块信号
    信号含义
    xrt解调后的信号
    firxrt滤波后的信号
    xrtdown数字下变频处理后的信号

    滤波抽取模块的程序设计流程图如图3.2所示。
    在这里插入图片描述

    图 3.2 滤波抽取模块程序流程图

    由于回波信号为10-20MHz,与10MHz的相干信号相乘,结果频谱应该包含 0-10MHz和20-30MHz两个频段,因此使用fdatool设计一个低通滤波器滤除掉20~30MHz的信号。滤波器通带频率15MHz,阻带频率18MHz,通带衰减1dB,阻带衰减1dB,将系数导出到工作空间供滤波处理调用。

    对滤波后的信号使用downsample函数进行4位的抽取,则抽取后的信号采样频率变为100Mhz/4=25MHz。

    3.4 脉冲压缩模块

    表3.5 脉冲压缩模块信号
    信号含义
    xrtdown数字下变频处理后的信号
    hdt匹配滤波信号
    out脉冲压缩处理后的信号

    脉冲压缩模块让下变频后的回波信号通过发射信号的匹配滤波器,提取出每个目标回波的距离信息。脉冲压缩有时域法和频域法两种。本模块使用到的主要信号如表3.5所示。匹配滤波信号hdt如公式3.3所示。
    在这里插入图片描述
    匹配滤波信号中的f0为0Hz。时域法进行脉冲压缩使用hdt与xrtdown直接进行卷积即可。频域法进行脉冲压缩按照图2.4中的原理框图处理。


    4、仿真分析

    4.1 回波产生模块仿真分析

    绘制出雷达回波信号的时域图与频域图,结果如图4.1所示。
    在这里插入图片描述

    图 4.1 雷达回波信号时域与频域

    时域中可以看到在10km、30km、31km处看到三个脉冲波形,其中在30km和 31km的交界处发生了信号叠加。频域中信号的频率范围在10MHz至20MHz间线性分布,符合预期设定。

    4.2 采样解调模块仿真分析

    在这里插入图片描述

    图 4.2 解调后信号时域图和频域图

    绘制出解调,即相乘后的信号时域和频域图,如图4.2所示。时域中可以仍然保留了10km、30km、31km处的三个脉冲波形信息。由于回波信号为10~20MHz,与10MHz的相干信号相乘,结果频谱应该包含0-10MHz和20-30MHz两个频段,因此该模块设计符合预期设定。

    4.3 滤波抽取模块仿真分析

    绘制对解调信号滤波后的信号频域如图4.3所示。
    在这里插入图片描述

    图 4.3 解调信号滤波后频域图

    经过低通滤波后,解调信号中的 20~30MHz 频段被滤除,只留下 0~10MHz频段信号。对该信号抽取后绘制频域如图4.4所示。
    在这里插入图片描述

    图4.4 抽取后信号频域图

    抽取后信号仍保留了0~10MHz的信号信息,但采样频率由100MHz降至25MHz,图4.3中最大频率为100MHz/2=50MHz,图4.4中最大频率为25MHz/2=12.5MHz,表明该模块设计符合预期设定。

    4.4 脉冲压缩模块仿真分析

    脉冲压缩处理后绘制信号的时域图如图4.5所示。
    在这里插入图片描述

    图 4.5 脉冲压缩后信号时域图

    原来每个距离的回波信号脉宽为10μs,经过脉冲压缩后,每个脉冲变为10μs/100=0.1μs。从图4.5中可以清楚的看到在10km、30km、31km处各有一个很窄的脉冲。脉冲压缩处理的能力也决定了雷达信号处理系统的距离分辨力大小, 压缩后脉冲越窄,距离分辨力越大。


    5、结束语

    本设计实现了对线性调频( LFM)脉冲压缩雷达的工作原理仿真,在MATLAB 平台中模拟一个叠加的线性调频回波信号,对该信号分别进行采样解调、滤波抽取、脉冲压缩,提取出其中包含的测量物体的距离信息,实验效果良好。

    脉冲压缩的原理就是使用一个发射信号与接收回波进行相关,可以将较宽的回波信号“压缩”成很窄的信号。压缩后的脉冲宽度决定了可以分辨的最小距离。例如两个目标的回波信号重叠在一起,在回波信号中无法直接分辨出两个目标的位置,未进行脉冲压缩的雷达距离分辨力 ΔR=(cτ)/2=c/(2B)。这种体制的雷达要提高距离分辨率必须减小脉冲宽度,脉宽减少会降低平均发射功率,使用线性调频信号进行脉冲压缩可以实现提高距离分辨率而保持平均发射功率。脉冲压缩后的距离分辨力 ΔR=(cτ’)/2<<(cτ)/2。


    MATLAB代码如下(fir.mat放不上来,按照文中参数使用FDATOOL工具设计导出即可): clc; clear; close all;

    f = 10000000; %10MHz
    fs = 100e6;
    ts = 1 / fs;
    B = 10^7;
    T = 10^(-5);
    u = B / T;
    c = 3e8;
    PRT = 500e-6;

    r1 = 10000; tao1 = 2r1/c; n1 = round(tao1 / ts);
    r2 = 30000; tao2 = 2
    r2/c; n2 = round(tao2 / ts);
    r3 = 31000; tao3 = 2*r3/c; n3 = round(tao3 / ts);
    NN = PRT / ts;

    t1 = 0 : ts : T-ts;
    y = sin(2pi(ft1+0.5u*t1.^2));
    N = length(y);

    y1 = [zeros(1, n1), y, zeros(1, NN-n1-N)];
    y2 = [zeros(1, n2), y, zeros(1, NN-n2-N)];
    y3 = [zeros(1, n3), y, zeros(1, NN-n3-N)];
    xt = y1+y2+y3;
    figure;
    subplot(2, 1, 1);
    plot((0:length(xt)-1)tsc/2/1000, xt);
    xlabel(‘距离/km’);
    xtfft = abs(fft(xt, 50000));
    subplot(2, 1, 2);
    fx=(0:length(xt)/2-1)*fs/length(xt);
    plot(fx/1e6, xtfft(1:length(xt)/2));
    xlabel(‘频率/MHz’);

    % 对回波信号采样
    fs1 = 100e6;
    ts1 = 1/fs1;
    t2 = 0 : ts1 : (length(xt)-1)ts1;
    xrt = xt .
    sin(2pif*t2);

    fx1=(0:length(xt)/2-1)*fs1/length(xt);
    figure;
    subplot(2, 1, 1);
    plot((0:length(xt)-1)tsc/2/1000, xrt);
    xlabel(‘距离/km’);
    xrtfft = abs(fft(xrt, 50000));
    subplot(2, 1, 2);
    fx1=(0:length(xrt)/2-1)*fs1/length(xrt);
    plot(fx1/1e6, xrtfft(1:length(xrt)/2));
    xlabel(‘频率/MHz’);

    load fir.mat
    firxrt = filter(Num, 1, xrt);
    firfft = abs(fft(firxrt, 50000));
    figure;
    plot(fx1/1e6, firfft(1:length(firxrt)/2));
    xlabel(‘频率/MHz’);
    xrtdown = downsample(firxrt, 4);
    value0=abs(fft(xrtdown));%FFT分析
    figure;
    fx1=(0:length(xrtdown)/2-1)*(fs1/4)/length(xrtdown);
    %plot((fx1(1:length(value0)))/1e6, value0);
    plot( fx1/1e6, value0(1:length(fx1)));
    xlabel(‘频率/MHz’);

    T = 10^(-5);
    u = B / T;
    c = 3e8;
    fs = 25e6;
    ts = 1 / fs;
    t1 = 0 : ts : T-ts;
    hdt = sin(2pi(0t1+0.5u*t1.^2));
    figure;
    plot(hdt);

    replica = xrtdown;
    y = fliplr(hdt);
    % out = conv(replica, y);
    replica1= [replica,zeros(1,16384-length(replica))];
    y1 = [hdt,zeros(1,16384-length(hdt))];

    rfft = fft(replica1);
    yfft = fft(y1);
    out = abs(ifft((rfft.*conj(yfft))));
    figure;
    t = (0:length(xrtdown)-1)tsc/2/1000;
    plot(t, out(1:length(t)));
    xlabel(‘距离/km’);

    展开全文
  • 电磁兼容基本原理 电磁兼容性指电器及电子设备在共同电磁环境中能执行各自功能共存状态,均能正常...另外,可以在电路输入端加谐波滤波器,此方法加装简单、成本低、维修方便,但是容易受系统参数影响。
  • 针对超宽带功率放大器(UWB PA)匹配电路设计难点,提出一种结合连续型功放理论、多谐波双向牵引低损耗匹配(LLM)技术以及切比雪夫低通滤波器阻抗变换原理的超宽带功率放大器设计方法。并利用此方法设计一款基于CREE ...
  • 第7章“传输线与阻抗匹配”,介绍了SWR表的工作原理和阻抗匹配电路。第8章“设计技巧”,介绍了散热器和设计灵敏度等内容。《无线电基础电路实作(修订版)》不仅适合无线电爱好者阅读,帮助他们了解电路知识,还...
  • 图像拼接stitch

    2018-05-04 08:07:12
    因此,异源图像匹配是一项非常有难度的工作。 自适应 NL-means 滤波器基于边缘特征的图像匹配(Edge Based Image Matching, EBIM)算法.当异源图像间存在较大的旋转角度时,传统的基于区域的异源图像匹配方法需要...
  • 这主要由于平时的工作和环境引起的,图像增强是减弱噪音,增强对比度。想得到比较干净清晰的图像并不是容易的事情。为这个目标而为处理图像所涉及的操作是设计一个适合、匹配滤波器和恰当的阈值。常用的有高斯滤波...
  • 本文主要讲解了对空芯多圈线圈阻抗匹配的原则 ;采用差分式放大电路对微弱二次场信号进行放大的原理;采用DRV134和INA137平衡电路进行信号长线传输技术;采用巴特沃斯型二阶低通滤波器设计电路应用。实践...
  • 接收机低噪声放大器输入在内部匹配50Ω阻抗到前端滤波器。接收机和发射机在TXOUT和 RXIN间连接1个耦合电容,共用1个前端滤波器。此外,发射通道可以通过外部放大器放大到+20dBm,接通RF2968发射增益控制和接收...
  • 定时/计数器的工作可以由编程来实现定时、计数和产生计数溢出中断要求的功 能。在构成为定时器时,每个机器周期加1 (使用12MHz 时钟时,每1us 加1),这 样以机器周期为基准可以用来测量时间间隔。在构成为计数器时,在...
  • 冈萨雷斯数字图像处理(MATLAB)中文版

    千次下载 热门讨论 2011-01-14 09:24:28
    1.6.3 获得帮助 1.6.4 保存和检索工作会话 1.7 参考文献组织方式 小结第2章 基本原理 前言 2.1 数字图像表示 2.1.1 坐标约定 2.1.2 图像矩阵表示 2.2 读取图像 2.3 显示图像 2.4 保存图像 2.5 数据...
  • 后6章介绍各种无源和有源射频器件(包括:滤波器匹配网络、高频半导体器件、放大器、混频器和振荡器)的原理分析和设计方法。书中列举了大量具有实际应用价值例题,并以较大篇幅介绍了它们求解方法。作者还...
  • 后6章介绍各种无源和有源射频器件(包括:滤波器匹配网络、高频半导体器件、放大器、混频器和振荡器)的原理分析和设计方法。书中列举了大量具有实际应用价值例题,并以较大篇幅介绍了它们求解方法。作者还...
  • 后6章介绍各种无源和有源射频器件(包括:滤波器匹配网络、高频半导体器件、放大器、混频器和振荡器)的原理分析和设计方法。书中列举了大量具有实际应用价值例题,并以较大篇幅介绍了它们求解方法。作者还...
  • 采用两个 AD7606 88 通道 DAS 16 通道、16 位数据采集系统(原理示意图,未显示所有连接。 对于通道间和器件间匹配测试,器件之间具体连接参见正文) 放大 16 通道 DAS 双路 AD7606 板布局 在内置多个 AD...

空空如也

空空如也

1 2 3
收藏数 41
精华内容 16
关键字:

匹配滤波器的工作原理