精华内容
下载资源
问答
  • 借助于结构缺陷稳定分析的改进随机缺陷法,对板片空间结构的缺陷敏感区域进行了研究,结果证明改进随机缺陷法可定量、准确地分析结构的缺陷敏感区域。对2个算例(单层板杆组合结构和有板立体桁架模型)的缺陷敏感...
  • 数据结构

    千次阅读 多人点赞 2018-10-06 17:40:36
    数据结构 数据结构是计算机存储、组织数据的方式。数据结构是指相互之间存在一种或者多种特定关系的数据元素集合。通常情况下,精心选择的数据结构可以带来更高效的运行或者存储效率。数据结构往往同高效的检索算法...

    数据结构
       数据结构是计算机存储、组织数据的方式。数据结构是指相互之间存在一种或者多种特定关系的数据元素集合。通常情况下,精心选择的数据结构可以带来更高效的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。
       数据结构是ADT(抽象数据类型)的物理实现。
       程序 = 数据结构 + 算法
       算法是为了解决问题而设计的,数据结构是算法需要处理问题的载体。
       1.顺序表:顺序表是在计算机内存中以数组的形式保存的线性表,线性表的顺序存储是指用一组地址连续的存储单元依次存储线性表中的各个元素、使得线性表中在逻辑结构上相邻的数据元素存储在相邻的物理存储单元中,即通过数据元素物理存储的相邻关系来反映数据元素之间逻辑上的相邻关系,采用顺序存储结构的线性表通常称为顺序表。顺序表是将表中的结点依次存放在计算机内存中一组地址连续的存储单元中。
       将表中元素一个接一个的存入一组连续的存储单元中,这种存储结构是顺序结构。
       2.链表:链表是一种物理存储单元上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列结点(链表中每一个元素称为结点)组成,结点可以在运行时动态生成。每个结点包括两个部分:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域。 相比于线性表顺序结构,操作复杂。由于不必须按顺序存储,链表在插入的时候可以达到O(1)的复杂度,比另一种线性表顺序表快得多,但是查找一个节点或者访问特定编号的节点则需要O(n)的时间,而线性表和顺序表相应的时间复杂度分别是O(logn)和O(1)。
       使用链表结构可以克服数组链表需要预先知道数据大小的缺点,链表结构可以充分利用计算机内存空间,实现灵活的内存动态管理。但是链表失去了数组随机读取的优点,同时链表由于增加了结点的指针域,空间开销比较大。链表最明显的好处就是,常规数组排列关联项目的方式可能不同于这些数据项目在记忆体或磁盘上顺序,数据的存取往往要在不同的排列顺序中转换。链表允许插入和移除表上任意位置上的节点,但是不允许随机存取。链表有很多种不同的类型:单向链表,双向链表以及循环链表。链表可以在多种编程语言中实现。像Lisp和Scheme这样的语言的内建数据类型中就包含了链表的存取和操作。程序语言或面向对象语言,如C,C++和Java依靠易变工具来生成链表。
       3.栈:栈是限定仅在表头进行插入和删除操作的线性表。要搞清楚这个概念,首先要明白”栈“原来的意思,如此才能把握本质。"栈“者,存储货物或供旅客住宿的地方,可引申为仓库、中转站,所以引入到计算机领域里,就是指数据暂时存储的地方,所以才有进栈、出栈的说法。 
       首先系统或者数据结构栈中数据内容的读取与插入(压入push和 弹出pop)是两回事!插入是增加数据,弹出是删除数据 ,这些操作只能从栈顶即最低地址作为约束的接口界面入手操作 ,但读取栈中的数据是随便的没有接口约束之说。很多人都误解这个理念从而对栈产生困惑。 [1] 而系统栈在计算机体系结构中又起到一个跨部件交互的媒介区域的作用 即 cpu 与内存的交流通道 ,cpu只从系统给我们自己编写的应用程序所规定的栈入口线性地读取执行指令, 用一个形象的词来形容它就是pipeline(管道线、流水线)。cpu内部交互具体参见 EU与BIU的概念介绍。  
       栈作为一种数据结构,是一种只能在一端进行插入和删除操作的特殊线性表。它按照先进后出的原则存储数据,先进入的数据被压入栈底,最后的数据在栈顶,需要读数据的时候从栈顶开始弹出数据(最后一个数据被第一个读出来)。栈具有记忆作用,对栈的插入与删除操作中,不需要改变栈底指针。
       栈是允许在同一端进行插入和删除操作的特殊线性表。允许进行插入和删除操作的一端称为栈顶(top),另一端为栈底(bottom);栈底固定,而栈顶浮动;栈中元素个数为零时称为空栈。插入一般称为进栈(PUSH),删除则称为退栈(POP)。栈也称为后进先出表。栈可以用来在函数调用的时候存储断点,做递归时要用到栈!

    展开全文
  • GIS基本概念空间分析

    千次阅读 2019-08-14 15:44:29
    GIS基本概念空间分析一、GIS基本概念1.1 要素模型(Feature)1.2 矢量数据1.3 空间分析1.3.1 空间查询和空间量算1.3.2 缓冲区分析1.3.3 叠加分析1.3.4 网络分析1.3.5 空间插值二、空间分析2.1空间分析-空间信息的...

    一、GIS基本概念

    1.1 要素模型(Feature)

    要素是GeoTools中的核心术语,它是描述地理空间数据对
    象的基本单位,它描述了一个现实世界中的客观地理实体,如:一条河流、一座桥梁都
    可以理解为要素。

    1.2 矢量数据

    矢量数据是仅仅存储节点,比如箭头,线条,点等。存储的是对象的轮廓,而栅格数据适合表达对象的内容。
    矢量数据类型有点,线和多边形。
    数量小,数据更新快
    服务器压力大,技术要求高

    1.3 空间分析

    1.3.1 空间查询和空间量算

    基于空间关系查询
    基于空间关系和属性特征查询
    地址匹配查询
    几何量算 :包括线的长度计算 和面状地物的面积 。
    形状量算
    质心量算
    距离量算

    1.3.2 缓冲区分析

    邻近度:描述了地理空间中两个地物距离相近的程度 。
    缓冲区:地理空间目标的一种影响范围或服务范围。
    缓冲区分析:给定一个空间对象或集合,确定它们的邻域,邻域的大小由邻域半径R决定。

    1.3.3 叠加分析

    叠加分析 :将有关主题层组成的数据层面,进行叠加产生一个新数据层面的操作,其结果综合了原来两层或多层要素所具有的属性。
    分为以下五类
    视觉信息叠加
    点与多边形叠加
    线与多边形叠加
    多边形叠加
    栅格图层叠加

    1.3.4 网络分析

    网络数据结构 :主要有链(Link)和结点。
    主要网络分析功能
    路径分析
    计算最短路径的Dijkstra算法
    资源分配

    1.3.5 空间插值

    空间插值 :用于将离散点的测量数据转换为连续的数据曲面。

    二、空间分析

    2.1空间分析-空间信息的测量:求对象的长度、面积、周长。

    空间分析-空间信息分类:外接矩形、凸壳、缓冲区,对线状地物求平行线、光滑处理等,两个对象求最短距离、求两个对象交点,判断两个对象是否相同、相交、相离、包含等关系,面对象之间求并、求交,对象相交打断和构面等。

    2.2 空间分析-网络分析:

    • (1)最佳路径功能:求解任意两个点或一组点对象之间的最佳路径。可以在两个节点之间求最佳路径,也可以在节点和内点之间求最佳路径,也可在两个内点之间求最佳路径。
    • (2) 设置障碍点的实现:在GIS网络分析中,如何寻找避开障碍点而到达目的地最近或最快的道路.
    • (3) 追踪功能:主要求从某一点出发能够到达给定范围内的全部节点点或边。点对象可以是节点,也可以是内点,结果集中可以包括节点、弧、亚弧等。
    • (4) 资源分配功能:资源分配问题,就是将数量一定的资源(如原材料、资金、机器设备、劳动力、食品等)恰当地分配给若干个使用者,使总的路径值最优。
    • (5) 连通性分析功能:给出一个点或一组点,得到这些点可以到达的连通的所有点和边。同时可以对网络设定资源流动方向,根据流的方向,得到连通的所有点和边。
    • (6) 最近设施功能:给定一个需求点,可求出某供应点图层中任意个(在界面设置个数)与之最近的点。

    2.3 空间分析-空间统计分析:插值、趋势分析、结构分析;

    空间分析-表面分析:坡度分析、坡向分析、可见度和相互可见度分析

    邻域功能——所谓邻域是指具有统一属性的实体区域或者焦点集中在整个地区的较小部分实体空间。邻域功能就是在特定的实体空间中发现其属性的一致性。它包括直接邻域和扩展邻域。

    缓冲区分析——是指根据数据库的点、线、面实体基础,自动建立其周围一定宽度范围内的缓冲区多边形实体,从而实现空间数据在水平方向得以扩展的空间分析方法。缓冲区在某种程度上受控于目前存在的摩擦表面、地形、障碍物等,也就是说,尽管缓冲区建立在位置的基础上,但是还有其他实质性的成分。确定缓冲区距离的四种基本方法:随机缓冲区、成因缓冲区、可测量缓冲区、合法授权缓冲区。

    空间插值——空间插值常用于将离散点的测量数据转换为连续的数据曲面,以便与其它空间现象的分布模式进行比较,它包括了空间内插和外推两种算法。空间内插算法:通过已知点的数据推求同一区域未知点数据。空间外推算法:通过已知区域的数据,推求其它区域数据。

    线密度——用所有区域内的线的总长度除以区域的面积。

    原文地址、作者信息

    原文作者:chenlly99
    原文地址:https://blog.csdn.net/cdl2008sky/article/category/1074472

    展开全文
  • 图像分割综述

    万次阅读 多人点赞 2019-07-09 22:03:48
    所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的说就是在一副图像中,把目标...

    本文作者净浩泽,公众号:计算机视觉life,编辑成员

    图像分割是计算机视觉研究中的一个经典难题,已经成为图像理解领域关注的一个热点,图像分割是图像分析的第一步,是计算机视觉的基础,是图像理解的重要组成部分,同时也是图像处理中最困难的问题之一。所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的说就是在一副图像中,把目标从背景中分离出来。对于灰度图像来说,区域内部的像素一般具有灰度相似性,而在区域的边界上一般具有灰度不连续性。 关于图像分割技术,由于问题本身的重要性和困难性,从20世纪70年代起图像分割问题就吸引了很多研究人员为之付出了巨大的努力。虽然到目前为止,还不存在一个通用的完美的图像分割的方法,但是对于图像分割的一般性规律则基本上已经达成的共识,已经产生了相当多的研究成果和方法。

    本文对于目前正在使用的各种图像分割方法进行了一定的归纳总结,由于笔者对于图像分割的了解也是初窥门径,所以难免会有一些错误,还望各位读者多多指正,共同学习进步。

    传统分割方法

    这一大部分我们将要介绍的是深度学习大火之前人们利用数字图像处理、拓扑学、数学等方面的只是来进行图像分割的方法。当然现在随着算力的增加以及深度学习的不断发展,一些传统的分割方法在效果上已经不能与基于深度学习的分割方法相比较了,但是有些天才的思想还是非常值得我们去学习的。
    1.基于阈值的分割方法
    阈值法的基本思想是基于图像的灰度特征来计算一个或多个灰度阈值,并将图像中每个像素的灰度值与阈值作比较,最后将像素根据比较结果分到合适的类别中。因此,该方法最为关键的一步就是按照某个准则函数来求解最佳灰度阈值。
    阈值法特别适用于目标和背景占据不同灰度级范围的图。
    图像若只有目标和背景两大类,那么只需要选取一个阈值进行分割,此方法成为单阈值分割;但是如果图像中有多个目标需要提取,单一阈值的分割就会出现作物,在这种情况下就需要选取多个阈值将每个目标分隔开,这种分割方法相应的成为多阈值分割。

    如图所示即为对数字的一种阈值分割方法。
    阀值分割方法的优缺点:

    • 计算简单,效率较高;
    • 只考虑像素点灰度值本身的特征,一般不考虑空间特征,因此对噪声比较敏感,鲁棒性不高。
      从前面的介绍里我们可以看出,阈值分割方法的最关键就在于阈值的选择。若将智能遗传算法应用在阀值筛选上,选取能最优分割图像的阀值,这可能是基于阀值分割的图像分割法的发展趋势。
      2.基于区域的图像分割方法
      基于区域的分割方法是以直接寻找区域为基础的分割技术,基于区域提取方法有两种基本形式:一种是区域生长,从单个像素出发,逐步合并以形成所需要的分割区域;另一种是从全局出发,逐步切割至所需的分割区域。
      区域生长
      区域生长是从一组代表不同生长区域的种子像素开始,接下来将种子像素邻域里符合条件的像素合并到种子像素所代表的生长区域中,并将新添加的像素作为新的种子像素继续合并过程,知道找不到符合条件的新像素为止(小编研一第一学期的机器学习期末考试就是手写该算法 T.T),该方法的关键是选择合适的初始种子像素以及合理的生长准则。
      区域生长算法需要解决的三个问题:
      (1)选择或确定一组能正确代表所需区域的种子像素;
      (2)确定在生长过程中能将相邻像素包括进来的准则;
      (3)指定让生长过程停止的条件或规则。
      区域分裂合并
      区域生长是从某个或者某些像素点出发,最终得到整个区域,进而实现目标的提取。而分裂合并可以说是区域生长的逆过程,从整幅图像出发,不断的分裂得到各个子区域,然后再把前景区域合并,得到需要分割的前景目标,进而实现目标的提取。其实如果理解了上面的区域生长算法这个区域分裂合并算法就比较好理解啦。
      四叉树分解法就是一种典型的区域分裂合并法,基本算法如下:
      (1)对于任一区域,如果H(Ri)=FALSE就将其分裂成不重叠的四等分;
      (2)对相邻的两个区域Ri和Rj,它们也可以大小不同(即不在同一层),如果条件H(RiURj)=TURE满足,就将它们合并起来;
      (3)如果进一步的分裂或合并都不可能,则结束。
      其中R代表整个正方形图像区域,P代表逻辑词。
      区域分裂合并算法优缺点:
      (1)对复杂图像分割效果好;
      (2)算法复杂,计算量大;
      (3)分裂有可能破怪区域的边界。
      在实际应用当中通常将区域生长算法和区域分裂合并算法结合使用,该类算法对某些复杂物体定义的复杂场景的分割或者对某些自然景物的分割等类似先验知识不足的图像分割效果较为理想。
      分水岭算法
      分水岭算法是一个非常好理解的算法,它根据分水岭的构成来考虑图像的分割,现实中我们可以想象成有山和湖的景象,那么一定是如下图的,水绕山山围水的景象。
      分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。分水岭的概念和形成可以通过模拟浸入过程来说明。在每一个局部极小值表面,刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,在两个集水盆汇合处构筑大坝,即形成分水岭。
      分水岭对微弱边缘具有良好的响应,图像中的噪声、物体表面细微的灰度变化都有可能产生过度分割的现象,但是这也同时能够保证得到封闭连续边缘。同时,分水岭算法得到的封闭的集水盆也为分析图像的区域特征提供了可能。

    3.基于边缘检测的分割方法

    基于边缘检测的图像分割算法试图通过检测包含不同区域的边缘来解决分割问题。它可以说是人们最先想到也是研究最多的方法之一。通常不同区域的边界上像素的灰度值变化比较剧烈,如果将图片从空间域通过傅里叶变换到频率域,边缘就对应着高频部分,这是一种非常简单的边缘检测算法。
    边缘检测技术通常可以按照处理的技术分为串行边缘检测和并行边缘检测。串行边缘检测是要想确定当前像素点是否属于检测边缘上的一点,取决于先前像素的验证结果。并行边缘检测是一个像素点是否属于检测边缘高尚的一点取决于当前正在检测的像素点以及与该像素点的一些临近像素点。
    最简单的边缘检测方法是并行微分算子法,它利用相邻区域的像素值不连续的性质,采用一阶或者二阶导数来检测边缘点。近年来还提出了基于曲面拟合的方法、基于边界曲线拟合的方法、基于反应-扩散方程的方法、串行边界查找、基于变形模型的方法。

    边缘检测的优缺点:
    (1)边缘定位准确;
    (2)速度快;
    (3)不能保证边缘的连续性和封闭性;
    (4)在高细节区域存在大量的碎边缘,难以形成一个大区域,但是又不宜将高细节区域分成小碎片;
    由于上述的(3)(4)两个难点,边缘检测只能产生边缘点,而非完整意义上的图像分割过程。这也就是说,在边缘点信息获取到之后还需要后续的处理或者其他相关算法相结合才能完成分割任务。
    在以后的研究当中,用于提取初始边缘点的自适应阈值选取、用于图像的层次分割的更大区域的选取以及如何确认重要边缘以去除假边缘将变得非常重要。

    结合特定工具的图像分割算法

    基于小波分析和小波变换的图像分割方法

    小波变换是近年来得到的广泛应用的数学工具,也是现在数字图像处理必学部分,它在时间域和频率域上都有量高的局部化性质,能将时域和频域统一于一体来研究信号。而且小波变换具有多尺度特性,能够在不同尺度上对信号进行分析,因此在图像分割方面的得到了应用,
    二进小波变换具有检测二元函数的局部突变能力,因此可作为图像边缘检测工具。图像的边缘出现在图像局部灰度不连续处,对应于二进小波变换的模极大值点。通过检测小波变换模极大值点可以确定图像的边缘小波变换位于各个尺度上,而每个尺度上的小波变换都能提供一定的边缘信息,因此可进行多尺度边缘检测来得到比较理想的图像边缘。

    上图左图是传统的阈值分割方法,右边的图像就是利用小波变换的图像分割。可以看出右图分割得到的边缘更加准确和清晰
    另外,将小波和其他方法结合起来处理图像分割的问题也得到了广泛研究,比如一种局部自适应阈值法就是将Hilbert图像扫描和小波相结合,从而获得了连续光滑的阈值曲线。

    基于遗传算法的图像分割

    ​ 遗传算法(Genetic Algorithms,简称GA)是1973年由美国教授Holland提出的,是一种借鉴生物界自然选择和自然遗传机制的随机化搜索算法。是仿生学在数学领域的应用。其基本思想是,模拟由一些基因串控制的生物群体的进化过程,把该过程的原理应用到搜索算法中,以提高寻优的速度和质量。此算法的搜索过程不直接作用在变量上,而是在参数集进行了编码的个体,这使得遗传算法可直接对结构对象(图像)进行操作。整个搜索过程是从一组解迭代到另一组解,采用同时处理群体中多个个体的方法,降低了陷入局部最优解的可能性,并易于并行化。搜索过程采用概率的变迁规则来指导搜索方向,而不采用确定性搜索规则,而且对搜索空间没有任何特殊要求(如连通性、凸性等),只利用适应性信息,不需要导数等其他辅助信息,适应范围广。
    ​ 遗传算法擅长于全局搜索,但局部搜索能力不足,所以常把遗传算法和其他算法结合起来应用。将遗传算法运用到图像处理主要是考虑到遗传算法具有与问题领域无关且快速随机的搜索能力。其搜索从群体出发,具有潜在的并行性,可以进行多个个体的同时比较,能有效的加快图像处理的速度。但是遗传算法也有其缺点:搜索所使用的评价函数的设计、初始种群的选择有一定的依赖性等。要是能够结合一些启发算法进行改进且遗传算法的并行机制的潜力得到充分的利用,这是当前遗传算法在图像处理中的一个研究热点。

    基于主动轮廓模型的分割方法

    ​ 主动轮廓模型(active contours)是图像分割的一种重要方法,具有统一的开放式的描述形式,为图像分割技术的研究和创新提供了理想的框架。在实现主动轮廓模型时,可以灵活的选择约束力、初始轮廓和作用域等,以得到更佳的分割效果,所以主动轮廓模型方法受到越来越多的关注。
    ​ 该方法是在给定图像中利用曲线演化来检测目标的一类方法,基于此可以得到精确的边缘信息。其基本思想是,先定义初始曲线C,然后根据图像数据得到能量函数,通过最小化能量函数来引发曲线变化,使其向目标边缘逐渐逼近,最终找到目标边缘。这种动态逼近方法所求得的边缘曲线具有封闭、光滑等优点。

    ​ 传统的主动轮廓模型大致分为参数主动轮廓模型和几何主动轮廓模型。参数主动轮廓模型将曲线或曲面的形变以参数化形式表达,Kass等人提出了经典的参数活动轮廓模型即“Snake”模型,其中Snake定义为能量极小化的样条曲线,它在来自曲线自身的内力和来自图像数据的外力的共同作用下移动到感兴趣的边缘,内力用于约束曲线形状,而外力则引导曲线到特征此边缘。参数主动轮廓模型的特点是将初始曲线置于目标区域附近,无需人为设定曲线的的演化是收缩或膨胀,其优点是能够与模型直接进行交互,且模型表达紧凑,实现速度快;其缺点是难以处理模型拓扑结构的变化。比如曲线的合并或分裂等。而使用水平集(level set)的几何活动轮廓方法恰好解决了这一问题。

    基于深度学习的分割

    1.基于特征编码(feature encoder based)

    在特征提取领域中VGGnet和ResNet是两个非常有统治力的方法,接下来的一些篇幅会对这两个方法进行简短的介绍

    a.VGGNet

    ​ 由牛津大学计算机视觉组合和Google DeepMind公司研究员一起研发的深度卷积神经网络。它探索了卷积神经网络的深度和其性能之间的关系,通过反复的堆叠33的小型卷积核和22的最大池化层,成功的构建了16~19层深的卷积神经网络。VGGNet获得了ILSVRC 2014年比赛的亚军和定位项目的冠军,在top5上的错误率为7.5%。目前为止,VGGNet依然被用来提取图像的特征。

    ​ VGGNet的优缺点

    1. 由于参数量主要集中在最后的三个FC当中,所以网络加深并不会带来参数爆炸的问题;
    2. 多个小核卷积层的感受野等同于一个大核卷积层(三个3x3等同于一个7x7)但是参数量远少于大核卷积层而且非线性操作也多于后者,使得其学习能力较强
    3. VGG由于层数多而且最后的三个全连接层参数众多,导致其占用了更多的内存(140M)
    b.ResNet

    ​ 随着深度学习的应用,各种深度学习模型随之出现,虽然在每年都会出现性能更好的新模型,但是对于前人工作的提升却不是那么明显,其中有重要问题就是深度学习网络在堆叠到一定深度的时候会出现梯度消失的现象,导致误差升高效果变差,后向传播时无法将梯度反馈到前面的网络层,使得前方的网络层的参数难以更新,训练效果变差。这个时候ResNet恰好站出来,成为深度学习发展历程中一个重要的转折点。
    ​ ResNet是由微软研究院的Kaiming He等四名华人提出,他们通过自己提出的ResNet Unit成功训练出来152层的神经网络并在ILSVRC2015比赛中斩获冠军。ResNet语义分割领域最受欢迎且最广泛运用的神经网络.ResNet的核心思想就是在网络中引入恒等映射,允许原始输入信息直接传到后面的层中,在学习过程中可以只学习上一个网络输出的残差(F(x)),因此ResNet又叫做残差网络。、

    使用到ResNet的分割模型:

    • Efficient Neural Network(ENet):该网络类似于ResNet的bottleNeck方法;
    • ResNet-38:该网络在训练or测试阶段增加并移除了一些层,是一种浅层网络,它的结构是ResNet+FCN;
    • full-resolution residual network(FRRN):FRRN网络具有和ResNet相同优越的训练特性,它由残差流和池化流两个处理流组成;
    • AdapNey:根据ResNet-50的网络进行改进,让原本的ResNet网络能够在更短的时间内学习到更多高分辨率的特征;
      ……
      ResNet的优缺点:
      1)引入了全新的网络结构(残差学习模块),形成了新的网络结构,可以使网络尽可能地加深;
      2)使得前馈/反馈传播算法能够顺利进行,结构更加简单;
      3)恒等映射地增加基本上不会降低网络的性能;
      4)建设性地解决了网络训练的越深,误差升高,梯度消失越明显的问题;
      5)由于ResNet搭建的层数众多,所以需要的训练时间也比平常网络要长。

    2.基于区域选择(regional proposal based)

    Regional proposal 在计算机视觉领域是一个非常常用的算法,尤其是在目标检测领域。其核心思想就是检测颜色空间和相似矩阵,根据这些来检测待检测的区域。然后根据检测结果可以进行分类预测。
    在语义分割领域,基于区域选择的几个算法主要是由前人的有关于目标检测的工作渐渐延伸到语义分割的领域的,接下来小编将逐步介绍其个中关系。

    Stage Ⅰ: R-CNN

    伯克利大学的Girshick教授等人共同提出了首个在目标检测方向应用的深度学习模型:Region-based Convolutional Neural Network(R-CNN)。该网络模型如下图所示,其主要流程为:先使用selective search算法提取2000个候选框,然后通过卷积网络对候选框进行串行的特征提取,再根据提取的特征使用SVM对候选框进行分类预测,最后使用回归方法对区域框进行修正。

    R-CNN的优缺点:

    • 是首个开创性地将深度神经网络应用到目标检测的算法;
    • 使用Bounding Box Regression对目标检测的框进行调整;
    • 由于进行特征提取时是串行,处理耗时过长;
    • Selective search算法在提取每一个region时需要2s的时间,浪费大量时间
    Stage Ⅱ:Fast R-CNN

    ​ 由于R-CNN的效率太低,2015年由Ross等学者提出了它的改进版本:Fast R-CNN。其网络结构图如下图所示(从提取特征开始,略掉了region的选择)Fast R-CNN在传统的R-CNN模型上有所改进的地方是它是直接使用一个神经网络对整个图像进行特征提取,就省去了串行提取特征的时间;接着使用一个RoI Pooling Layer在全图的特征图上摘取每一个RoI对应的特征,再通过FC进行分类和包围框的修正。

    Fast R-CNN的优缺点

    • 节省了串行提取特征的时间;
    • 除了selective search以外的其它所有模块都可以合在一起训练;
    • 最耗时间的selective search算法依然存在。
    Stage Ⅲ:Faster R-CNN

    2016年提出的Faster R-CNN可以说有了突破性的进展(虽然还是目标检测哈哈哈),因为它改变了它的前辈们最耗时最致命的部位:selective search算法。它将selective search算法替换成为RPN,使用RPN网络进行region的选取,将2s的时间降低到10ms,其网络结构如下图所示:

    Faster R-CNN优缺点:

    • 使用RPN替换了耗时的selective search算法,对整个网络结构有了突破性的优化;
    • Faster R-CNN中使用的RPN和selective search比起来虽然速度更快,但是精度和selective search相比稍有不及,如果更注重速度而不是精度的话完全可以只使用RPN;
    Stage Ⅳ:Mask R-CNN

    Mask R-CNN(终于到分割了!)是何恺明大神团队提出的一个基于Faster R-CNN模型的一种新型的分割模型,此论文斩获ICCV 2017的最佳论文,在Mask R-CNN的工作中,它主要完成了三件事情:目标检测,目标分类,像素级分割。
    恺明大神是在Faster R-CNN的结构基础上加上了Mask预测分支,并且改良了ROI Pooling,提出了ROI Align。其网络结构真容就如下图所示啦:

    Mask R-CNN的优缺点:

    • 引入了预测用的Mask-Head,以像素到像素的方式来预测分割掩膜,并且效果很好;
    • 用ROI Align替代了ROI Pooling,去除了RoI Pooling的粗量化,使得提取的特征与输入良好对齐;
    • 分类框与预测掩膜共享评价函数,虽然大多数时间影响不大,但是有的时候会对分割结果有所干扰。
    Stage Ⅴ:Mask Scoring R-CNN

    最后要提出的是2019年CVPR的oral,来自华中科技大学的研究生黄钊金同学提出的
    MS R-CNN,这篇文章的提出主要是对上文所说的Mask R-CNN的一点点缺点进行了修正。他的网络结构也是在Mask R-CNN的网络基础上做了一点小小的改进,添加了Mask-IoU。
    黄同学在文章中提到:恺明大神的Mask R-CNN已经很好啦!但是有个小毛病,就是评价函数只对目标检测的候选框进行打分,而不是分割模板(就是上文提到的优缺点中最后一点),所以会出现分割模板效果很差但是打分很高的情况。所以黄同学增加了对模板进行打分的MaskIoU Head,并且最终的分割结果在COCO数据集上超越了恺明大神,下面就是MS R-CNN的网络结构啦~

    MS R-CNN的优缺点:

    • 优化了Mask R-CNN中的信息传播,提高了生成预测模板的质量;
    • 未经大批量训练的情况下,就拿下了COCO 2017挑战赛实例分割任务冠军;
    • 要说缺点的话。。应该就是整个网络有些庞大,一方面需要ResNet当作主干网络,另一方面需要其它各种Head共同承担各种任务。

    3.基于RNN的图像分割

    Recurrent neural networks(RNNs)除了在手写和语音识别上表现出色外,在解决计算机视觉的任务上也表现不俗,在本篇文章中我们就将要介绍RNN在2D图像处理上的一些应用,其中也包括介绍使用到它的结构或者思想的一些模型。
    RNN是由Long-Short-Term Memory(LSTM)块组成的网络,RNN来自序列数据的长期学习的能力以及随着序列保存记忆的能力使其在许多计算机视觉的任务中游刃有余,其中也包括语义分割以及数据标注的任务。接下来的部分我们将介绍几个使用到RNN结构的用于分割的网络结构模型:

    1.ReSeg模型

    ReSeg可能不被许多人所熟知,在百度上搜索出的相关说明与解析也不多,但是这是一个很有效的语义分割方法。众所周知,FCN可谓是图像分割领域的开山作,而RegNet的作者则在自己的文章中大胆的提出了FCN的不足:没有考虑到局部或者全局的上下文依赖关系,而在语义分割中这种依赖关系是非常有用的。所以在ReSeg中作者使用RNN去检索上下文信息,以此作为分割的一部分依据。

    该结构的核心就是Recurrent Layer,它由多个RNN组合在一起,捕获输入数据的局部和全局空间结构。
    优缺点:

    • 充分考虑了上下文信息关系;
    • 使用了中值频率平衡,它通过类的中位数(在训练集上计算)和每个类的频率之间的比值来重新加权类的预测。这就增加了低频率类的分数,这是一个更有噪声的分割掩码的代价,因为被低估的类的概率被高估了,并且可能导致在输出分割掩码中错误分类的像素增加。
    2.MDRNNs(Multi-Dimensional Recurrent Neural Networks)模型

    传统的RNN在一维序列学习问题上有着很好的表现,比如演讲(speech)和在线手写识别。但是 在多为问题中应用却并不到位。MDRNNs在一定程度上将RNN拓展到多维空间领域,使之在图像处理、视频处理等领域上也能有所表现。
    该论文的基本思想是:将单个递归连接替换为多个递归连接,相应可以在一定程度上解决时间随数据样本的增加呈指数增长的问题。以下就是该论文提出的两个前向反馈和反向反馈的算法。

    4.基于上采样/反卷积的分割方法

    卷积神经网络在进行采样的时候会丢失部分细节信息,这样的目的是得到更具特征的价值。但是这个过程是不可逆的,有的时候会导致后面进行操作的时候图像的分辨率太低,出现细节丢失等问题。因此我们通过上采样在一定程度上可以不全一些丢失的信息,从而得到更加准确的分割边界。
    接下来介绍几个非常著名的分割模型:

    a.FCN(Fully Convolutional Network)

    是的!讲来讲去终于讲到这位大佬了,FCN!在图像分割领域已然成为一个业界标杆,大多数的分割方法多多少少都会利用到FCN或者其中的一部分,比如前面我们讲过的Mask R-CNN。
    在FCN当中的反卷积-升采样结构中,图片会先进性上采样(扩大像素);再进行卷积——通过学习获得权值。FCN的网络结构如下图所示:

    当然最后我们还是需要分析一下FCN,不能无脑吹啦~
    优缺点:

    • FCN对图像进行了像素级的分类,从而解决了语义级别的图像分割问题;
    • FCN可以接受任意尺寸的输入图像,可以保留下原始输入图像中的空间信息;
    • 得到的结果由于上采样的原因比较模糊和平滑,对图像中的细节不敏感;
    • 对各个像素分别进行分类,没有充分考虑像素与像素的关系,缺乏空间一致性。
    2.SetNet

    SegNet是剑桥提出的旨在解决自动驾驶或者智能机器人的图像语义分割深度网络,SegNet基于FCN,与FCN的思路十分相似,只是其编码-解码器和FCN的稍有不同,其解码器中使用去池化对特征图进行上采样,并在分各种保持高频细节的完整性;而编码器不使用全连接层,因此是拥有较少参数的轻量级网络:

    图像分割是计算机视觉研究中的一个经典难题,已经成为图像理解领域关注的一个热点,图像分割是图像分析的第一步,是计算机视觉的基础,是图像理解的重要组成部分,同时也是图像处理中最困难的问题之一。所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的说就是在一副图像中,把目标从背景中分离出来。对于灰度图像来说,区域内部的像素一般具有灰度相似性,而在区域的边界上一般具有灰度不连续性。 关于图像分割技术,由于问题本身的重要性和困难性,从20世纪70年代起图像分割问题就吸引了很多研究人员为之付出了巨大的努力。虽然到目前为止,还不存在一个通用的完美的图像分割的方法,但是对于图像分割的一般性规律则基本上已经达成的共识,已经产生了相当多的研究成果和方法。

    本文对于目前正在使用的各种图像分割方法进行了一定的归纳总结,由于笔者对于图像分割的了解也是初窥门径,所以难免会有一些错误,还望各位读者多多指正,共同学习进步。

    SetNet的优缺点:

    • 保存了高频部分的完整性;
    • 网络不笨重,参数少,较为轻便;
    • 对于分类的边界位置置信度较低;
    • 对于难以分辨的类别,例如人与自行车,两者如果有相互重叠,不确定性会增加。
      以上两种网络结构就是基于反卷积/上采样的分割方法,当然其中最最最重要的就是FCN了,哪怕是后面大名鼎鼎的SegNet也是基于FCN架构的,而且FCN可谓是语义分割领域中开创级别的网络结构,所以虽然这个部分虽然只有两个网络结构,但是这两位可都是重量级嘉宾,希望各位能够深刻理解~

    5.基于提高特征分辨率的分割方法

    在这一个模块中我们主要给大家介绍一下基于提升特征分辨率的图像分割的方法。换一种说法其实可以说是恢复在深度卷积神经网络中下降的分辨率,从而获取更多的上下文信息。这一系列我将给大家介绍的是Google提出的DeepLab 。
    DeepLab是结合了深度卷积神经网络和概率图模型的方法,应用在语义分割的任务上,目的是做逐像素分类,其先进性体现在DenseCRFs(概率图模型)和DCNN的结合。是将每个像素视为CRF节点,利用远程依赖关系并使用CRF推理直接优化DCNN的损失函数。
    在图像分割领域,FCN的一个众所周知的操作就是平滑以后再填充,就是先进行卷积再进行pooling,这样在降低图像尺寸的同时增大感受野,但是在先减小图片尺寸(卷积)再增大尺寸(上采样)的过程中一定有一些信息损失掉了,所以这里就有可以提高的空间。
    接下来我要介绍的是DeepLab网络的一大亮点:Dilated/Atrous Convolution,它使用的采样方式是带有空洞的采样。在VGG16中使用不同采样率的空洞卷积,可以明确控制网络的感受野。

    图a对应3x3的1-dilated conv,它和普通的卷积操作是相同的;图b对应3x3的2-dilated conv,事迹卷积核的尺寸还是3x3(红点),但是空洞为1,其感受野能够达到7x7;图c对应3x3的4-dilated conv,其感受野已经达到了15x15.写到这里相信大家已经明白,在使用空洞卷积的情况下,加大了感受野,使每个卷积输出都包含了较大范围的信息。
    这样就解决了DCNN的几个关于分辨率的问题:
    1)内部数据结构丢失;空间曾计划信息丢失;
    2)小物体信息无法重建;
    当然空洞卷积也存在一定的问题,它的问题主要体现在以下两方面:
    1)网格效应
    加入我们仅仅多次叠加dilation rate 2的 3x3 的卷积核则会出现以下问题

    我们发现卷积核并不连续,也就是说并不是所有的像素都用来计算了,这样会丧失信息的连续性;
    2)小物体信息处理不当
    我们从空洞卷积的设计背景来看可以推测出它是设计来获取long-ranged information。然而空洞步频选取得大获取只有利于大物体得分割,而对于小物体的分割可能并没有好处。所以如何处理好不同大小物体之间的关系也是设计好空洞卷积网络的关键。

    6.基于特征增强的分割方法

    基于特征增强的分割方法包括:提取多尺度特征或者从一系列嵌套的区域中提取特征。在图像分割的深度网络中,CNN经常应用在图像的小方块上,通常称为以每个像素为中心的固定大小的卷积核,通过观察其周围的小区域来标记每个像素的分类。在图像分割领域,能够覆盖到更大部分的上下文信息的深度网络通常在分割的结果上更加出色,当然这也伴随着更高的计算代价。多尺度特征提取的方法就由此引进。
    在这一模块中我先给大家介绍一个叫做SLIC,全称为simple linear iterative cluster的生成超像素的算法。
    首先我们要明确一个概念:啥是超像素?其实这个比较容易理解,就像上面说的“小方块”一样,我们平常处理图像的最小单位就是像素了,这就是像素级(pixel-level);而把像素级的图像划分成为区域级(district-level)的图像,把区域当成是最基本的处理单元,这就是超像素啦。
    算法大致思想是这样的,将图像从RGB颜色空间转换到CIE-Lab颜色空间,对应每个像素的(L,a,b)颜色值和(x,y)坐标组成一个5维向量V[l, a, b, x, y],两个像素的相似性即可由它们的向量距离来度量,距离越大,相似性越小。
    算法首先生成K个种子点,然后在每个种子点的周围空间里搜索距离该种子点最近的若干像素,将他们归为与该种子点一类,直到所有像素点都归类完毕。然后计算这K个超像素里所有像素点的平均向量值,重新得到K个聚类中心,然后再以这K个中心去搜索其周围与其最为相似的若干像素,所有像素都归类完后重新得到K个超像素,更新聚类中心,再次迭代,如此反复直到收敛。
    有点像聚类的K-Means算法,最终会得到K个超像素。
    Mostahabi等人提出的一种前向传播的分类方法叫做Zoom-Out就使用了SLIC的算法,它从多个不同的级别提取特征:局部级别:超像素本身;远距离级别:能够包好整个目标的区域;全局级别:整个场景。这样综合考虑多尺度的特征对于像素或者超像素的分类以及分割来说都是很有意义的。
    接下来的部分我将给大家介绍另一种完整的分割网络:PSPNet:Pyramid Scene Parsing Network
    论文提出在场景分割是,大多数的模型会使用FCN的架构,但是FCN在场景之间的关系和全局信息的处理能力存在问题,其典型问题有:1.上下文推断能力不强;2.标签之间的关系处理不好;3.模型可能会忽略小的东西。
    本文提出了一个具有层次全局优先级,包含不同子区域时间的不同尺度的信息,称之为金字塔池化模块。
    该模块融合了4种不同金字塔尺度的特征,第一行红色是最粗糙的特征–全局池化生成单个bin输出,后面三行是不同尺度的池化特征。为了保证全局特征的权重,如果金字塔共有N个级别,则在每个级别后使用1×1 1×11×1的卷积将对于级别通道降为原本的1/N。再通过双线性插值获得未池化前的大小,最终concat到一起。其结构如下图:

    最终结果就是,在融合不同尺度的feature后,达到了语义和细节的融合,模型的性能表现提升很大,作者在很多数据集上都做过训练,最终结果是在MS-COCO数据集上预训练过的效果最好。

    为了捕捉多尺度特征,高层特征包含了更多的语义和更少的位置信息。结合多分辨率图像和多尺度特征描述符的优点,在不丢失分辨率的情况下提取图像中的全局和局部信息,这样就能在一定程度上提升网络的性能。

    7.使用CRF/MRF的方法

    首先让我们熟悉熟悉到底啥是MRF的CRF的。
    MRF全称是Marcov Random Field,马尔可夫随机场,其实说起来笔者在刚读硕士的时候有一次就有同学在汇报中提到了隐马尔可夫、马尔可夫链啥的,当时还啥都不懂,小白一枚(现在是准小白hiahia),觉得马尔可夫这个名字贼帅,后来才慢慢了解什么马尔科夫链呀,马尔可夫随机场,并且在接触到图像分割了以后就对马尔科夫随机场有了更多的了解。
    MRF其实是一种基于统计的图像分割算法,马尔可夫模型是指一组事件的集合,在这个集合中,事件逐个发生,并且下一刻事件的发生只由当前发生的事件决定,而与再之前的状态没有关系。而马尔可夫随机场,就是具有马尔可夫模型特性的随机场,就是场中任何区域都只与其临近区域相关,与其他地方的区域无关,那么这些区域里元素(图像中可以是像素)的集合就是一个马尔可夫随机场。
    CRF的全称是Conditional Random Field,条件随机场其实是一种特殊的马尔可夫随机场,只不过是它是一种给定了一组输入随机变量X的条件下另一组输出随机变量Y的马尔可夫随机场,它的特点是埃及设输出随机变量构成马尔可夫随机场,可以看作是最大熵马尔可夫模型在标注问题上的推广。
    在图像分割领域,运用CRF比较出名的一个模型就是全连接条件随机场(DenseCRF),接下来我们将花费一些篇幅来简单介绍一下。
    CRF在运行中会有一个问题就是它只对相邻节点进行操作,这样会损失一些上下文信息,而全连接条件随机场是对所有节点进行操作,这样就能获取尽可能多的临近点信息,从而获得更加精准的分割结果。
    在Fully connected CRF中,吉布斯能量可以写作:

    我们重点关注二元部分:

    其中k(m)为高斯核,写作:

    该模型的一元势能包含了图像的形状,纹理,颜色和位置,二元势能使用了对比度敏感的的双核势能,CRF的二元势函数一般是描述像素点与像素点之间的关系,鼓励相似像素分配相同的标签,而相差较大的像素分配不同标签,而这个“距离”的定义与颜色值和实际相对距离有关,这样CRF能够使图像尽量在边界处分割。全连接CRF模型的不同就在于其二元势函数描述的是每一个像素与其他所有像素的关系,使用该模型在图像中的所有像素对上建立点对势能从而实现极大地细化和分割。
    在分割结果上我们可以看看如下的结果图:

    可以看到它在精细边缘的分割比平常的分割方法要出色得多,而且文章中使用了另一种优化算法,使得本来需要及其大量运算的全连接条件随机场也能在很短的时间里给出不错的分割结果。
    至于其优缺点,我觉得可以总结为以下几方面:

    • 在精细部位的分割非常优秀;
    • 充分考虑了像素点或者图片区域之间的上下文关系;
    • 在粗略的分割中可能会消耗不必要的算力;
    • 可以用来恢复细致的局部结构,但是相应的需要较高的代价。
      OK,那么本次的推送就到这里结束啦,本文的主要内容是对图像分割的算法进行一个简单的分类和介绍。综述对于各位想要深入研究的看官是非常非常重要的资源:大佬们经常看综述一方面可以了解算法的不足并在此基础上做出改进;萌新们可以通过阅读一篇好的综述入门某一个学科,比如今天的内容就是图像分割。
      谢谢各位朋友们的观看!

    推荐阅读

    如何从零开始系统化学习视觉SLAM?
    从零开始一起学习SLAM | 为什么要学SLAM?
    从零开始一起学习SLAM | 学习SLAM到底需要学什么?
    从零开始一起学习SLAM | SLAM有什么用?
    从零开始一起学习SLAM | C++新特性要不要学?
    从零开始一起学习SLAM | 为什么要用齐次坐标?
    从零开始一起学习SLAM | 三维空间刚体的旋转
    从零开始一起学习SLAM | 为啥需要李群与李代数?
    从零开始一起学习SLAM | 相机成像模型
    从零开始一起学习SLAM | 不推公式,如何真正理解对极约束?
    从零开始一起学习SLAM | 神奇的单应矩阵
    从零开始一起学习SLAM | 你好,点云
    从零开始一起学习SLAM | 给点云加个滤网
    从零开始一起学习SLAM | 点云平滑法线估计
    从零开始一起学习SLAM | 点云到网格的进化
    从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码
    从零开始一起学习SLAM | 掌握g2o顶点编程套路
    从零开始一起学习SLAM | 掌握g2o边的代码套路
    零基础小白,如何入门计算机视觉?
    SLAM领域牛人、牛实验室、牛研究成果梳理
    我用MATLAB撸了一个2D LiDAR SLAM
    可视化理解四元数,愿你不再掉头发
    最近一年语义SLAM有哪些代表性工作?
    视觉SLAM技术综述
    汇总 | VIO、激光SLAM相关论文分类集锦
    研究SLAM,对编程的要求有多高?
    2018年SLAM、三维视觉方向求职经验分享
    2018年SLAM、三维视觉方向求职经验分享
    深度学习遇到SLAM | 如何评价基于深度学习的DeepVO,VINet,VidLoc?
    视觉SLAM关键方法总结
    SLAM方向公众号、知乎、博客上有哪些大V可以关注?
    SLAM实验室
    SLAM方向国内有哪些优秀公司?
    SLAM面试常见问题
    SLAM相关领域数据集调研
    从零开始一起学习SALM-ICP原理及应用
    解放双手——相机与IMU外参的在线标定
    目标检测

    展开全文
  • 聚类分析:基本概念梳理

    千次阅读 2015-12-05 18:02:23
    把对象空间量化为有限个单元,形成一个网格结构。所有的聚类操作都在这个网格上进行。这种方法的主要优点是处理速度快。 划分方法: k-均值方法是怎样工作的: k-均值方法把簇的形心定义为簇内点的均值...

    聚类分析的基础知识,初学者可以看一下,大致梳理一下思路


    聚类分析:简称聚类(clustering),是一个把数据对象划分成子集的过程,每个子集是一个簇(cluster),使得簇中的对象彼此相似,但与                   其他簇中的对象不相似。聚类成为自动分类,聚类可以自动的发现这些分组,这是突出的优点。

    监督学习:分类成为监督学习(supervised learning),因为给定了类标号的信息,即学习算法是监督的,因为它被告知每个训练元素的                   类隶属关系。

    无监督学习(unsupervised learning):因为没有提供类标号信息。

    数据挖掘对聚类的典型要求如下:可伸缩性、处理不同属性类的能力、发现任意形状的簇、处理噪声数据的能力、簇的分离性

    基本聚类方法描述:

          1.划分方法:(这是聚类分析最简单最基本的方法)采取互斥簇的划分,即每个对象必须恰好属于一个组。划分方法是基于距离的,给定要构建的分区数k,划分方法首先创建一个初始划分,然后它采用一种迭代的重定位技术,通过把对象从一个组移动到另一个组来改进划分。一个好的划分准则是:同一个簇中的相关对象尽可能相互“接近”或相关,而不同簇中的对象尽可能地“远离”或不同。(什么是启发式方法?启发式方法指人在解决问题时所采取的一种根据经验规则进行发现的方法。其特点是在解决问题时,利用过去的经验,选择已经行之有效的方法,而不是系统地、以确定的步骤去寻求答案。 如k-均值(k-means)和k-中心点(k-mediods)方法)。

          2.层次方法:层次方法创建给定数据对象集的层次分解。层次方法可以分为凝聚和分裂的方法。凝聚的方法,也称自底向上的方法,开始将每个对象作为单独的一组,然后逐次合并相近的对象或组,直到所有的组合并成为一个组。分裂的方法,也成为自顶向下的方法,开始将所有的对象置于一个簇中,在每次的迭代中,一个簇被划分为更小的簇,直到每个最终每个对象在单独的一个簇中。

          3.基于密度的方法:大部分划分方法基于对象之间的距离进行聚类,这样的方法只能发现球状簇,而在发现任意形状簇时遇到了困难。已经开发的基于密度的聚类方法,其主要思想是:只要“邻域”中的密度(对象或数据点的数目)超过了某个阈值(用户自定义),就继续增长给定的簇。

          4.基于网格的方法:把对象空间量化为有限个单元,形成一个网格结构。所有的聚类操作都在这个网格上进行。这种方法的主要优点是处理速度快。


    划分方法:

    k-均值方法是怎样工作的:k-均值方法把簇的形心定义为簇内点的均值。流程如下:在D中随机的选择k个对象,每个对象代表一个簇的初始均值或中心。对剩下的每个对象,根据其各个簇中心的欧氏距离,将它分配到最相似的簇。然后该算法迭代的改善簇内变差。对于每个簇,它使用上次迭代分配到该簇的对象,计算新的均值。然后使用更新后的均值作为新的簇中心,重新分配所有对象。这个过程被称为迭代的重定位(iterative relocation)。      缺点:对利群点比较敏感。

          k-均值算法流程:1.从数据集D中选择k个对象作为初始簇的中心  2.根据簇中对象的均值,将每个对象分配到最相似的簇。然后更新簇的均值,也就是重新计算每个簇的对象的均值。直到簇中的均值不再发生变化时算法结束

          k-中心点算法对k-均值方法的优化:为了降低k-均值算法对离群点的敏感性,研究了k-中心点方法。我们可以不采用簇中对象的均值作为参考点,而是使用实际对象来代表簇,每个簇使用一个代表对象。其余每个对象被分配到与其最为相似的代表性对象所在的簇中。

          k-中心点算法:从数据集D中随机选择k个对象作为初始的代表对象或种子  2.将每个剩余的对象分配到最近的代表对象所代表的簇,并随机的选择一个非代表对象o并计算用o代替代表对象oj的总代价S,如果S<0,则o替换oj,形成新的k个代表对象的集合  3.当簇内的成员不再发生变化时则结束算法。

          k-means VS k-mediods:当存在噪声利群点时,k-中心点方法比k-均值方法更棒,这是因为中心点不像均值那样容易受到利群点或其他极端值的影响。然而k-中心点每次迭代的复杂度是O(k(n-k)^2) 。当n合k比较大时,这种计算开销变得相当大,远高于k-均值方法。


    基于密度的方法:

          DBSCAN(一重基于高密度连通区域的基于密度的聚类):该算法找出核心对象,也就是其邻域稠密的对象。它连接核心对象和它们的邻域,形成稠密区域作为簇。

          DBSCAN如何确定对象的邻域?:用户先指定一个参数e>0用来指定每个对象的邻域半径。对象o的e-邻域是以o为中心、以e为半径的空间。

          DBSCAN算法流程:1.首先标记所有的对象为“未探索”  2.然后随机选择一个为探索的对象p并标记为“已探索”  3.如果p的e-邻域至少有MinPts(邻域密度阈值)个对象,则创建一个新的簇C,并把p添加到C中,并把它们记作N,遍历N中的每个成员p',如果p'的邻域也至少有MinPts个对象则保留,否则把p'从N中删除。  4.否则标记p为噪声  5.直到把所有的对象都遍历完为止

    展开全文
  • (1) 概念组成种群的个体在其生活空间中 的 _ 位置状态或布局 种群的空间结构 ? (2) 类型 ? 随机分布型个体在种群分布区域中任 何一点出现的机会是 _ ? 均匀分布型个体在种群区域中空间位 置是 _ ? 集群分布型种群...
  • 数据结构习题及解析一

    千次阅读 多人点赞 2018-12-20 09:51:36
    顺序表是在计算机内存中以数组的形式保存的线性表,是指用一组地址连续的存储单元依次存储数据元素的线性结构。线性表采用顺序存储的方式存储就称之为顺序表。顺序表是将表中的结点依次存放在计算机内存中一组地址...
  • 【Oracle笔记】表空间概念

    万次阅读 2018-03-29 23:51:51
    ORACLE数据库被划分成称作为表空间的逻辑区域——形成ORACLE数据库的逻辑结构。一个ORACLE数据库能够有一个或多个表空间,而一个表空间则对应着一个或多个物理的数据库文件。表空间是ORACLE数据库恢复的最小单位,...
  • 放硬币问题的解空间结构

    千次阅读 2016-09-22 10:02:22
    了解解空间结构,对于了解问题的本质,非常重要。 放硬币问题: 有一个圆桌,2人轮流在上面放硬币。硬币可以放在桌面上的任何地方,但是不能超出桌面的范围(极端情况是内切) 而且,硬币和硬币不能互相...
  • 图像识别初识

    千次阅读 2017-08-11 23:22:42
    对于待研究的对象和区域,没有已知类别或训练样本作标准,而是利用图像数据本身能在特征测量空间中聚集成群的特点,先形成各个数据集,然后再核对这些数据集所代表的物体类别。 与监督分类相比,非监督分类具有...
  • 2018山西专升本数据结构知识点总结

    万次阅读 多人点赞 2018-06-29 19:41:36
    2018山西专升本数据结构知识点总结
  • 比如本文我们要讨论的JVM内存结构、JAVA内存结构、JAVA内存区域、Java内存模型,这就是几个截然不同的概念,但是很多人容易弄混。 可以这样说,很多高级开发甚至都搞不不清楚JVM内存结构、JAVA内存结构、JAVA内存...
  • 计算机图形学导论

    千次阅读 多人点赞 2018-10-12 22:42:46
    计算机图形学概念 1.1什么是计算机图形学?(Computer Graphics) 关于计算机图形学的定义众说纷纭。 IEEE 对计算机图形学的定义为:Computer graphicsis the art or science of producing graphical images with...
  • eMMC(一)——基本架构

    万次阅读 多人点赞 2019-11-01 15:58:07
    看了很多文章,上来就开始列概念,例如上面一段,接着讲原理,自己看的很含糊,不清楚自己到底看了个啥玩意儿,也不知道它长什么样、用在哪、主要干嘛用的,就讲怎么开发设计,很散没有目的。经过一段时间总结,对这...
  • 数据库系统概论(第五版) 王珊 第一章课后习题答案

    千次阅读 多人点赞 2019-12-23 16:18:55
    试述数据、数据库、数据库系统、数据库管理系统的概念。 答: ( l )数据( Data ) :描述事物的符号记录称为数据。数据的种类有数字、文字、图形、图像、声音、正文等。数据与其语义是不可分的。 ( 2 )数据库...
  • 我在之前的一篇博客中讨论过Eclipse和Android Studio的工作空间问题,并做了一定的区别。其实只要理解并会使用前两者,Xcode中的工作空间也就不难理解了。我们通过实际的操作步骤来理解Xcode的工作空间
  • 卷积神经网络入门详解

    万次阅读 多人点赞 2017-11-08 15:52:14
      本文主要内容为 CS231n 课程的学习笔记,主要参考 学习...  在之前的博客《十四、卷积神经网络(1):介绍卷积神经网络》《十五、卷积神经网络(2):卷积神经网络的结构》中只是介绍性的阐述了一些关于卷积神...
  • WPF开发教程

    万次阅读 多人点赞 2019-07-02 23:13:20
    1. WPF基础之体系结构... 3 2. WPF基础之XAML. 9 3. WPF基础之基元素... 23 4. WPF基础之属性系统... 26 5. WPF基础之路由事件... 33 6. WPF基础之布局系统... 46 7. WPF基础之样式设置和模板化... ...
  • 《单片机原理及应用》复习提纲

    万次阅读 多人点赞 2015-12-14 10:42:02
    单片机应用系统的典型结构图   单片机应用系统核心硬件技术包括: 1.时序 2.中断 3.地址译码   单片机应用系统核心软件技术包括: 1.寻址方式、指令系统 2.典型程序结构 3.中断程序...
  • 元胞自动机简介

    万次阅读 多人点赞 2017-12-20 18:30:39
    阐述了元胞自动机的发展历程、结构、特征及基本理论与方珐; 介绍了元胞自动机在寡头垄断行为、交通管理及工程运输、城市发展、市场营销、股票投资、企业战略等管理领域中的应用; 指出元胞自动机理论的优势与不足,...
  • 数据结构与算法:数据结构概念(已完成迁移)

    千次阅读 多人点赞 2019-01-17 21:23:59
    一:基本概念 1.数据结构:对数据的一种存储和组织方式,相互之间存在一种或者多种特定关系的数据的集合。数据就是存储的 有用的信息 数据元素:数据的基本单位,又称节点、元素 2.数据整体结构:逻辑结构、存储...
  • 觉得有必要在此之前介绍一下Java虚拟机的相关知识,Java虚拟机也并不是三言两语能够介绍完的,因此开了Java虚拟机系列,这一篇文章我们来学习Java虚拟机的结构原理与运行时数据区域
  • [计算机体系结构] Cache 基本概念

    千次阅读 2019-05-05 15:32:27
    这个处理过程可能包括evicting(驱逐)cache中已存在的数据,从而为新的数据腾出空间。 Associativity 指每个Set(集)里包含的line frames(行帧)数。也就是cache的way(路)数。 Capacity miss容量失效 ...
  • 无线传感器网络复习大纲

    千次阅读 多人点赞 2019-04-30 10:31:40
    常见拓扑结构(了解) WSN几个分层、分层的功能(了解) 自组织网络多跳传输特点(了解) 1、1无线传感器网络介绍 无线传感器概念:无线传感器网络是一种特殊的无线通信网络,它是由许多个传感器节点通过...
  • Nacos - nacos基础概念

    千次阅读 2019-12-03 18:31:25
    文章目录Nacos - nacos基础概念1、什么是nacos2、nacos 的主要功能3、nacos 引入的一些基础概念4、nacos 架构设计 Nacos - nacos基础概念 1、什么是nacos 一个易于使用的动态服务发现,配置和服务管理平台,用于...
  • 【JAVA面试】java面试题整理(3)

    千次阅读 2018-10-28 12:50:13
    1. 讲下JAVA的运行时区域 1 2、简单说下垃圾回收机制 2 3、TCP和UDP的区别 7 4、项目是怎样预防sql注入的 7 5、 MySQL存储引擎中的MyISAM和InnoDB区别 7 6、B树与B+树简明扼要的区别 11 6、 解决哈希冲突的三...
  • 图像识别算法

    万次阅读 多人点赞 2019-08-15 17:36:40
    ORB算法使用FAST进行特征点检测,然后用BREIF进行特征点的特征描述,但是我们知道BRIEF并没有特征点方向的概念,所以ORB在BRIEF基础上引入了方向的计算方法,并在点对的挑选上使用贪婪搜索算法,挑出了一些区分性强...
  • 推荐阅读: &amp;nbsp;我的CSDN &amp;nbsp;我的博客园 ...1.常见的4类数据结构: 1.... 2.线性结构。3.树形结构。4.图状结构。...2.数据结构(Data Structure)简记为 DS...3.数据的存储结构包括顺序存储结构和链式存...
  • 堆的特性: 必须是完全二叉树 用数组实现 任一结点的值是其子树所有结点的最大值或最小值 最大值时,称为“最大堆”,也称大根堆;... 堆和栈在数据结构中是两种不同的数据结构。 两者都是数据...
  • 理解这个概念,对于理解程序的运行至关重要。容易混淆的是,这个词其实有三种含义,适用于不同的场合,必须加以区分。 含义一:数据结构 stack的第一种含义是一组数据的存放方式,特点为LIFO,即后进先出(Last in, ...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 148,499
精华内容 59,399
关键字:

区域空间结构的概念