精华内容
下载资源
问答
  • . 数据切分关系型数据库本身比较容易成为系统瓶颈,单机存储容量、连接数、处理能力都...数据库分布式核心内容无非就是数据切分(Sharding),以及切分后对数据的定位、整合。数据切分就是将数据分散存储到多...

    一. 数据切分

    关系型数据库本身比较容易成为系统瓶颈,单机存储容量、连接数、处理能力都有限。当单表的数据量达到1000W或100G以后,由于查询维度较多,即使添加从库、优化索引,做很多操作时性能仍下降严重。此时就要考虑对其进行切分了,切分的目的就在于减少数据库的负担,缩短查询时间。

    数据库分布式核心内容无非就是数据切分(Sharding),以及切分后对数据的定位、整合。数据切分就是将数据分散存储到多个数据库中,使得单一数据库中的数据量变小,通过扩充主机的数量缓解单一数据库的性能问题,从而达到提升数据库操作性能的目的。

    数据切分根据其切分类型,可以分为两种方式:垂直(纵向)切分和水平(横向)切分

    1、垂直(纵向)切分

    垂直切分常见有垂直分库和垂直分表两种。

    垂直分库就是根据业务耦合性,将关联度低的不同表存储在不同的数据库。做法与大系统拆分为多个小系统类似,按业务分类进行独立划分。与"微服务治理"的做法相似,每个微服务使用单独的一个数据库。如图:

    a0481eb8a07bf9a1cf32b5d4f2d86031.png

    垂直分表是基于数据库中的"列"进行,某个表字段较多,可以新建一张扩展表,将不经常用或字段长度较大的字段拆分出去到扩展表中。在字段很多的情况下(例如一个大表有100多个字段),通过"大表拆小表",更便于开发与维护,也能避免跨页问题,MySQL底层是通过数据页存储的,一条记录占用空间过大会导致跨页,造成额外的性能开销。

    另外数据库以行为单位将数据加载到内存中,这样表中字段长度较短且访问频率较高,内存能加载更多的数据,命中率更高,减少了磁盘IO,从而提升了数据库性能。

    垂直切分的优点:

    • 解决业务系统层面的耦合,业务清晰
    • 与微服务的治理类似,也能对不同业务的数据进行分级管理、维护、监控、扩展等
    • 高并发场景下,垂直切分一定程度的提升IO、数据库连接数、单机硬件资源的瓶颈

    缺点:

    • 部分表无法join,只能通过接口聚合方式解决,提升了开发的复杂度
    • 分布式事务处理复杂
    • 依然存在单表数据量过大的问题(需要水平切分)

    2、水平(横向)切分

    当一个应用难以再细粒度的垂直切分,或切分后数据量行数巨大,存在单库读写、存储性能瓶颈,这时候就需要进行水平切分了。

    水平切分分为库内分表和分库分表,是根据表内数据内在的逻辑关系,将同一个表按不同的条件分散到多个数据库或多个表中,每个表中只包含一部分数据,从而使得单个表的数据量变小,达到分布式的效果。如图所示:

    2b86ec33453b061443128363fe450e68.png

    库内分表只解决了单一表数据量过大的问题,但没有将表分布到不同机器的库上,因此对于减轻MySQL数据库的压力来说,帮助不是很大,大家还是竞争同一个物理机的CPU、内存、网络IO,最好通过分库分表来解决。

    水平切分的优点:

    • 不存在单库数据量过大、高并发的性能瓶颈,提升系统稳定性和负载能力
    • 应用端改造较小,不需要拆分业务模块

    缺点:

    • 跨分片的事务一致性难以保证
    • 跨库的join关联查询性能较差
    • 数据多次扩展难度和维护量极大

    水平切分后同一张表会出现在多个数据库/表中,每个库/表的内容不同。几种典型的数据分片规则为:

    1、根据数值范围

    按照时间区间或ID区间来切分。例如:按日期将不同月甚至是日的数据分散到不同的库中;将userId为1~9999的记录分到第一个库,10000~20000的分到第二个库,以此类推。某种意义上,某些系统中使用的"冷热数据分离",将一些使用较少的历史数据迁移到其他库中,业务功能上只提供热点数据的查询,也是类似的实践。

    这样的优点在于:

    • 单表大小可控
    • 天然便于水平扩展,后期如果想对整个分片集群扩容时,只需要添加节点即可,无需对其他分片的数据进行迁移
    • 使用分片字段进行范围查找时,连续分片可快速定位分片进行快速查询,有效避免跨分片查询的问题。

    缺点:

    • 热点数据成为性能瓶颈。连续分片可能存在数据热点,例如按时间字段分片,有些分片存储最近时间段内的数据,可能会被频繁的读写,而有些分片存储的历史数据,则很少被查询

    31fdf0249c742b7b3d3440936ca46761.png

    2、根据数值取模

    一般采用hash取模mod的切分方式,例如:将 Customer 表根据 cusno 字段切分到4个库中,余数为0的放到第一个库,余数为1的放到第二个库,以此类推。这样同一个用户的数据会分散到同一个库中,如果查询条件带有cusno字段,则可明确定位到相应库去查询。

    优点:

    • 数据分片相对比较均匀,不容易出现热点和并发访问的瓶颈

    缺点:

    • 后期分片集群扩容时,需要迁移旧的数据(使用一致性hash算法能较好的避免这个问题)
    • 容易面临跨分片查询的复杂问题。比如上例中,如果频繁用到的查询条件中不带cusno时,将会导致无法定位数据库,从而需要同时向4个库发起查询,再在内存中合并数据,取最小集返回给应用,分库反而成为拖累。

    994f1946bc4a862a4904e783a4da59a5.png

    二. 分库分表带来的问题

    分库分表能有效的环节单机和单库带来的性能瓶颈和压力,突破网络IO、硬件资源、连接数的瓶颈,同时也带来了一些问题。下面将描述这些技术挑战以及对应的解决思路。

    1、事务一致性问题

    分布式事务

    当更新内容同时分布在不同库中,不可避免会带来跨库事务问题。跨分片事务也是分布式事务,没有简单的方案,一般可使用"XA协议"和"两阶段提交"处理。

    分布式事务能最大限度保证了数据库操作的原子性。但在提交事务时需要协调多个节点,推后了提交事务的时间点,延长了事务的执行时间。导致事务在访问共享资源时发生冲突或死锁的概率增高。随着数据库节点的增多,这种趋势会越来越严重,从而成为系统在数据库层面上水平扩展的枷锁。

    最终一致性

    对于那些性能要求很高,但对一致性要求不高的系统,往往不苛求系统的实时一致性,只要在允许的时间段内达到最终一致性即可,可采用事务补偿的方式。与事务在执行中发生错误后立即回滚的方式不同,事务补偿是一种事后检查补救的措施,一些常见的实现方法有:对数据进行对账检查,基于日志进行对比,定期同标准数据来源进行同步等等。事务补偿还要结合业务系统来考虑。

    2、跨节点关联查询 join 问题

    切分之前,系统中很多列表和详情页所需的数据可以通过sql join来完成。而切分之后,数据可能分布在不同的节点上,此时join带来的问题就比较麻烦了,考虑到性能,尽量避免使用join查询。

    解决这个问题的一些方法:

    1)全局表

    全局表,也可看做是"数据字典表",就是系统中所有模块都可能依赖的一些表,为了避免跨库join查询,可以将这类表在每个数据库中都保存一份。这些数据通常很少会进行修改,所以也不担心一致性的问题。

    2)字段冗余

    一种典型的反范式设计,利用空间换时间,为了性能而避免join查询。例如:订单表保存userId时候,也将userName冗余保存一份,这样查询订单详情时就不需要再去查询"买家user表"了。

    但这种方法适用场景也有限,比较适用于依赖字段比较少的情况。而冗余字段的数据一致性也较难保证,就像上面订单表的例子,买家修改了userName后,是否需要在历史订单中同步更新呢?这也要结合实际业务场景进行考虑。

    3)数据组装

    在系统层面,分两次查询,第一次查询的结果集中找出关联数据id,然后根据id发起第二次请求得到关联数据。最后将获得到的数据进行字段拼装。

    4)ER分片

    关系型数据库中,如果可以先确定表之间的关联关系,并将那些存在关联关系的表记录存放在同一个分片上,那么就能较好的避免跨分片join问题。在1:1或1:n的情况下,通常按照主表的ID主键切分。如下图所示:

    458653c249ef59a6c67b60f44037aa49.png

    这样一来,Data Node1上面的order订单表与orderdetail订单详情表就可以通过orderId进行局部的关联查询了,Data Node2上也一样。

    3、跨节点分页、排序、函数问题

    跨节点多库进行查询时,会出现limit分页、order by排序等问题。分页需要按照指定字段进行排序,当排序字段就是分片字段时,通过分片规则就比较容易定位到指定的分片;当排序字段非分片字段时,就变得比较复杂了。需要先在不同的分片节点中将数据进行排序并返回,然后将不同分片返回的结果集进行汇总和再次排序,最终返回给用户。如图所示:

    b6aa29084d1db921618a076945b6f21e.png

    上图中只是取第一页的数据,对性能影响还不是很大。但是如果取得页数很大,情况则变得复杂很多,因为各分片节点中的数据可能是随机的,为了排序的准确性,需要将所有节点的前N页数据都排序好做合并,最后再进行整体的排序,这样的操作时很耗费CPU和内存资源的,所以页数越大,系统的性能也会越差。

    在使用Max、Min、Sum、Count之类的函数进行计算的时候,也需要先在每个分片上执行相应的函数,然后将各个分片的结果集进行汇总和再次计算,最终将结果返回。如图所示:

    ea8b73c8d1e576f62aec4a985a21eca8.png

    4、全局主键避重问题

    在分库分表环境中,由于表中数据同时存在不同数据库中,主键值平时使用的自增长将无用武之地,某个分区数据库自生成的ID无法保证全局唯一。因此需要单独设计全局主键,以避免跨库主键重复问题。有一些常见的主键生成策略:

    1)UUID

    UUID标准形式包含32个16进制数字,分为5段,形式为8-4-4-4-12的36个字符,例如:550e8400-e29b-41d4-a716-446655440000

    UUID是主键是最简单的方案,本地生成,性能高,没有网络耗时。但缺点也很明显,由于UUID非常长,会占用大量的存储空间;另外,作为主键建立索引和基于索引进行查询时都会存在性能问题,在InnoDB下,UUID的无序性会引起数据位置频繁变动,导致分页。

    2)结合数据库维护主键ID表

    在数据库中建立 sequence 表:

    CREATE TABLE `sequence` (  
      `id` bigint(20) unsigned NOT NULL auto_increment,  
      `stub` char(1) NOT NULL default '',  
      PRIMARY KEY  (`id`),  
      UNIQUE KEY `stub` (`stub`)  
    ) ENGINE=MyISAM;

    stub字段设置为唯一索引,同一stub值在sequence表中只有一条记录,可以同时为多张表生成全局ID。sequence表的内容,如下所示:

    +-------------------+------+  
    | id                | stub |  
    +-------------------+------+  
    | 72157623227190423 |    a |  
    +-------------------+------+

    使用 MyISAM 存储引擎而不是 InnoDB,以获取更高的性能。MyISAM使用的是表级别的锁,对表的读写是串行的,所以不用担心在并发时两次读取同一个ID值。

    当需要全局唯一的64位ID时,执行:

    REPLACE INTO sequence (stub) VALUES ('a');  
    SELECT LAST_INSERT_ID();

    这两条语句是Connection级别的,select last_insert_id() 必须与 replace into 在同一数据库连接下才能得到刚刚插入的新ID。

    使用replace into代替insert into好处是避免了表行数过大,不需要另外定期清理。

    此方案较为简单,但缺点也明显:存在单点问题,强依赖DB,当DB异常时,整个系统都不可用。配置主从可以增加可用性,但当主库挂了,主从切换时,数据一致性在特殊情况下难以保证。另外性能瓶颈限制在单台MySQL的读写性能。

    flickr团队使用的一种主键生成策略,与上面的sequence表方案类似,但更好的解决了单点和性能瓶颈的问题。

    这一方案的整体思想是:建立2个以上的全局ID生成的服务器,每个服务器上只部署一个数据库,每个库有一张sequence表用于记录当前全局ID。表中ID增长的步长是库的数量,起始值依次错开,这样能将ID的生成散列到各个数据库上。如下图所示:

    3befe264668f649d223591b8cec17947.png

    由两个数据库服务器生成ID,设置不同的auto_increment值。第一台sequence的起始值为1,每次步长增长2,另一台的sequence起始值为2,每次步长增长也是2。结果第一台生成的ID都是奇数(1, 3, 5, 7 ...),第二台生成的ID都是偶数(2, 4, 6, 8 ...)。

    这种方案将生成ID的压力均匀分布在两台机器上。同时提供了系统容错,第一台出现了错误,可以自动切换到第二台机器上获取ID。但有以下几个缺点:系统添加机器,水平扩展时较复杂;每次获取ID都要读写一次DB,DB的压力还是很大,只能靠堆机器来提升性能。

    可以基于flickr的方案继续优化,使用批量的方式降低数据库的写压力,每次获取一段区间的ID号段,用完之后再去数据库获取,可以大大减轻数据库的压力。如下图所示:

    aa3de78e99b9ede118f1bad2dbc8d68a.png

    还是使用两台DB保证可用性,数据库中只存储当前的最大ID。ID生成服务每次批量拉取6个ID,先将max_id修改为5,当应用访问ID生成服务时,就不需要访问数据库,从号段缓存中依次派发0~5的ID。当这些ID发完后,再将max_id修改为11,下次就能派发6~11的ID。于是,数据库的压力降低为原来的1/6。

    3)Snowflake分布式自增ID算法

    Twitter的snowflake算法解决了分布式系统生成全局ID的需求,生成64位的Long型数字,组成部分:

    • 第一位未使用
    • 接下来41位是毫秒级时间,41位的长度可以表示69年的时间
    • 5位datacenterId,5位workerId。10位的长度最多支持部署1024个节点
    • 最后12位是毫秒内的计数,12位的计数顺序号支持每个节点每毫秒产生4096个ID序列

    08fec799b1dd7a5f5587de2fa4182c72.png

    这样的好处是:毫秒数在高位,生成的ID整体上按时间趋势递增;不依赖第三方系统,稳定性和效率较高,理论上QPS约为409.6w/s(1000*2^12),并且整个分布式系统内不会产生ID碰撞;可根据自身业务灵活分配bit位。

    不足就在于:强依赖机器时钟,如果时钟回拨,则可能导致生成ID重复。

    5、数据迁移、扩容问题

    当业务高速发展,面临性能和存储的瓶颈时,才会考虑分片设计,此时就不可避免的需要考虑历史数据迁移的问题。一般做法是先读出历史数据,然后按指定的分片规则再将数据写入到各个分片节点中。此外还需要根据当前的数据量和QPS,以及业务发展的速度,进行容量规划,推算出大概需要多少分片(一般建议单个分片上的单表数据量不超过1000W)

    如果采用数值范围分片,只需要添加节点就可以进行扩容了,不需要对分片数据迁移。如果采用的是数值取模分片,则考虑后期的扩容问题就相对比较麻烦。

    三. 什么时候考虑切分

    下面讲述一下什么时候需要考虑做数据切分。

    1、能不切分尽量不要切分

    并不是所有表都需要进行切分,主要还是看数据的增长速度。切分后会在某种程度上提升业务的复杂度,数据库除了承载数据的存储和查询外,协助业务更好的实现需求也是其重要工作之一。

    不到万不得已不用轻易使用分库分表这个大招,避免"过度设计"和"过早优化"。分库分表之前,不要为分而分,先尽力去做力所能及的事情,例如:升级硬件、升级网络、读写分离、索引优化等等。当数据量达到单表的瓶颈时候,再考虑分库分表。

    2、数据量过大,正常运维影响业务访问

    这里说的运维,指:

    1)对数据库备份,如果单表太大,备份时需要大量的磁盘IO和网络IO。例如1T的数据,网络传输占50MB时候,需要20000秒才能传输完毕,整个过程的风险都是比较高的

    2)对一个很大的表进行DDL修改时,MySQL会锁住全表,这个时间会很长,这段时间业务不能访问此表,影响很大。如果使用pt-online-schema-change,使用过程中会创建触发器和影子表,也需要很长的时间。在此操作过程中,都算为风险时间。将数据表拆分,总量减少,有助于降低这个风险。

    3)大表会经常访问与更新,就更有可能出现锁等待。将数据切分,用空间换时间,变相降低访问压力

    3、随着业务发展,需要对某些字段垂直拆分

    举个例子,假如项目一开始设计的用户表如下:

    id                  bigint     #用户的ID
    name                varchar    #用户的名字
    last_login_time     datetime   #最近登录时间
    personal_info       text       #私人信息
    .....                          #其他信息字段

    在项目初始阶段,这种设计是满足简单的业务需求的,也方便快速迭代开发。而当业务快速发展时,用户量从10w激增到10亿,用户非常的活跃,每次登录会更新 last_login_name 字段,使得 user 表被不断update,压力很大。而其他字段:id, name, personal_info 是不变的或很少更新的,此时在业务角度,就要将 last_login_time 拆分出去,新建一个 user_time 表。

    personal_info 属性是更新和查询频率较低的,并且text字段占据了太多的空间。这时候,就要对此垂直拆分出 user_ext 表了。

    4、数据量快速增长

    随着业务的快速发展,单表中的数据量会持续增长,当性能接近瓶颈时,就需要考虑水平切分,做分库分表了。此时一定要选择合适的切分规则,提前预估好数据容量

    5、安全性和可用性

    鸡蛋不要放在一个篮子里。在业务层面上垂直切分,将不相关的业务的数据库分隔,因为每个业务的数据量、访问量都不同,不能因为一个业务把数据库搞挂而牵连到其他业务。利用水平切分,当一个数据库出现问题时,不会影响到100%的用户,每个库只承担业务的一部分数据,这样整体的可用性就能提高。

    四. 案例分析

    1、用户中心业务场景

    用户中心是一个非常常见的业务,主要提供用户注册、登录、查询/修改等功能,其核心表为:

    User(uid, login_name, passwd, sex, age, nickname)
    uid为用户ID,  主键
    login_name, passwd, sex, age, nickname,  用户属性

    任何脱离业务的架构设计都是耍流氓,在进行分库分表前,需要对业务场景需求进行梳理:

    • 用户侧:前台访问,访问量较大,需要保证高可用和高一致性。主要有两类需求:
      • 用户登录:通过login_name/phone/email查询用户信息,1%请求属于这种类型
      • 用户信息查询:登录之后,通过uid来查询用户信息,99%请求属这种类型
    • 运营侧:后台访问,支持运营需求,按照年龄、性别、登陆时间、注册时间等进行分页的查询。是内部系统,访问量较低,对可用性、一致性的要求不高。

    2、水平切分方法

    当数据量越来越大时,需要对数据库进行水平切分,上文描述的切分方法有"根据数值范围"和"根据数值取模"。

    "根据数值范围":以主键uid为划分依据,按uid的范围将数据水平切分到多个数据库上。例如:user-db1存储uid范围为0~1000w的数据,user-db2存储uid范围为1000w~2000wuid数据。

    • 优点是:扩容简单,如果容量不够,只要增加新db即可。
    • 不足是:请求量不均匀,一般新注册的用户活跃度会比较高,所以新的user-db2会比user-db1负载高,导致服务器利用率不平衡

    "根据数值取模":也是以主键uid为划分依据,按uid取模的值将数据水平切分到多个数据库上。例如:user-db1存储uid取模得1的数据,user-db2存储uid取模得0的uid数据。

    • 优点是:数据量和请求量分布均均匀
    • 不足是:扩容麻烦,当容量不够时,新增加db,需要rehash。需要考虑对数据进行平滑的迁移。

    3、非uid的查询方法

    水平切分后,对于按uid查询的需求能很好的满足,可以直接路由到具体数据库。而按非uid的查询,例如login_name,就不知道具体该访问哪个库了,此时需要遍历所有库,性能会降低很多。

    对于用户侧,可以采用"建立非uid属性到uid的映射关系"的方案;对于运营侧,可以采用"前台与后台分离"的方案。

    3.1、建立非uid属性到uid的映射关系

    1)映射关系

    例如:login_name不能直接定位到数据库,可以建立login_name→uid的映射关系,用索引表或缓存来存储。当访问login_name时,先通过映射表查询出login_name对应的uid,再通过uid定位到具体的库。

    映射表只有两列,可以承载很多数据,当数据量过大时,也可以对映射表再做水平切分。这类kv格式的索引结构,可以很好的使用cache来优化查询性能,而且映射关系不会频繁变更,缓存命中率会很高。

    2)基因法

    分库基因:假如通过uid分库,分为8个库,采用uid%8的方式进行路由,此时是由uid的最后3bit来决定这行User数据具体落到哪个库上,那么这3bit可以看为分库基因。

    上面的映射关系的方法需要额外存储映射表,按非uid字段查询时,还需要多一次数据库或cache的访问。如果想要消除多余的存储和查询,可以通过f函数取login_name的基因作为uid的分库基因。生成uid时,参考上文所述的分布式唯一ID生成方案,再加上最后3位bit值=f(login_name)。当查询login_name时,只需计算f(login_name)%8的值,就可以定位到具体的库。不过这样需要提前做好容量规划,预估未来几年的数据量需要分多少库,要预留一定bit的分库基因。

    075b42e2ce1b3138ce302edd0ed0daa7.png

    3.2、前台与后台分离

    对于用户侧,主要需求是以单行查询为主,需要建立login_name/phone/email到uid的映射关系,可以解决这些字段的查询问题。

    而对于运营侧,很多批量分页且条件多样的查询,这类查询计算量大,返回数据量大,对数据库的性能消耗较高。此时,如果和用户侧公用同一批服务或数据库,可能因为后台的少量请求,占用大量数据库资源,而导致用户侧访问性能降低或超时。

    这类业务最好采用"前台与后台分离"的方案,运营侧后台业务抽取独立的service和db,解决和前台业务系统的耦合。由于运营侧对可用性、一致性的要求不高,可以不访问实时库,而是通过binlog异步同步数据到运营库进行访问。在数据量很大的情况下,还可以使用ES搜索引擎或Hive来满足后台复杂的查询方式。

    五. 支持分库分表中间件

    站在巨人的肩膀上能省力很多,目前分库分表已经有一些较为成熟的开源解决方案:

    • sharding-jdbc(当当)
    • TSharding(蘑菇街)
    • Atlas(奇虎360)
    • Cobar(阿里巴巴)
    • MyCAT(基于Cobar)
    • Oceanus(58同城)
    • Vitess(谷歌)

    以上内容希望帮助到大家,很多PHPer在进阶的时候总会遇到一些问题和瓶颈,业务代码写多了没有方向感,不知道该从那里入手去提升,对此我整理了一些资料,包括但不限于:分布式架构、高可扩展、高性能、高并发、服务器性能调优、TP6,laravel,Redis,Swoole、Swoft、Kafka、Mysql优化、shell脚本、Docker、微服务、Nginx等多个知识点高级进阶干货需要的可以免费分享给大家,需要戳这里PHP进阶架构师>>>实战视频、大厂面试文档免费获取

    展开全文
  • 前端传递一个部门id数组作为查询条件查询部门id在这个数组中的数据。 在MyBatisxml中获取到了这个数组参数后怎样进行if-test判空与长度判断。 注: 博客:https://blog.csdn.net/badao_liumang_qizhi 关注...

    场景

    前端传递一个部门id的数组作为查询条件查询部门id在这个数组中的数据。

    在MyBatis的xml中获取到了这个数组参数后怎样进行if-test的判空与长度判断。

    注:

    博客:
    https://blog.csdn.net/badao_liumang_qizhi
    关注公众号
    霸道的程序猿
    获取编程相关电子书、教程推送与免费下载。

    实现

    在mapper接口层传递数组参数

     public List<KqDksz> selectKqDkszListBySx(@Param("array") int[] bmids, String xm, String dkzt);

    然后在对应的xml中

        <select id="selectKqDkszListBySx"  resultMap="KqDkszResult">
            <include refid="selectKqDkszVoJoinJibenXinXi"/>
            <where>
                <if test="array != null and array.length >0"> and j.bmid in
                    <foreach collection="array" item="item" open="(" separator="," close=")">
                        ${item}
                    </foreach>
                 </if>
            </where>
        </select>

    这里就可以通过array获取传递的数组并遍历。

    这里的数组参数不是必传的,所以需要加if-test的判断

    <if test="array != null and array.length >0">

    首先判断其不为空,并且判断其长度大于0。因为有可能传递空数组的情况。

    因为这里是传递的数组对象,所以这里是使用的array.length属性

    注意length不是方法

    但是如果传递的参数时list的话,就要使用如下方式

    <if test="list != null and list.size() > 0">

     

    展开全文
  • 因此,如果在参数为空时,仍能顺利执行语句,则需要加一个判断条件。 在帆软中可以如此表示: ${if(len(cb)=0,"",“and lower(site) in(’”+cb+"’)")} 当没有输入参数时,字符串的长度为0,当存在参数时,则可以...

    在finereport中选择特定的参数,会返回我们要查询的数据。但如果没有输入参数值,我们却仍需要返回数据时该怎样处理?
    如果只是普通的利用 where 依据字段=依据条件,当传递参数为空时,“where 依据字段= ”这样的语句会报错。
    因此,如果在参数为空时,仍能顺利执行语句,则需要加一个判断条件。
    在帆软中可以如此表示:
    ${if(len(cb)=0,"",“and lower(site) in(’”+cb+"’)")}
    当没有输入参数时,字符串的长度为0,当存在参数时,则可以增加关于参数的判断条件。

    展开全文
  • 通过我们已经学过知识,你可以编写一个最简单程序输出一个也许是程序世界中最有名词语: echo "Hello World!"; ?> First PHP page // Single line C++ style comment /* printing the message */ ...
  • 工厂模式:工厂模式是一种经常被使用到模式,根据工厂模式实现类可以根据提供的数据生成一组类中某一个实例, 通常这一组类有一个公共抽象父类并且实现了相同方法,但是这些方法针对不同的数据进行了...
  • 可我找不到任何方法来声明这样函数——感觉我需要一个返回指针函数,返回指针指向又是返回指针函数……,如此往复,以至无穷。 数组大小 1.23 能否声明和传入数组大小一致局部数组,或者由其他参数指定...
  • 题解:可以知道是每m个元素就能去掉一个最小元素,所以可以使用分块或者数据结构来查询区间最小值。 dp[i]表示前i个元素能去掉元素最大值。 然后给出状态转移方程:dp[i] = max(dp[i-1],dp[i...

    题目链接

    题意:给一段序列,你可以任意划分区间,每个区间去掉( k/m )个最小值,问怎样才能使这个序列值最小。k为划分的区间长度。

    题解:可以知道的是每m个元素就能去掉一个最小元素,所以可以使用分块或者数据结构来查询区间最小值。

               dp[i]表示前i个元素能去掉的元素最大值。

               然后给出状态转移方程:dp[i] = max(dp[i-1],dp[i-m]+min(a[i-m+1]~a[i]) ])

              所以dp[i]可以由dp[i-m]划分一个长度为m的区间得到,也可以直接由dp[i-1]得到。答案就是取最大值。

             

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    const ll inf = 1e18;
    const int maxn = 1e5+100;
    int n,m,blo;
    ll a[maxn],mi[1000],dp[maxn];
    int pos[maxn],bl[maxn];
    inline ll query(int l,int r){
    	ll ans = inf;
    	for(int i=l;i<=min(r,bl[l]*blo);++i) ans=min(ans,a[i]);
    	if(bl[l]!=bl[r]){
    		for(int i=(bl[r]-1)*blo+1;i<=r;++i) ans=min(ans,a[i]);
    	}
    	for(int i=bl[l]+1;i<=bl[r]-1;++i) ans=min(ans,mi[i]);
    	return ans;
    }
    int main()
    {
    	ll sum=0;
    	cin>>n>>m;
    	blo = sqrt(n);
    	for(int i=1;i<=blo+100;++i) mi[i]=inf; 
     	for(int i=1;i<=n;++i) cin>>a[i],sum+=a[i];
    	for(int i=1;i<=n;++i){
    		bl[i]=(i-1)/blo+1;
    		mi[bl[i]]=min(mi[bl[i]],a[i]);
    	}
    	for(int i=m;i<=n;++i){
    		dp[i] = max(dp[i-1],dp[i-m]+query(i-m+1,i));
    	}
    	cout<<sum-dp[n]<<endl;
    }

     

    展开全文
  • 《你必须知道495C语言问题》

    热门讨论 2010-03-20 16:41:18
    可我找不到任何方法来声明这样函数——感觉我需要一个返回指针函数,返回指针指向又是返回指针函数……,如此往复,以至无穷。 12  数组大小 13 1.23 能否声明和传入数组大小一致局部数组,或者由...
  • 可我找不到任何方法来声明这样函数——感觉我需要一个返回指针函数,返回指针指向又是返回指针函数……,如此往复,以至无穷。 12  数组大小 13 1.23 能否声明和传入数组大小一致局部数组,或者由...
  • 可我找不到任何方法来声明这样函数——感觉我需要一个返回指针函数,返回指针指向又是返回指针函数……,如此往复,以至无穷。  数组大小  1.23 能否声明和传入数组大小一致局部数组,或者由其他参数...
  • 可我找不到任何方法来声明这样函数——感觉我需要一个返回指针函数,返回指针指向又是返回指针函数……,如此往复,以到无穷。 41 数组大小 42 1.23 能否声明和传入数组大小一致局部数组,或者由其他...
  • 可我找不到任何方法来声明这样函数——感觉我需要一个返回指针函数,返回指针指向又是返回指针函数……,如此往复,以至无穷。 数组大小 1.23 能否声明和传入数组大小一致局部数组,或者由其他参数...
  • <ul><li>集合中必存在唯一的一个“第一个元素”</li><li>集合中必存在唯一的一个“最后元素”</li><li>除最后一元素之外,其它数据元素均有唯一“后继”</li><li>除第一个元素之外,其它数据元素均...
  • 你必须知道495C语言问题(PDF)

    热门讨论 2009-09-15 10:25:47
    3.12 我需要根据条件把一个复杂表达式赋值给两个变量中一 个。可以用下边这样代码吗? ((condition) ? a : b) = complicated expression; . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 目录iii ...
  • C#.net_经典编程例子400

    热门讨论 2013-05-17 09:25:30
    57 2.2 Button控件应用 58 实例053 在Button按钮中显示图标 58 2.3 ComboBox控件应用 59 实例054 将数据表中字段添加到ComboBox控件 59 实例055 带查询功能ComboBox控件 61 2.4 ...
  • 知识点

    2018-06-19 15:45:40
    数组 :数据存储区间是连续,占用内存严重,空间复杂度大。数组二分查找时间复杂度比较小。数组特点:查询容易,插入和删除困难 链表: 链表存储区间离散,占用... 哈希表是由数组和链表组成一个长度为...
  • 实例096 利用ErrorProvider组件查看数据集中错误 132 3.3 EventLog组件 134 实例097 使用EventLog组件读写Windows系统事件日志 134 实例098 使用EventLog组件保存Windows系统日志 136 实例099 使用Event...
  • 一、概述树状数组(binary indexed tree),是一种设计新颖数组结构,它能够高效地获取数组中连续n个数和。概括说,树状数组通常用于解决以下问题:数组{a}中元素可能不断地被修改,...②查询一个区间[p,q]内元素
  • 前置知识泛型 Arraylist 实现了基于动态数组的数据结构,因为地址连续,一旦数据存储好了,查询操作效率会比较高...//创建一个初始化长度为100ArrayList集合 List initlist = new ArrayList<>(100); //将其他类
  • 要求设计一个DNS的Cache结构,要求能够满足每秒5000以上的查询,满足IP数据的快速插入,查询的速度要快。(题目还给出了一系列的数据,比如:站点数总共为5000万,IP地址有1000万,等等) 3.5.1 找出给定字符串对应...
  • SQL语法大全

    2014-03-30 11:00:11
    DROP TABLE 数据表名称 (永久性删除一个数据表) 4. 记录集对象方法: rs.movenext 将记录指针从当前位置向下移一行 rs.moveprevious 将记录指针从当前位置向上移一行 rs.movefirst 将记录指针移到数据表第一...
  • 例如定义一个包含 N 个指向返回指向字符指针函数指针数组? o 2.8 函数只定义了一次, 调用了一次, 但编译器提示非法重定义了。 o 2.9 main() 正确定义是什么? void main() 正确吗? o 2.10 对于没有...
  • 预防sql注入

    2019-08-31 14:54:15
    怎样预防 呢?归纳一下,主要有下面几点: 1.永远不要信任用户输入。...3.永远不要使用管理员权限数据库连接,为每一个应用使用单独权限有限数据库连接。 4.不要把机密信息直接存放。加密或者hash掉pas...
  • Java程序员面试宝典pdf

    热门讨论 2013-02-21 13:06:13
    面试题192 你怎样改造和重新设计一个ATM银行自动取款机 346 17.2 逻辑推理 347 面试题193 3盏灯与3个开关 347 面试题194 戴帽子 348 面试题195 海盗分金 349 面试题196 罪犯认罪 350 17.3 计算推理 351 面试题197 ...
  • delphi 开发经验技巧宝典源码

    热门讨论 2010-08-12 16:47:23
    0095 使用Length函数取得段字符串的长度 65 0096 使用Pos函数返回子字符串第次出现的索引值 66 0097 使用Quotedstr函数返回字符串的引证串 66 0098 使用Trim函数删除字符串的首尾空格 66 4.2 数学计算...
  • java面试宝典

    2013-02-28 16:04:01
    56、写一个函数,要求输入一个字符串和一个字符长度,对该字符串进行分隔。 14 59、Java 编程,打印昨天当前时刻。 15 60、java 和javasciprt 区别。 15 61、什么时候用assert? 16 62、error和exception有什么...
  • 千方百计笔试题大全

    2011-11-30 21:58:33
    56、写一个函数,要求输入一个字符串和一个字符长度,对该字符串进行分隔。 14 59、Java 编程,打印昨天当前时刻。 15 60、java 和javasciprt 区别。 15 61、什么时候用assert? 16 62、error和exception有什么...

空空如也

空空如也

1 2 3
收藏数 50
精华内容 20
关键字:

怎样查询一个数据的长度