精华内容
下载资源
问答
  • 如何入门参与数学建模

    万次阅读 多人点赞 2018-12-25 11:13:13
    数学建模感想 纪念逝去的大学数学建模:两次校赛,两次国赛,两次美赛,一次电工杯。从大一下学期组队到现在,大三下学期,时间飞逝,我的大学建模生涯也告一段落。感谢建模路上帮助过我的学长和学姐们,滴水之恩当...


    数学建模感想

    纪念逝去的大学数学建模:两次校赛,两次国赛,两次美赛,一次电工杯。从大一下学期组队到现在,大三下学期,时间飞逝,我的大学建模生涯也告一段落。感谢建模路上帮助过我的学长和学姐们,滴水之恩当涌泉相报,写下这篇感想,希望可以给学弟学妹们一丝启发,也就完成我的想法了。拙劣的文笔,也不知道写些啥,按顺序随便写写吧。

    我是怎么选择建模的:

    大一上,第一次听到数学建模其实是大一上学期,not大一下学期。某次浏览网页偶然发现的,源于从小对数学,哲学以及历史的崇敬吧(虽然大学没敢选择其中任何一个专业,尤其是数学和哲学,怕太难了,学不好),我就坚定了学习数学建模的想法。通过翻阅学校发的学生手册还是神马的资料,发现我们学校有数学建模竞赛的。鉴于大一上啥数学知识都没有,也就没开始准备,把侧重点放在找队友上。
    一次打乒乓球,认识了两位信电帅哥,以后也会一起打球。其中一位(M)很有学霸潜质,后来期末考试后,我打听了他的高数成绩,果然的杠杠滴,就试探性的问了下,要不要一起参加建模,嗯,成功!

    第二位队友是在大一上学期认识的(向她请教了很多关于转专业的事情),但是是第二学期找她组队的。老样子,打听成绩,一打听吓一跳,是英语超好,微积分接近满分的女生F(鄙人第二学期转入了她的学院)。果断发送邀请,是否愿意一起组队,嗯,成功。

    关于找队友:在信息不对称的情况下,优先考虑三人的专业搭配,比如或信电的小伙伴负责编程和理工科题建模,经济金融统计负责论文和统计建模,数学计算专业的全方位建模以及帮忙论文,个人感觉这样子比较好。由于建模粗略地可以分为建模,编程,论文,三块,整体上是一人负责一块的,但是绝对不能走极端,每个人就单单的负责一块,这样子的组合缺乏沟通和互动。应该要在培训中磨合,结合每个人的个人特点。主要负责哪几块,辅助哪几块。

    接下来就到了第一次校赛了:第一次还是挺激动的,因为之前问了几个学长学姐说,建模都是要通宵的,于是我们也做好了通宵的准备。第一次拿到的题目是关于一个单位不同工作部门不同饮食习惯的人,健康水平的关系。
    后来回顾过来,这其实是一个比较简单的统计分析题。但是想当年可没有这等觉悟,做题全靠office,对着题目想半天也不知道该怎么做。做的过程很痛苦,但是也很兴奋,校赛三等奖的结果证明了光有一股热情是不行的,需要恶补大量知识。

    推荐新手入门书目:

    数学模型(姜启源、谢金星)

    数学建模方法与分析.(新西兰)Mark.M.Meerschaert.

    第一本是姜老先生写的,很适合新手,在内容编排上也是国产风格,按模型知识点分类,一块一块讲,面面俱到。第二本是新西兰的,我是大二的时候看这本书的,只看了前面一部分。发现这本书挺适合新手,它是典型的外国教材风格,从一个模型例子开始,娓娓道来,跟你讲述数学建模的方方面面,其中反复强调的一个数学建模五步法,后来细细体会起来的确很有道理,看完大部分这本书的内容,就可以体会并应用这个方法了。(第一次校赛,就是因为五步法的第一步,都没有做到)。对了,还有老丁推荐的一本,美利坚合众国数学建模竞赛委员会主席Giordano写的A first course in mathematic modeling,有姜启源等翻译的中文版,but我没能在图书馆借到,所以没看过,大家有机会可以看看。

    怎么建模

    第一次国赛前的放假开始学校培训,我提前借了一大堆书,把卡都借满了。第一次国赛前的那次培训,对我而言,这段时期是收获最大的时期,比其他任何时间段都来得大。

    这段时间内,我们三个人都很辛苦。白天培训要学习很多知识,完了只能休息半天,然后开始比赛,周而复始。 之前我的打算是,白天上课学习,晚上回去复习当天的内容,再看些其他东西。But 我太高估自己了,晚上基本是玩玩三国杀之类的小游戏放松,然后第二天再去上课。嗯,心态放好,身体最重要。^_^

    通过这几次培训,基本上队伍形成了F专业写论文,我和M负责建模和编程。其中我偏重建模和全队调度。

    大家在培训的时候,要慢慢养成五步建模法:

    五步法说明:

     

    第一步:提出问题.

    大家可能会想,题目不是已经给出问题了吗? 是的,但是这里的提出问题是指:用数学语言去表达。首先,题目一定要通读若干遍,“看不懂,读题目;看不懂,读题目”,如此反复循环的同时查阅相关资料。这通常需要大量的工作,而且要根据题目的特点做一些假设。

    看的差不多了,就开始用数学形式提出问题,当然,在这之前,先引用或者定义一些专业术语。 接下来进行符号说明,统一符号(这点很重要,三个人之间便于沟通,论文便于展现),并列出整个问题涉及的变量,包括恰当的单位,列出我们已知或者作出的假设(用数学语言描述,比如等式,不等式)。 做完这些准备工作后,就开始正式提出问题啦。用明确的数学语言写出这个问题的表达式,加上之前的准备工作,就构成了完整的问题。

    这部分的内容反映到论文结构上,相当于前言,问题提出,模型建立部分。注意,刚开始建立的模型很挫没关系,我们随时可以返回来进行修改的。

    第二步:选择建模方法.

    在有了用数学语言表述的问题后,我们需要选择一个或者多个数学方法来获得解。 许多问题,尤其是运筹优化,微分方程的题目,一般都可以表述成一个已有有效的标准求解形式。这里可以通过查阅相关领域的文献,获得具体的方法。为什么不是查阅教材呢?基本上教材讲的都是基础的,针对特定问题的,教材上一般找不到现成的方法,但是教材依然是很重要的基础工具,有时候想不出思路,教材(比如姜启源那本)翻来翻去,会产生灵感,可以用什么模型。

    第三步:推导模型的公式.

    我们要把第二步的方法实现出来,也就是论文的模型建立部分。我们要对建立的问题进行变形,推导,转化为可以运行标准方法解答的形式。这部分通常是借鉴参考文献的过程,做一些修改,以适应本题的情况。

    第四步:求解模型.

    这里是编程的队友登场的时刻了。

    统计模型:SPSS,Eviews,Stata ,都是菜单式操作,easy的。

    数据分析:R,数据库SQL Server,IBM
    DB2

    微分方程:Maple,Mathematic,MATLAB

    运筹规划:Matlab,Lingo

    智能算法:Matlab,R

    时间序列:统计模型中的那些软件,或者R,Matlab

    图像处理:Matlab,C++

    总结: Matlab是必须的,再来个SPSS,一般情况下够用了。

    第五步:回答问题.

    也就是论文的讨论部分。这部分是对你整篇论文成果的总结,一定要写的有深度。除此之外,通常还要写上一些灵敏度分析,如果是统计模型的话,要有模型检验。论文通常会需要画一些图表,可以使用Matlab、R等软件来画跟数据有关的图,使用Visio或者PPT画流程图之类的图。

     

    关于比赛的一些个人体会

    1、国赛和美赛是有区别的

    国赛讲究实力,美赛讲究创新。 美赛不一定要多高级的方法,但是一定要有创意。而国赛,组委会往往是有一个模糊的“标准答案”在的,按部就班做下来就好了。

    注意不要一次性就建立复杂模型了,老外看重的是你的思维,你的逻辑,不像国赛,看重的是你的建模编程实力,要使用各种高大上的方法。

    拿到一个问题,可以先建立一个初等模型,讨论下结果;再逐渐放宽条件,把模型做的复杂一点。
    即 Basic model -> Normal model -> Extended model的思路。这个思维在美赛中很好,这么做下来基本都能得金奖的,鄙人这次也是按照这样的流程,拿了个金奖。

    2、文献为王

    文献为王。建模的题目,基本上是某个教授的研究课题,凭我们本科生的水平,基本上做不到对题目的深刻理解。所以要多看文献。

    看文献也有技巧:刚拿到题目,先查一下相关背景资料,了解题目是哪方面的。接下来看文献,找一下硕士论文,博士论文以及综述性质的文章,硕博论文一般都会详细介绍下整个课题的国内外研究情况,综述就更不用说了,它就是对大量原始研究论文的数据、资料和主要观点进行归纳整理、分析提炼而写成的论文。看完这些,就可以比较有深度地把握题目,也知道如果我们要进行创新的话,往哪方面走。

    接下来,可以根据小组三人讨论的结果,有针对性的看一下有深度的文献,文献看得多了,就可以考虑开始创新了,像爱因斯坦那样开辟相对论等新领域的创新,是很有难度的,但是我们可以退而取其次,不是有句话叫做“他山之石,可以攻玉”吗?
    我们要做的就是组合创新! 领域内组合创新,把一个学者的方法嫁接到另一个学者的模型上。 以及交叉领域创新,把把自然科学的知识用到社会科学上,或者用社会科学解释自然科学的结果等等。(这里就可以体现,跨专业建模队伍的先天优势了:不同专业对同一个问题的思维是不同的,可以擦出创意的火花)

    PS:图书馆有买很多数据库,可以免费看论文。免费的话google学术是无敌的,国内文献貌似没有良好的分享平台,实在找不到论文也可以百度文库死马当活马医。

    平时可以多注册一些网站,数学中国,校苑数模,matlab技术论坛,pudn程序员,研学论坛,stackoverflow等。上传些资料,攒积分要从娃娃抓起,不要等到比赛了看到好资料还“诶呀,积分不够”。

    想法很重要。建模思维是一种很难学习到的东西,站在巨人的肩膀上,多看文献,负责建模的同学辛苦了。

    3、掌握一点数据处理的技巧

    建模的题目,A.B两道题。基本上是一题连续,一题离散;一题自然科学(理工科),另一题社会科学(经济管理)。这样的分布的,大家平常做题的时候就可以有所侧重,曾经有一支美帝的队伍,专攻离散题,貌似拿了连续两届的outstanding.

    掌握一点数据处理的技巧是很有必要的。比如数据缺失值的处理,插值与拟合等。尤其是数据缺失值的处理,基本上A,B题都有可能涉及,建议熟练掌握。

    4、关于编程水平

    More generally,软件操作水平几乎决定了一个队伍的结果上限。MATLAB是必备的,必须要熟练掌握各种模型的实现。此外,SPSS(或者R)也是要掌握的。Mathematic和MATLAB的替代性很强,不掌握也没关系(仅在建模方面,mathematic 当然也是很强大的)。What’s more建模比赛举办这么多年,用到lingo的情况几乎很少了,也可以不学lingo. And 现在的题目动不动就要粒子群等智能算法,强烈建议大家至少熟练掌握一种智能算法.

    MATLAB推荐书目

    基础:

    MATLAB揭秘 郑碧波 译 (本书讲的极其通俗易懂,适合无编程经验的)

    精通matlab2011a 张志涌

    提升:

    数学建模与应用:司守奎 (囊括了各类建模的知识,还附有代码,很难得,工具书性质的)

    Matlab智能算法30个案例分析 史峰,王辉等

    《MATLAB统计分析与应用:40个案例分析》

    数字图像处理(MATLAB版) 冈萨雷斯 (13国赛碎纸片复原居然涉及了图像处理,所以列在这里了.可看可不看,太专业化了)

    书很多的.总之,要达到熟练运用matlab进行运筹优化,数据处理,微分方程的地步. 数理统计可以交给SPSS,R ,其中SPSS无脑操作上手快.

    5、格式规范:

    看国赛一等奖,美赛国内人得特等奖的论文,格式规范方面绝对很到位,大家可以参考。国外人的特等奖论文,大都不重视格式,人家的优势在于模型实力与创意、母语写作。所以在美赛格式规范方面,参考国内特奖的论文。

    PS:有时间的队伍可以学习以下Latex,用Latex写出来的论文,比word不知道好了多少倍。Latex书目推荐:

    LaTeX插图指南

    一份不太简短的Latex介绍

    LaTeX-表格的制作 汤银才

    参考文献常见问题集

    latex学习日记 Alpha Huang

    论坛:Ctex BBS

    结束语:

    什么是数学的思维方式?观察客观世界的现象,抓住其主要特征,抽象出概念或者建立模型;进行探索,通过直觉判断或者归纳推理,类比推理以及联想等作出猜测;然后进行深入分析和逻辑推理以及计算,揭示事物的内在规律,从而使纷繁复杂的现象变得井然有序。这就是数学的思维方式。

    -----------丘维声《抽象代数基础》前言

     

    PS:转载到学校等教育机构,给学弟学妹们学习是可以的,注明作者跟来处。如果是出于任何商业目的,比如用作微信公众号文章、媒体稿件、软文文案、营销型微博账号,不允许,或者应该主动提出愿意为之付出的稿费。

     

    前言  
        建模给我带来的是什么?
    组建你的团队
        1、专业合适即可
        2、协作是关键
        3、建模、实现、写作
    准备你的工具
        软件的准备
            1、论文的写作
            2、公式编辑器
            3、插图制作
            4、论文版本控制器
            5、团队资料笔记共享
            6、善用搜索引擎
        一些实用的网站
    做好知识储备
        建模前推荐看那些书
        基本模型和算法
        基本的数据处理方法
        有必要了解的些学科知识
    

    前言

    写下这些文字,希望我在数学建模上的经验能帮助各位。2017年11月4日更新。

     

    建模给我带来的是什么?

    1、简历上的更新。

    参加2016年国赛获得省一等奖,获得省一是比较容易的,可能相对国奖含金量不高。参加2016年参加美赛获得M奖,美赛的奖项有:Outstanding Winner(1%)、Finalist(1%)、Meritorous Winner(9%)、Honoralbe Mention(31)、Successful Participant(57%)。一般上只要提交了文章至少能获得成功参赛奖,国内美名其曰三等奖。在我看来参赛稍微用心获得H和M奖也是相对比较容易的,含金量最高的还是O奖。

    2、个人技能的实际提升。

    能够熟练的使用 Matlab、Python、Mathematica 编程解决实际问题,能够使用 Word、LaTex 写规范的论文,懂得团队之间的高效协作,可以使用 PPT、PS 等绘制所需的图片素材、信息检索能力大大提升等等。

    3、认知态度的改变。

    答主在参赛的时候就读的专业是计算数学,属于专业数学学科。大一大二在数院学习的感觉是不轻松,时常质疑学这些有什么用?例如高等代数,常微分方法,离散数学,偏微分方程等等,后来误打误撞参加了国赛和美赛才发现解决实际问题的基础就是这些平时看作生涩难懂的内容。建模竞赛其实也是一次学科的交叉竞赛,各个学科各有自己的优势,把自己的专业知识学好在建模时也就有了解决问题的基本能力。

    组建你的团队

    建模的第一步就是组建自己的团队。很多人在组队问题上有着一些观念上的偏执:

    • 专业要不同:理工管搭配
    • 男女比例协调
    • 明确分工:建模、编程、写作

    就以上三点说说我自己的看法。

     

    ①. 专业合适即可

    专业并非会对建模起到至关重要的作用,真正起作用的是作为建模人的你。自己对本专业知识的掌握程度,对高等数学、线性代数、微积分的学习是否用心了。其实在初等的建模中也并不会过多地涉及到这些内容,当然好的模型对这些知识的要求是必须的。踏踏实实、靠谱细心才会出成果。

     

    ②. 协作是关键

    俗话说男女搭配干活不累,但是累不累不还得看你是否有个能干的队友吗?通力合作,有默契的队伍才会有动力在比赛中坚持下去。小组内互相认识、互相了解才会在最累的时候互相支持。一个队伍需要的是你认可的凝聚力,而不是有一个人专门端茶倒水。

     

    ③.建模、实现、写作

    团队分工至关重要。我的理解团队分工应该是模型搭建、模型实现、论文写作这三个部分。建模是提供团队对问题的解决思路、方法;参与实现模型或者求解模型必须要求能熟练的通过各类软件对模型进行模拟、求解、检验;写作要求能对团队的前进方向有清晰的把握,通过准确的文字、图标对模型进行展示。

    但是实际中的分工并不是界限分明,数学建模是一个团队合作的过程,分工固然重要但是明确的分工界限容易限制建模的进度,禁锢思路。我认为在建模中的分工一定要有交叉,建模的同学也需要把自己理解的通过文字、公式准确的表达给写作的同学,负责模型的同学实现部分也要对模型的实现的最终结果有较好的可视化功底。

    每个人都应该具备基本的建模、模型实现、写作能力但是每个人的侧重点不同才是绝佳的组合。

    准备你的工具
    这部分主要谈谈使用哪些软件,包括编程工具、写作工具、绘图工具等,以及如何进行合作。

    软件的准备

    工欲善其事,必先利其器。软件列表参考如下:

    • - 编程工具(Matlab / Python / Mathematica )
    • - 统计建模(R / SPSS / Minitab)
    • - 论文写作(Word / LaTex)
    • - 公式编辑器(MathType)
    • - 插图制作(PowerPoint / PS)
    • - 流程图绘制(Visio)
    • - 版本控制器(SVN / Git)
    • - 团队资料笔记共享(有道云笔记)

    给出的参考软件只是个人建议,如果你有你擅长的工具也请务必使用自己擅长的,在学习成本和收益之间衡量下,自己是不是有足够的精力接触、学习新的软件,是否能用好它。

     

    1、论文的写作

    Word可能我们再熟悉不过了,但可能这种熟悉只限于时常听闻、把Word当做记事本等,但是你真的能熟练使用它的基本功能吗?例如,插入图片的版式之间的区别、页眉页脚的设置、段落行间距段前断后的距离,分栏等等。在图、公式、表格较多的论文上,排版稍不留意就会造成的混乱。图片的嵌入方式、表格的样式、公式图表的引用等等都是比较容易忽视的问题。如果能够熟练掌握Word它就是你手上的排版利器。

    现在有另一种选择,开始使用LaTex。把LaTex形容成一门“编程语言”我想是合适的,一行特定的字符对应着一个特定的样式,将样式进行组合就有了一个精美的模板。你要做的只是学习一些基本的语法,对模板进行填充就行了。Latex的一个缺点是不能实时预览,必须进行编译才能看到你的内容。
    另外,国赛的模板[1]你可以从http://www.latexstudio.net/archives/4253下载,美赛的模板[2]http://www.ctan.org/pkg/mcmthesis下载.。

     

    2、插图制作

    选择 PowerPoint 制作插图的原因,一方面是PPT的强大自定义形状功能,或者说式是 Office 系列自带的,PPT只是比较便于管理。,另一方面是自己对 PPT 的使用也较为熟练。PPT 的技能提升可以去阅读下秋叶老师的三分钟教程,在百度阅读_正版电子书在线阅读中搜索关键字“秋叶PPT-三分钟教程”即可。

     

     

    3、论文版本控制器

     

    SVN是一个代码版本控制器,简单描述SVN到底能做什么:它可以将你每一次的修改内容,对差异进行统计,同时你也可以随时恢复到过去相应版本。如果遇到多人操作了同一文件,SVN会自动整合在一起,如果改到了某个部分,会提醒解决冲突的地方。

    我们要做的是协作把论文写好,很多人包括我在内起初都是在制定好的模板上,每个人各自填充自己负责的部分最后再汇总,期间更有的是论文命名版本从版本1到N。或者还有同学只用一份论文文件,同时修改论文最多只能是一个人。这样的低效率你能忍吗?

    我的建议是,在讨论论文如何编写的时候分清有几个部分、每个部分该写哪些内容、谁负责哪些部分,然后将每个部分独立成一个空白文档,这些文件组成了一个主分支提交到服务器上,小组成员再利用SVN对其“检出”到本地,每个人在修改完各自的部分后再“提交”到服务器,其他成员“更新”本地文件即可。具体要怎么操作SVN请到搜索引擎上搜索相关内容。

    可能我以上所讲的东西你根本不能理解,没关系慢慢你就知道了:)

     

    4、团队资料笔记共享

    比较了几款笔记软件,如印象笔记、为知笔记、有道云笔。都使用了一段时间,印象笔记个人比较喜欢用它来归档纸质的文档,以及一些日常的笔记,至于团队合作上我还是比较喜欢使用有道云笔记。

    这不是广告

    有道云笔记的云协作可以给建模过程中的交流、文件共享带来极大的便利。但你可能也会说我可以用QQ群为什么要用这个软件。很重要的一点是有道云笔记有可视化的版本控制功能,之前用过QQ群的都知道,假如我上传了一个文件,下次再上传修改过的该文件你相信每个人都能保证用的是这个新文件吗?

    另外有道云笔记还支持在线预览pdf、word、txt文件,创建共享笔记(支持markdown)。有个值得分享的经验,组长在进度规划时可以以共享笔记的方式建立TODO列表,每半天在笔记中发布每个人应该完成的任务或应该解决的部分以及最迟时间,当任务完成时修改此笔记,利用删除线划去该字段。时间的控制在建模比赛过程也是很重要的!

    5、善用搜索引擎【等待完善】

    搜索文献时建议直接使用 Google 搜索。下面给出几个当时比较常用的几个网站:

    实用站点
    【数模知识库】http://www.shumo.com/wiki/doku.php?id=start
    【国赛官网】http://www.mcm.edu.cn/
    【美赛官网】http://www.comap.com/
    【美赛中文】http://www.mcmbooks.net/

    论坛
    【数学中国】http://www.madio.net/forum.php
    【校苑数模】http://www.mathor.com/mcm.php
    【数学建模与统计建模论坛】http://www.mathsccnu.com/forum.php
    【MATLAB技术论坛】http://www.matlabsky.com/

    源码
    【源码搜搜】http://www.codesoso.net/
    【Pudn】http://www.pudn.com/
    【Wolfram】http://demonstrations.wolfram.com/index.html
    【WolframAlpha】http://www.wolframalpha.com/

    文献
    【谷歌学术】https://scholar.google.com/
    【百度学术】http://xueshu.baidu.com/
    【中国知网】http://www.cnki.net/
    【万方数据】http://www.wanfangdata.com.cn/
    【维普网】http://www.cqvip.com/
    【Web of Science】https://www.webofknowledge.com/
    【PubMed】https://www.ncbi.nlm.nih.gov/pubmed/
    【ScienceDirect】http://www.sciencedirect.com/

    工具

    【英文修改】1Checker - Proofreading, Grammar Check, Smart Text Enrichment | for FREE

    【国家数据】http://data.stats.gov.cn/

    【书籍下载】Science Library - 一个开放、自由的书籍分享站

    【外文书籍】PDF Drive - Search and download PDF files for free.

    做好知识储备

    建模前推荐看那些书

    如果一定要给关于建模的参考书做个分类的话我会分成两类:基础类、工具类

    基础类书籍罗列了绝大部分基础数学模型,并有实际的问题分析建模求解;工具类主要是从数学软件(MATLAB等)的实践开始,给出问题的分析以及如何用软件求解模型,或者对模型该如何进行模拟。

    下面就不做细致分类了直接贴出我曾经真真实实用过的书

    《数学模型》- 姜启源
    数学建模入门教材,学校建模培训时就主要以这本书为参考书。大致模型有哪些应该熟悉一下。

    《数学建模竞赛入门与提高》- 周凯 , 宋军全, 邬学军
    有模型有代码可操作行强

    《MATLAB在数学建模中的应用》- 卓金武
    MATLAB能力提高必看

    《数学建模竞赛:获奖论文精选与点评》- 韩中庚
    一定要多看多学习优秀的论文

    《MATLAB智能算法30个案例分析》- 王小川, 史峰, 郁磊 
    算法一定要学透千万不能一知半解就拿来用

    《MATLAB神经网络43个案例分析》- 王小川, 史峰, 郁磊 
    人工智能算法的一类,一定要参透思想再用这个很关键

    《数学建模与数学实验》- 汪晓银 (编者), 周保平 (编者)
    MATLAB入门学习推荐

    另外更新我现在参考的几本最优化、机器学习、数据挖掘、计算方法的书:

    《机器学习》 - 周志华

    《统计学习方法》 - 李航

    《最优化理论与方法》 - 袁亚湘

    《最优化原理》 - 胡适耕

    《凸优化(中译)》 - Stephen Boyd

    《凸优化算法(英文)》 - Dimitri P.Bertsekas

    《Introduction to Numerical Analysis(英文)》- J.Stoer,R.Bulirsch

    《数据挖掘导论(中译)》 - Michael SteinBach

     

    另外不再提供任何电子版的资源,数学建模不是一场资源搜罗竞赛,更坏者变相买卖资源,知乎上已经这样助长歪风邪气了,尊重版权,珍惜时间,现在就拿起一本书开始学习吧!

     

    基本模型和算法

     

     

     赛前梳理的基本模型可以参考一下。

     

    一、优化类
    
    线性规划(运输问题、指派问题、对偶理论、灵敏度分析)
    整数规划(分支定界、枚举试探、蒙特卡洛)
    非线性规划(约束极值、无约束极值)
    目标规划(单目标、多目标)
    动态规划(动态、静态、线性动规、区域动规、树形动规、背包动规)
    动态优化(变分法)
    现代优化算法(贪婪算法、禁忌搜索、模拟退火、遗传算法、人工神经网络、蚁群算法、粒子群算法、人群搜索算法、人工免疫算法、集成算法、TSP问题、QAP问题、JSP问题)
    模糊逼近算法
    
    二、图论
    
    最小生成树(prim算法、Kruskal算法)
    最短路径(Dijkstra算法、Floyd-Warshall算法、Bellman-Ford算法、SPFA算法)
    匹配问题(匈牙利算法)
    Euler图和Hamilton图
    网络流(最大流问题、最小费用最大流问题)
    
    三&四、预测类&统计
    
    GM(1,1)灰度预测
    时间序列模型(确定性时间序列、平稳时间序列、移动平均、指数平滑、Winter方法、ARIMA模型)
    回归(一元线性回归、多元线性回归MLR、非线性回归、多元逐步回归MSR、主元回归法PCR、部分最小二乘回归法PLSR)(重点)
    Bayes统计预测
    分类模型(逻辑回归、决策树、神经网络)
    判别分析模型(距离判别、Fisher判别、Bayes判别)
    参数估计(点估计、极大似然估计、Bayes估计)
    假设检验(U-检验、T-检验、卡方检验、F-检验、最优性检验、分布拟合检验)
    方差分析(单因素、多因素、相关性检验)
    经验分布函数
    正交试验
    模糊数学(模糊分类、模糊决策)
    随机森林
    
    五、数据处理
    
    图像处理
    插值与拟合(Lagrange插值、Newton插值、Hermite插值、三次样条插值、线性最小二乘)
    搜索算法(回溯、分治、排序、网格、穷举)
    数值分析方法(方程组求解、矩阵运算、数值积分、逐次逼近法、牛顿迭代法)
    模糊逼近
    动态加权
    ES
    DWRR
    序列分析
    主成分分析
    因子分析
    聚类分析
    灰色关联分析法
    数据包络分析法(DEA)
    
    六、评价类
    
    层次分析法(AHP)
    模糊综合评价
    基于层次分析的模糊综合评价
    动态加权综合评价
    TEIZ理论
    
    七、图形类(重点)
    算法流程图
    条形图
    直方图
    散点图
    饼图
    折线图
    茎叶图
    箱线图
    P_P图
    Q_Q图
    Venn图
    矢量图
    误差分析图
    概率分布图
    5w1h分析法
    漏斗模型
    金字塔模型
    鱼骨分析法
    等高线曲面图
    思维导图
    
    八、模拟与仿真
    
    蒙特卡洛
    元胞自动机
    
    九、方程(进阶)
    
    微分方程(Malthus人口模型、Logistic模型、战争模型)
    稳定状态模型(Volterra 模型)
    常微分方程的解法(离散化、Euler方法、Runge—Kutta方法、线性多步法)
    差分方程(蛛网模型、遗传模型)
    偏微分方程数值解(定解问题、差分解法、有限元分析)
    
    十、数据建模&机器学习方法(当前热点)
    (注:此部分与数据处理算法有大量重叠)
    
    云模型
    Logistic回归
    主成分分析
    支持向量机(SVM)
    K-均值(K-Means)
    近邻法
    朴素Bayes判别法
    
    决策树方法
    人工神经网络(BP、RBF、Hopfield、SOM)
    正则化方法
    kernel算法
    
    十一、其他
    
    排队论
    博弈论
    贮存伦
    概率模型
    马氏链模型
    决策论
    (单目标决策:不确定型决策、风险决策、效用函数、决策树、灵敏度分析)
    (多目标决策:分层序列法、多目标线性规划、层次分析法)
    系统工程建模(ISM解释模型、网络计划模型、系统评价、决策分析)
    交叉验证方法(Holdout 验证、K-fold cross-validation、留一验证)
    
    附:简单建模方法
    
    比例关系
    函数关系
    几何模拟
    类比分析
    物理规律建模
    
    注:各类别之间方法可能有交叉
    

     

    放上一沓无敌好无敌全无敌清楚的资料(国赛和美赛通用),纯经管小组,无双修,零经验,美赛一等奖。

    有网盘里的,数学中国的,我们爱数模的,还有买的网课,不过别忘了去图书馆借几本书(高票推荐的书)系统的看看建模,以我整理的顺序开始分享吧。

    谨以此文纪念我的大学建模经历,并且在毕业前夕把我学到的、感悟到的都分享给大家,希望能给大家带去一点点帮助。

     

    建模经历: 大学参加了两次国赛,两次美赛。两次国赛赛区一等奖,美赛一等奖。所以,对于打算入门和刚开始接触数学建模的同学来说我还是希望分享一些自己的体悟,希望对你们有用~。~

     

    一. 关于建模竞赛、报名和参赛:

    这里简要介绍几个比较主流的建模竞赛

    (1)全国大学生数学建模竞赛:国赛一般指的是“高教社”杯数学建模竞赛

    报名:报名时间可能每个大学不太一样,有的大学要先进行校赛预选,大约是在5-6月开始报名,报名请关注学校相关教务处网站、数学学院网站。报名费300元(有的学校会返还报名费来鼓励大家积极参与,获奖的话说不定学校还会给丰厚的奖金呢~~)。以团队报名,每个队伍不超过3人(所以也可以2人或者1人),每队须有一个指导教师。(关于组队的注意事项后面会详细讲到)

    培训:有的学校会在暑假小学期组织建模培训,如果有的话,建议可以去听听~没有培训的话,就自己好好看看呗~

    比赛时间:比赛一般在每年9月中上旬举行,比赛时间是从某个周五的上午8:00开始,为期三天三夜,截止到次周一上午8:00。(关于时间的分配我在后面也会详细讲讲)

    比赛期间:参赛队伍可以在比赛期间利用图书、互联网资料帮助建模,有问题也可以请教老师,原则上不相互交流(原则上......)。本科组比赛有A,B两道题,需要选择其中一道题进行解答。PS:最后AB两题各个奖项数量相同,所以如果选A,B题的分别有7000,3000只队伍,国赛一等奖A,B题分别有20个名额,那么A题的获奖比例和B题是不同的,但是具体选做的人少的还是选容易的要自己斟酌~(关于换题在后面会讲讲)

    比赛提交:提交纸质版给数学学院,并且把论文、数据、程序打包压缩拷贝给相关老师。

    比赛答辩:初审进入国赛获奖名单的队伍需要答辩,每个省的初审进度可能不太一样,有的在9月底就会进行答辩,有的可能10月。答辩开始有一个3-5分钟的概要介绍,每个队伍选一个口齿伶俐的小伙伴上去讲就好。答辩的主要目的是验真,所以只要是自己做的应该没多大问题。答辩可能会问到关于模型、软件或者程序的问题。当然答辩也是可能挂掉的,挂掉了就降档。

    这里附上一个mcm国赛链接:全国大学生数学建模竞赛www.mcm.edu.cn/(然而这个网址可能并没有很多信息...)

     

    (2)美国大学生数学建模竞赛:

    报名:美赛报名比国赛复杂一些...这里我先把美赛官网的网址附上,然后我们再慢慢来说

    附上美国数模竞赛链接:COMAP: Mathematics Instructional Resources for Innovative Educators

    一般在下半年可以开始报名(具体时间忘记了,大约11月左右报名),Contests→Register for Contest(这里需要用指导老师的邮箱来注册,所以需要提前联系老师,确定老师愿意指导,用老师的邮箱号注册,每位老师最多指导2只队伍)。美赛报名费100美元,需要用VISA卡或者MASTER卡支付,如果有队员有当然最好,如果没有就找万能的淘宝吧~

    比赛时间:春节前后(这点很悲剧,也阻碍了很多人参赛,但是相信对于那些勇于放弃春节孜孜不倦投身于建模竞赛的同学们还是值得的),比赛时间四天四夜,早上9:00开始。

    论文提交:在网上提交,并且寄送纸质版到美国。

    没有大便(答辩)!

    奖状发放:大概4月左右网上自己下载获奖证书(大陆同学),对,就一个PDF而已...

    (3)全国统计建模竞赛:两年一次(单数年),比赛形式是在6月30日前提交论文

    (4)电工杯:不熟,sorry

    除此之外,还有什么深证杯、认证杯之类的......

     

    二.建模竞赛的好处:

    理工科的同学就把获奖当成打装备吧,你们懂得,等到快要保研、出国的时候简历上有那么几行还看得过眼的比赛获奖很有用,很有用,很有用(重要的事说三遍)。美赛对出国还是比较有用啦,毕竟还是国际比赛嘛,以前得特等奖的师兄那组去了剑桥大学和斯坦福...虽然特例不代表什么,但是有比没有好撒~

     

    三. 组队

    建模主要分为建模、编程、论文三个部分,但是要完全分开的你会发现人力资源闲置,所以推荐每位队员主攻其中两项左右。所以建议千万千万不要三个数学学院的同学凑一队!!!(如果三个啥子都会的数学大神凑一起也...没有...关系)。组队的时候大家容易发现每个队都想要至少一个数学学院的,然而通常并没有那么多数院的同学,而且数院的同学爱扎堆...有数学学院的同学是好的,但是其实数学学院的同学比其他学院并没有那么多优势...so,其实我自己觉得电气、软件、计算机的同学更好,建的了模,编的了程序,还写的了论文,卖的了萌...

     

    四. 时间分配

    常常有师弟师妹我建模要不要熬夜。当然,有不熬夜的也有取得了好成绩的,但是,大部分人需要熬夜。我想建议大家的是要适度地熬夜...比如前两天每天睡7-8个小时,第三天就熬一熬吧。关于时间分配,建模一般从周五早上8点开始,建议大家在中午之前确定好做A题还是B题,分别去看看哪个题更有思路一些,不要拍脑袋决定~选题很重要!选题很重要!选题很重要!一方面是获奖比例,我前面说过了;另一方面,没选好就要涉及到换题,我后面会再说说。吃完午饭最好就把题目确定下来,接下来下午和晚上把第一个问做出来,然后对第二个问开始着手解决。第二天,周六需要把第二问解决,第三问争取基本解决。第三天,完善,如果有第四问要解决第四问。至少在下午4点左右开始集中写论文,当然,其实从第一天解决第一问开始就要开始着手写论文,粘贴数据什么的,谁闲着谁就去写写论文。当然,时间分配要依据不同队伍的进度来,我只是给出一个参考而已~

     

    五. 换题

    很多同学会遇到“换题危机”,因为周五上午没有选好题,做到一半发现做不动了,就想换题。所以,可以换题,但是建议至少在周六上午之前,不然真的很难完成...

     

    六. 论文模板

    大家最好入手一本优秀论文集

    比如:《数学建模优秀论文精选与点评(2005-2010)》【摘要 书评 试读】

    《数学建模系列丛书:全国大学生数学建模竞赛赛题与优秀论文评析(2005年

    看看别人的论文层次,我还是给出一个粗略的论文模板:

    题目→摘要→模型假设→符号说明→模型的建立→模型的求解→模型评价→仿真测试→模型的推广→参考文献→附录

    你可以按照问题一、问题二、问题三分别来写

    PS:摘要最重要!摘要最重要!摘要最重要!(阅卷老师和答辩老师的大部分时间在看摘要,所以至少花2个小时左右写那短短的不起眼的摘要)模型评价很重要,你的Model好不好请用数据来说明,回带效果和预测效果都很重要。

     

    七. 常用软件和参考书目

    常用软件:Matlab, SPSS, Lingo, (SAS, R)

    除了上面两本优秀论文外,我还推荐以下书籍:(精选了几本,其实还有很多不过估计应该看不完)

    Matlab:用的最多,不解释

    SPSS:统计里面用

    Lingo:解规划问题,比较简单,就不推荐专门的书了

    SAS, R: 统计编程

    推荐书目:

    《MATLAB 在数学建模中的应用(第2版)》【摘要 书评 试读】

    《SPSS统计分析从基础到实践(第2版)(附光盘1张)》(罗应婷)【摘要 书评 试读】

    《数学建模算法与应用(附光盘1张)/普通高等院校“十二五”规划教材》(司守奎,孙玺菁)【摘要 书评 试读】

    我就不推荐姜启源那种书了...

     

    ---------------------------------------------分割线------------------------------------------------------------

    接下来,我想重点写写数模中常用的算法,但是今天应该是写不完了,所以下次再继续写吧~

    八. 算法

    下面我开始PO算法,我在这里只介绍一些比较经典的建模算法和程序,也会在后面介绍一些智能算法,边写边总结边回顾也是极好的~

     

    个人觉得其实没有必要很系统的学很多数学知识,这是时间和精力不允许的。很多优秀的论文,其高明之处并不是用了多少数学知识,而是思维比较全面、贴合实际、能解决问题或是有所创新。
    数学知识

    归结起来大体上有以下几类:
    1)概率与数理统计,什么拟合了回归分析了
    2)运筹学,什么线性规划了
    3)微分方程;
    其实正式比赛的题目有A题B题,貌似大致规律是一道以离散问题优化,另一道以连续问题微分方程为主。所以有时候自己准备的时候可以有侧重。
    还有与计算机知识交叉的知识:计算机模拟或者说数值分析。
    假如完全没有学过,或者只学过一点概率与数理统计,微分方程的知识其实也没关系,可以自学啊,能用最简单浅易的数学方法解决了别人用高深理论才能解决的才是最历害的嘛哈哈
    计算机知识
    其实数学建模还是在于模型,并不是ACM,要多牛X的编程能力。但是一些最基本的还是要回的,matlab,Mathematica等等。程序永远只是辅助你解题的。当然有计算机编程大牛是最好的。其实计算机数据处理,画图啊制表啊还是蛮重要的。
    除了以上两种知识,个人觉得还有论文的写作能力和资料搜索能力。
    写作能力
    数学建模最后交的是论文,文章的书写有比较严格的格式。要清楚地表达自己的想法并不容易,有时一个问题没说清楚就又说另一个问题了。自己以前建模的老师也有参加阅卷的,他们发现格式不行啊,看起来表达不流畅就直接PASS掉了。还有啊那些阅卷老师也都是阅卷前临时培训,他们对题目的理解也很有可能不深的,所以你的论文能否表达清楚就很重要了!
    PS:建模阅卷一篇文章一般有两个老师评分,假如同样一篇论文十分制评分,有的老师评9分,有的老师评2分。然后只好pia啦pia啦各种讨论……而且听去阅卷的老师说,这种情况常发生。
    资料搜索能力
    个人觉得,3个人3天或者4天要解决一个全新的数学建模问题,有时候真的只好现学现用,所以找资料非常重要,能参考前人的思路就参考呗。
    关于学习资料
    去数学建模论坛上找吧,个人觉得最重要的还是看优秀论文或者自己动手试着做做。

                                                

    扫码关注本人微信公众号,有惊喜奥!公众号每天定时发送精致文章!回复关键词可获得海量各类编程开发学习资料!

    例如:想获得Python入门至精通学习资料,请回复关键词Python即可。

     

    展开全文
  • 听几节数学建模的课程,向其他人了解一下他们参赛的时候是什么的(了解数学建模); 看看模型(学思路); 多看数学建模的论文(学怎么些论文,怎么组织语言,怎么排版); 多做题; 3、学习的资料 《数学建模》...

    1、常见误区

    • 需要高水平的数学功底;
    • 软件是最重要的,学会了使用软件,就会了数学建模;

    2、需要做的事情

    • 听几节数学建模的课程,向其他人了解一下他们参赛的时候是什么样的(了解数学建模);
    • 看看模型(学思路);
    • 多看数学建模的论文(学怎么些论文,怎么组织语言,怎么排版);
    • 多做题;

    3、学习的资料

    • 《数学建模》 姜启源
      1
    • 《数学建模算法于应用》 司守奎
      2
    • B站搜索“小石老师”,学习基本的模型
    • 历年的优秀论文

    4、软件

    • MATLAB
    • MMA
    • SPSS
    • LINGO
    • EXCEL
    • 八爪鱼,python(爬数据)
    • LATEX(写论文)
      需要有模板
    • WPS、office(排版)
    • 墨迹公式

    5、成员分工

    • 要清楚在组里做什么。

    参考

    B站视频:数学建模不知道怎么入手?数模会长一小时给你讲清楚

    展开全文
  • 数学建模电子教案

    2019-05-07 21:24:09
    数学建模电子教案(数学建模示例,数学建模的方法和步骤,数学模型的特点和分类,怎样学习数学建模等)
  • 数学建模竞赛

    2021-05-16 19:19:11
    美国大学生数学建模竞赛相关题库:怎么准备:培训机构:高数叔:公众号:君成数模 了解及报名: 知乎上有一个博主给整理了各种数学建模竞赛:2021年各大数学建模竞赛时间表(建议收藏) 但是最值得参加的两个是: 1....
    展开全文
  • 数学建模学习

    2013-07-08 00:12:49
    帮助你学习数学建模,其中包括以下章节:1.从现实对象到数学模型;2 数学建模的重要意义;3 数学建模示例;4 数学建模的方法和步骤;5 数学模型的特点和分类;6 怎样学习数学建模
  • 数学建模四大模型总结

    万次阅读 多人点赞 2019-06-13 15:31:53
    数学建模四大模型总结 文章目录数学建模四大模型总结1 、优化模型1.1 数学规划模型1.2 微分方程组模型1.3 图论与网络优化问题1.4 概率模型1.5 组合优化经典问题现代优化算法:禁忌搜索;模拟退火;遗传算法;人工...

    选题建议

    1. 有固定答案或参考答案,结果往往要求比较准确才能够获奖。
      1.1 专业性很强的题目,与自己专业相关,建议选择;与自己专业相差较大,谨慎选择。
      1.2 专业性不强的题目,如果队友有较好的数学思维,对题目感兴趣可以选择,但是模型必须建立出来,结果不能太离谱。
    2. 开放性较强,仅有评阅要点或者得分点,一般对结果没有限制。
      2.1 附件有数据,这类题目一般比较简单,建议优先选择,只要合理建立模型,在所给数据集上有结果,就比较容易得奖。
      2.2 附件没有给数据,一般比较难,因为数据收集起来比较费劲,且大部分数据需要做大量处理工作,谨慎选择。

    1 、优化模型

    1.1 数学规划模型

    线性规划、整数线性规划、非线性规划、多目标规划、动态规划。

    1.2 微分方程组模型

    阻滞增长模型、SARS传播模型。

    1.3 图论与网络优化问题

    最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。

    1.4 概率模型

    决策模型、随机存储模型、随机人口模型、报童问题、Markov链模型。

    1.5 组合优化经典问题

    • 1.5.1 多维背包问题(MKP)

      背包问题:个物品,对物品,体积为,背包容量为。如何将尽可能多的物品装入背包。
      多维背包问题:个物品,对物品,价值为,体积为,背包容量为。如何选取物品装入背包,是背包中物品的总价值最大。
      多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。该问题属于难问题。

    • 1.5.2 二维指派问题(QAP)

      工作指派问题:个工作可以由个工人分别完成。工人完成工作的时间为。如何安排使总工作时间最小。
      二维指派问题(常以机器布局问题为例):台机器要布置在个地方,机器与之间的物流量为,位置与之间的距离为,如何布置使费用最小。
      二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。

    • 1.5.3 旅行商问题(TSP)

      旅行商问题:有个城市,城市与之间的距离为,找一条经过个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。

    • 1.5.4 车辆路径问题(VRP)

      车辆路径问题(也称车辆计划):已知个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
      TSP问题是VRP问题的特例。

    • 1.5.5 车间作业调度问题(JSP)

      车间调度问题:存在个工作和台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。如何求得从第一个操作开始到最后一个操作结束的最小时间间隔。

    现代优化算法:禁忌搜索;模拟退火;遗传算法;人工神经网络

    2、分类模型

    ​ 判别分析是在已知研究对象分成若干类型并已经取得各种类型的一批已知样本的观测数据,在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分析。
    聚类分析则是给定的一批样品,要划分的类型实现并不知道,正需要通过局内分析来给以确定类型的。

    2.1 判别分析

    • 2.1.1 距离判别法

      基本思想:首先根据已知分类的数据,分别计算各类的重心即分组(类)的均值,判别准则是对任给的一次观测,若它与第类的重心距离最近,就认为它来自第类。
      至于距离的测定,可以根据实际需要采用欧氏距离、马氏距离、明科夫距离等。

    • 2.1.2 Fisher判别法

      基本思想:从两个总体中抽取具有个指标的样品观测数据,借助方差分析的思想构造一个判别函数或称判别式。其中系数确定的原则是使两组间的区别最大,而使每个组内部的离差最小。
      对于一个新的样品,将它的p个指标值代人判别式中求出 y 值,然后与判别临界值(或称分界点(后面给出)进行比较,就可以判别它应属于哪一个总体。在两个总体先验概率相等的假设下,判别临界值一般取:

      最后,用统计量来检验判别效果,若则认为判别有效,否则判别无效。
      以上描述的是两总体判别,至于多总体判别方法则需要加以扩展。
      Fisher判别法随着总体数的增加,建立的判别式也增加,因而计算比较复杂。

    • 2.1.3 Bayes判别法

      基本思想:假定对所研究的对象有一定的认识,即假设个总体中,第个总体的先验概率为,概率密度函数为。利用bayes公式计算观测样品来自第个总体的后验概率,当时,将样本判为总体。

    • 2.1.4 逐步判别法

      基本思想与逐步回归法类似,采用“有进有出”的算法,逐步引入变量,每次引入一个变量进入判别式,则同时考虑在较早引入判别式的某些作用不显著的变量剔除出去。

    2.2 聚类分析

    ​ 聚类分析是一种无监督的分类方法,即不预先指定类别。根据分类对象不同,聚类分析可以分为样本聚类(Q型)和变量聚类(R型)。样本聚类是针对观测样本进行分类,而变量聚类则是试图找出彼此独立且有代表性的自变量,而又不丢失大部分信息。变量聚类是一种降维的方法。

    • 2.2.1 系统聚类法(分层聚类法)

      基本思想:开始将每个样本自成一类;然后求两两之间的距离,将距离最近的两类合成一类;如此重复,直到所有样本都合为一类为止。
      适用范围:既适用于样本聚类,也适用于变量聚类。并且距离分类准则和距离计算方法都有多种,可以依据具体情形选择。

    • 2.2.2 快速聚类法(K-均值聚类法)

      基本思想:按照指定分类数目,选择个初始聚类中心;计算每个观测量(样本)到各个聚类中心的距离,按照就近原则将其分别分到放入各类中;重新计算聚类中心,继续以上步骤;满足停止条件时(如最大迭代次数等)则停止。
      使用范围:要求用户给定分类数目,只适用于样本聚类(Q型),不适用于变量聚类(R型)。

    • 2.2.3 两步聚类法(智能聚类方法)

      基本思想:先进行预聚类,然后再进行正式聚类。
      适用范围:属于智能聚类方法,用于解决海量数据或者具有复杂类别结构的聚类分析问题。可以同时处理离散和连续变量,自动选择聚类数,可以处理超大样本量的数据。

    • 2.2.4 模糊聚类分析

    • 2.2.5 与遗传算法、神经网络或灰色理论联合的聚类方法

    2.3 神经网络分类方法

    3、评价模型

    3.1 层次分析法(AHP)

    基本思想:是定性与定量相结合的多准则决策、评价方法。将决策的有关元素分解成目标层、准则层和方案层,并通过人们的判断对决策方案的优劣进行排序,在此基础上进行定性和定量分析。它把人的思维过程层次化、数量化,并用数学为分析、决策、评价、预报和控制提供定量的依据。
    基本步骤:构建层次结构模型;构建成对比较矩阵;层次单排序及一致性检验(即判断主观构建的成对比较矩阵在整体上是否有较好的一致性);层次总排序及一致性检验(检验层次之间的一致性)。
    优点:它完全依靠主观评价做出方案的优劣排序,所需数据量少,决策花费的时间很短。从整体上看,AHP在复杂决策过程中引入定量分析,并充分利用决策者在两两比较中给出的偏好信息进行分析与决策支持,既有效地吸收了定性分析的结果,又发挥了定量分析的优势,从而使决策过程具有很强的条理性和科学性,特别适合在社会经济系统的决策分析中使用。
    缺点:用AHP进行决策主观成分很大。当决策者的判断过多地受其主观偏好影响,而产生某种对客观规律的歪曲时,AHP的结果显然就靠不住了。
    适用范围:尤其适合于人的定性判断起重要作用的、对决策结果难于直接准确计量的场合。要使AHP的决策结论尽可能符合客观规律,决策者必须对所面临的问题有比较深入和全面的认识。另外,当遇到因素众多,规模较大的评价问题时,该模型容易出现问题,它要求评价者对问题的本质、包含的要素及其相互之间的逻辑关系能掌握得十分透彻,否则评价结果就不可靠和准确。
    改进方法
    (1) 成对比较矩阵可以采用德尔菲法获得。
    (2) 如果评价指标个数过多(一般超过9个),利用层次分析法所得到的权重就有一定的偏差,继而组合评价模型的结果就不再可靠。可以根据评价对象的实际情况和特点,利用一定的方法,将各原始指标分层和归类,使得每层各类中的指标数少于9个。

    3.2 灰色综合评价法(灰色关联度分析)

    基本思想:灰色关联分析的实质就是,可利用各方案与最优方案之间关联度大小对评价对象进行比较、排序。关联度越大,说明比较序列与参考序列变化的态势越一致,反之,变化态势则相悖。由此可得出评价结果。
    基本步骤:建立原始指标矩阵;确定最优指标序列;进行指标标准化或无量纲化处理;求差序列、最大差和最小差;计算关联系数;计算关联度。
    优点:是一种评价具有大量未知信息的系统的有效模型,是定性分析和定量分析相结合的综合评价模型,该模型可以较好地解决评价指标难以准确量化和统计的问题,可以排除人为因素带来的影响,使评价结果更加客观准确。整个计算过程简单,通俗易懂,易于为人们所掌握;数据不必进行归一化处理,可用原始数据进行直接计算,可靠性强;评价指标体系可以根据具体情况增减;无需大量样本,只要有代表性的少量样本即可。
    缺点:要求样本数据且具有时间序列特性;只是对评判对象的优劣做出鉴别,并不反映绝对水平,故基于灰色关联分析综合评价具有“相对评价”的全部缺点。
    适用范围:对样本量没有严格要求,不要求服从任何分布,适合只有少量观测数据的问题;应用该种方法进行评价时,指标体系及权重分配是一个关键的问题,选择的恰当与否直接影响最终评价结果。
    改进方法
    (1) 采用组合赋权法:根据客观赋权法和主观赋权法综合而得权系数。
    (2) 结合TOPSIS法:不仅关注序列与正理想序列的关联度,而且关注序列与负理想序列的关联度,依据公式计算最后的关联度。

    3.3 模糊综合评价法

    基本思想:是以模糊数学为基础,应用模糊关系合成的原理,将一些边界不清、不易定量的因素定量化,从多个因素对被评价事物隶属等级(或称为评语集)状况进行综合性评价的一种方法。综合评判对评判对象的全体,根据所给的条件,给每个对象赋予一个非负实数评判指标,再据此排序择优。
    基本步骤:确定因素集、评语集;构造模糊关系矩阵;确定指标权重;进行模糊合成和做出评价。
    优点:数学模型简单,容易掌握,对多因素、多层次的复杂问题评判效果较好。模糊评判模型不仅可对评价对象按综合分值的大小进行评价和排序,而且还可根据模糊评价集上的值按最大隶属度原则去评定对象所属的等级,结果包含的信息量丰富。评判逐对进行,对被评对象有唯一的评价值,不受被评价对象所处对象集合的影响。接近于东方人的思维习惯和描述方法,因此它更适用于对社会经济系统问题进行评价。
    缺点:并不能解决评价指标间相关造成的评价信息重复问题,隶属函数的确定还没有系统的方法,而且合成的算法也有待进一步探讨。其评价过程大量运用了人的主观判断,由于各因素权重的确定带有一定的主观性,因此,总的来说,模糊综合评判是一种基于主观信息的综合评价方法。
    应用范围:广泛地应用于经济管理等领域。综合评价结果的可靠性和准确性依赖于合理选取因素、因素的权重分配和综合评价的合成算子等。
    改进方法:采用组合赋权法:根据客观赋权法和主观赋权法综合而得权系数。

    3.4 BP神经网络综合评价法

    基本思想:是一种交互式的评价方法,它可以根据用户期望的输出不断修改指标的权值,直到用户满意为止。因此,一般来说,人工神经网络评价方法得到的结果会更符合实际情况。
    优点:神经网络具有自适应能力,能对多指标综合评价问题给出一个客观评价,这对于弱化权重确定中的人为因素是十分有益的。在以前的评价方法中,传统的权重设计带有很大的模糊性,同时权重确定中人为因素影响也很大。随着时间、空间的推移,各指标对其对应问题的影响程度也可能发生变化,确定的初始权重不一定符合实际情况。再者,考虑到整个分析评价是一个复杂的非线性大系统,必须建立权重的学习机制,这些方面正是人工神经网络的优势所在。针对综合评价建模过程中变量选取方法的局限性,采用神经网络原理可对变量进行贡献分析,进而剔除影响不显著和不重要的因素,以建立简化模型,可以避免主观因素对变量选取的干扰。
    缺点: ANN在应用中遇到的最大问题是不能提供解析表达式,权值不能解释为一种回归系数,也不能用来分析因果关系,目前还不能从理论上或从实际出发来解释ANN的权值的意义。需要大量的训练样本,精度不高,应用范围是有限的。最大的应用障碍是评价算法的复杂性,人们只能借助计算机进行处理,而这方面的商品化软件还不够成熟。
    适用范围:神经网络评价模型具有自适应能力、可容错性,能够处理非线性、非局域性的大型复杂系统。在对学习样本训练中,无需考虑输入因子之间的权系数,ANN通过输入值与期望值之间的误差比较,沿原连接权自动地进行调节和适应,因此该方法体现了因子之间的相互作用。
    改进方法
    采用组合评价法:对用其它评价方法得出的结果,选取一部分作为训练样本,一部分作为待测样本进行检验,如此对神经网络进行训练,知道满足要求为止,可得到更好的效果。

    3.5 数据包络法(DEA)

    3.6 组合评价法

    4、预测模型

    定性研究与定量研究的结合,是科学的预测的发展趋势。在实际预测工作中,应该将定性预测和定量预测结合起来使用,即在对系统做出正确分析的基础上,根据定量预测得出的量化指标,对系统未来走势做出判断。

    4.1 回归分析法

    ​基本思想:根据历史数据的变化规律,寻找自变量与因变量之间的回归方程式,确定模型参数,据此预测。回归问题分为一元和多元回归、线性和非线性回归。
    特点:技术比较成熟,预测过程简单;将预测对象的影响因素分解,考察各因素的变化情况,从而估计预测对象未来的数量状态;回归模型误差较大,外推特性差。
    适用范围:回归分析法一般适用于中期预测。回归分析法要求样本量大且要求样本有较好的分布规律,当预测的长度大于占有的原始数据长度时,采用该方法进行预测在理论上不能保证预测结果的精度。另外,可能出现量化结果与定性分析结果不符的现象,有时难以找到合适的回归方程类型。

    4.2 时间序列分析法

    ​基本思想:把预测对象的历史数据按一定的时间间隔进行排列,构成一个随时间变化的统计序列,建立相应的数据随时间变化的变化模型,并将该模型外推到未来进行预测。
    适用范围:此方法有效的前提是过去的发展模式会延续到未来,因而这种方法对短期预测效果比较好,而不适合作中长期预测。一般来说,若影响预测对象变化各因素不发生突变,利用时间序列分析方法能得到较好的预测结果;若这些因素发生突变,时间序列法的预测结果将受到一定的影响。

    4.3 灰色预测法

    ​基本思想:将一切随机变量看作是在一定范围内变化的灰色变量,不是从统计规律角度出发进行大样本分析研究,而是利用数据处理方法(数据生成与还原),将杂乱无章的原始数据整理成规律性较强的生成数据来加以研究,即灰色系统理论建立的不是原始数据模型,而是生成数据模型。
    适用范围:预测模型是一个指数函数,如果待测量是以某一指数规律发展的,则可望得到较高精度的预测结果。影响模型预测精度及其适应性的关键因素,是模型中背景值的构造及预测公式中初值的选取。

    4.4 BP神经网络法

    人工神经网络的理论有表示任意非线性关系和学习等的能力,给解决很多具有复杂的不确定性和时变性的实际问题提供了新思想和新方法。
    利用人工神经网络的学习功能,用大量样本对神经元网络进行训练,调整其连接权值和闭值,然后可以利用已确定的模型进行预测。神经网络能从数据样本中自动地学习以前的经验而无需繁复的查询和表述过程,并自动地逼近那些最佳刻画了样本数据规律的函数,而不论这些函数具有怎样的形式,且所考虑的系统表现的函数形式越复杂,神经网络这种特性的作用就越明显。
    误差反向传播算法(BP算法)的基本思想是通过网络误差的反向传播,调整和修改网络的连接权值和闭值,使误差达到最小,其学习过程包括前向计算和误差反向传播。它利用一个简单的三层人工神经网络模型,就能实现从输入到输出之间任何复杂的非线性映射关系。目前,神经网络模型已成功地应用于许多领域,诸如经济预测、财政分析、贷款抵押评估和破产预测等许多经济领域。
    优点:可以在不同程度和层次上模仿人脑神经系统的结构及信息处理和检索等功能,对大量非结构性、非精确性规律具有极强的自适应功能,具有信息记忆、自主学习、知识推理和优化计算等特点,其自学习和自适应功能是常规算法和专家系统技术所不具备的,同时在一定程度上克服了由于随机性和非定量因素而难以用数学公式严密表达的困难。
    缺点:网络结构确定困难,同时要求有足够多的历史数据,样本选择困难,算法复杂,容易陷入局部极小点。

    4.5 支持向量机法

    支持向量机是基于统计学习的机器学习方法,通过寻求结构风险化最小,实现经验风险和置信范围的最小,从而达到在统计样本较少的情况下,亦能获得良好统计规律的目的。 其中支持向量机是统计学习理论的核心和重点。支持向量机是结构风险最小化原理的近似,它能够提高学习机的泛化能力,既能够由有限的训练样本得到小的误差,又能够保证对独立的测试集仍保持小的误差,而且支持向量机算法是一个凸优化问题,因此局部最优解一定是全局最优解,支持向量机就克服了神经网络收敛速度慢和局部极小点等缺陷。 核函数的选取在SVM方法中是一个较为困难的问题,至今没有一定的理论方面的指导。

    4.6 组合预测法

    ​在实际预测工作中,从信息利用的角度来说,就是任何一种单一预测方法都只利用了部分有用信息,同时也抛弃了其它有用的信息。为了充分发挥各预测模型的优势,对于同一预测问题,往往可以采用多种预测方法进行预测。不同的预测方法往往能提供不同的有用信息,组合预测将不同预测模型按一定方式进行综合。根据组合定理,各种预测方法通过组合可以尽可能利用全部的信息,尽可能地提高预测精度,达到改善预测性能的目的。
    优化组合预测有两类概念,一是指将几种预测方法所得的预测结果,选取适当的权重进行加权平均的一种预测方法,其关键是确定各个单项预测方法的加权系数;二是指在几种预测方法中进行比较,选择拟合度最佳或标准离差最小的预测模型作为最优模型进行预测。组合预测是在单个预测模型不能完全正确地描述预测量的变化规律时发挥其作用的。

    展开全文
  • 数学建模心得

    千次阅读 2019-03-12 09:10:35
    这篇文章是本人的数学建模队友在建模过程中的一些心得,联系作者请留言,未经允许严禁转载 1、数学建模的定义   数学建模就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。当...
  • 数学建模

    2020-09-16 17:34:24
    题目在9月10日(周四)下午六点出来之后,emmm,怎么说,网上就不停的有数学建模的思路,等等。但是,真的是建模思路吗?/(ㄒoㄒ)/~~明明就是把题目放上去,然后加上思路持续更新,所以说,你们懂得。 在这次比赛过程...
  • 数学建模三剑客MSN

    万次阅读 多人点赞 2016-09-06 13:41:37
    不管是不是巴萨的球迷,只要你喜欢足球,就一定听说过梅西(Messi)、苏亚雷斯(Suarez)和...在众多的数学建模辅助工具中,也有一个犀利无比的MSN组合,他们就是python麾下大名鼎鼎的 Matplotlib + Scipy + Numpy三剑客。
  • 数学建模课件 姜启源

    2008-09-25 09:03:14
    从现实对象到数学模型 数学建模的重要意义 数学建模示例 数学建模的方法和步骤 数学模型的特点和分类 怎样学习数学建模 对于数学建模的爱好者来说,很好的课件。
  • 数学建模方法大全

    2015-09-07 21:00:38
    在学习数学建模中,我们会遇到不少问题,尤其是怎样建模型,建立什么的模型,参加比赛时,最重要的也是模型的建立,阅读下数学建模方法大全会队学习建模有很大的帮助。
  • 数学建模论文写作

    2019-04-14 10:30:22
    数学建模竞赛三人合力完成比赛,最终上传论文,论文是评判一个队伍是否能拿奖的重要因素,如果不会写论文,这里面有详细的简绍,教你怎样排版,怎样吸引老师的眼球,并附带一些建模心得。
  • 参加过一些数学建模比赛,也顺其自然地读了不少参赛论文,对“数学建模有没有必要论证合理性”这个问题发表一点拙见,欢迎捶我。
  • 1.数学建模概述

    2021-04-12 21:38:49
    不同点1.4何处见数学模型例子1.5数学建模的方法和步骤(1)数学建模的的方法和知识常用方法:数学建模应具备的数学知识:(2)什么是数学建模(3)益处(4)现在的任务(5)分工(6)论文输入与排版要求 1.数学建模概述 ...
  • 本文主要是说在建模的过程中怎样运用数学软件
  • 数学建模论文大全.zip

    2020-01-23 14:12:52
    怎样写作数学建模竞赛论文 最佳公交路线选择模型周金健阎栋唐瑞 最优公交线路选择郝晓磊兰名荥李煜 1994-2009年全国大学生数学建模竞赛题目 1994年全国大学生数学建模竞赛优秀论文全集 2001年全国大学生数学...
  • 歇歇邀请 作为一个已经毕业很多年的硕士研究生 回想起我在兰州理工上学的时候还是那么近在咫尺 数学建模其实在我看来重在历练的同时掌握方法以及弥补自己短板 我认为建模最重要的就是思路和模型如果你也想参加数模...
  • 数学建模与数学实验课后习题答案P594.学校共1002名学生,237人住在A宿舍,333人住在B宿舍,432人住在C宿舍。学生要组织一个10人的委员会,使用Q值法分配各宿舍的委员数。解:设P表示人数,N表示要分配的总席位数。i...
  • 关于数学建模的一些想法关于数学建模 关于数学建模
  • 1.资料搜索能力 根据题目决定查哪些数据,根据题目决定搜索哪些论文 外文文献 知网下论文 Github/CSDN查代码 知乎 百度文库 学兔兔/各种云盘网站 B站 ...2. 数学建模能力 3 编程求解能力 建议新手用
  • 数学建模相关论文范文资料,与数学建模与计算机关系相关毕业论文题目范文关于数学建模及高等数学及计算机技术方面的免费优秀学术论文范文,数学建模相关论文摘要怎么写,关于数学建模与计算机关系相关论文范文资料,对...
  • 前言 ...所以就以数学建模为契机,来开启自己的写博客之路吧,由于是第一次写博客,所以难免有些地方措辞不当,语句生硬,希望大家多多包涵,并且可以在我的分享中收获一些东西。 初次接触 先说下前...
  • 数学建模经验

    千次阅读 2017-07-16 10:22:29
    数学建模经验  我参加了3次“深圳杯”数模,1次全国大学生数模,以及1次全国研究生数模,2016年参加了全国研究生数模的交流会,但没有参加过美赛,应该算是一个江湖老手了吧。下面内容算是得出的一些经验。  ...
  • 数学建模与学术论文

    2018-03-16 11:57:59
    讲述了怎么样将一篇数学建模论文修改为可发表的学术论文。
  • 数学建模国赛获奖论文整理,使用聚类做的论文集合,可以系统的学习聚类分析在数学建模中的应用,非常有用。
  • 建立数学模型没有固定的模式,通常它与实际问题的性质、建模的目的等有关。当然,建模的过程也有共性,一般说来大致可以分以下几个步骤: 1. 形成问题 要建立现实问题的数学模型,首先要对所要解决的问题有一个十分...
  • 该文该帖系笔者原创,笔者刚入数学建模时,对于数学建模应该怎么样去编程也同样非常迷茫,在网上也没有找到相关的经验贴,故在此给大家分享几点经验。该文会长期更新,欢迎在评论区交流。 数学建模和ACM的区别 ...
  • 数学建模专栏 | 第二篇 :MATLAB 数学建模快速入门

    万次阅读 多人点赞 2018-09-01 11:47:53
    从图 6 可以大致看出,对于一只好的股票,我们希望股票的增幅越大越好,体现在数学上,就是曲线的斜率越大越好。而对于风险,则可用最大回撤来描述更合适。不妨一个一个来,我们先来看如何计算曲线的斜率。对于这个...
  • 数学建模与数学实验

    2008-08-25 15:24:15
    关于怎样进行数学建模的知识

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 20,120
精华内容 8,048
关键字:

怎样数学建模