精华内容
下载资源
问答
  • 点击蓝字关注我们AI TIME欢迎每一位AI爱好者的加入!本文原载于:《人民日报海外版》(2021-08-30 09版)张钹院士近影张钹(左1)在实验室与博士生讨论(1995年)张钹(右)...

    点击蓝字

    关注我们

    AI TIME欢迎每一位AI爱好者的加入!

    本文原载于:《人民日报海外版》

    (2021-08-30 09版)

    张钹院士近影

    张钹(左1)在实验室与博士生讨论(1995年)

    张钹(右)与张铃讨论人工智能学术问题(1992年)

    参与清华大学智能机器人实验室建设的科研人员合影,左1为张钹(1985年)

    当前,全球科技创新进入空前密集活跃期,特别是新一代信息技术加速突破应用,推动新一轮科技革命和产业变革重构全球创新版图。人工智能作为新一代信息技术的战略重点之一,近年来获得长足进步,给经济社会发展产生了重大而深远的影响。

    近年来,中国在人工智能领域表现亮眼,已成为世界人工智能主要创新中心之一。根据《人工智能发展报告2020》,在人工智能高层次人才数量和专利申请量等关键指标上,中国位居世界前列。这亮眼表现的背后离不开以中国科学院院士张钹等为代表的中国科学家作出的奠基性、开创性贡献。

    早在40多年前,张钹就开始投身人工智能领域研究,发表了中国第一篇人工智能领域的学术论文、获得中国在人工智能领域的第一个国际重要奖项、领衔成立国内首个智能机器人实验室、培养了本土第一位人工智能领域博士毕业生,组建中国第一个人工智能国家重点实验室……这些“第一”树立了中国人工智能发展的一个个里程碑,推动中国在此领域大踏步前进。

    01

    NEWS

    从不被看好到刮目相看

    中年成功转型研究人工智能

    今天,“人工智能”是人们耳熟能详的热词,但是在40多年前,中国科技界对该词汇还很陌生,科技领域的专业人士对该领域也知之甚少。1978年,已从清华大学毕业留校任教20年的张钹由于所在系调整而改变专业方向,进入一个全新研究领域——人工智能。

    张钹时年43岁,中年转型不仅知识结构上面临很大挑战,而且对人工智能领域国内知之甚少,求教无门。张钹回忆说:“当时国内科研人员对人工智能领域发展的认识很有限,甚至相关资料也非常少。”当时,国际上人工智能已经有了约20年发展历程。随着国门打开,国际科技合作与交流兴起,张钹获得了与国际同行交往的机会。

    1980年初,张钹赴美访学。然而,抵达美国后,他就在与外国同行交流中感到一种说不出的尴尬和郁闷。“你们是从中国来的?知道什么是人工智能吗?”有外国研究者提出这样的问题。张钹很受刺激,立志让中国在人工智能领域奋起直追,迎头赶上国际先进水平,赢得外国同行的尊敬。

    在访学过程中,张钹率先发现数学与人工智能结合的广阔前景。张钹说:“当时,我觉得人工智能要深入发展下去,提高算法效率,必须要很好利用数学这个工具。”于是,他选择跟数学出身当时尚在安徽大学任教的张铃教授合作,一起推进人工智能研究。

    由于跨国电话资费昂贵,两人只能通过邮寄书信的方式进行沟通。对当年与张铃中美飞鸿、合作科研的往事,张钹介绍说:“当时,中美间一封航空信大概要人民币8角钱,寄给对方约10天才能收到,一来一回就要约20天。我们计算过,一封信如果超过5张纸,就会超重,须多付邮资。为了省钱,我们特意挑相对薄的纸,写非常小的字。”

    就这样,张钹跟张铃开始了一场跨越大洋的人工智能合作研究。约1年后,他们联手完成了一篇人工智能领域的论文,实际上这也是中国科学家在人工智能领域的第一篇学术论文,成功发表于人工智能领域顶级国际期刊《IEEE模式分析与机器智能汇刊》,引起了国际同行的高度关注,这让张钹等中国学人颇为扬眉吐气,也增强了他为中国人工智能发展作出更大贡献的信心和决心。

    02

    NEWS

    从少年郎到白发翁

    水木清华育人六十余载

    1982年初,张钹结束访学回国,着手进一步开拓人工智能研究。为了解产业界对人工智能技术的需求,更好促进科技成果转化,张钹与其他科研人员一起深入从西南到东北的很多工厂调研,形成了基本判断:机器人将来会成为国内一项重大需求。

    根据上述判断,张钹领衔组建了清华大学智能机器人实验室并着手购置重要试验装备。为此,张钹与同事们多方奔走、筹措经费,联系国内外相关厂家,进行洽谈协商。在有关方面的大力协助下,清华大学智能机器人实验室成功添置了中国第一台进口机械臂。

    机械臂是高精度、高度非线性、强耦合的复杂系统,是人工智能的工业智能化应用的典型。对于清华大学智能机器人实验室而言,引入这款机械臂对于科研和教学无疑具有重要价值和意义。张钹对此非常期待并倾注了大量心血。他回忆说:“当我知道机器臂已经装上飞机,正在飞往北京时,那种兴奋真的难以言表。” 机械臂运抵北京后,张钹亲自跟车到机场“迎接”,直到搬运、装车、运抵清华园,他才终于松了一口气。

    关于自己的职业生涯,张钹曾这样概括说:“我一辈子就做了两件事,一件是读书,另一件就是在清华大学教书育人。”

    从毕业留校至今,张钹在清华大学的三尺讲台上坚守了超过一甲子。从不满24岁初登讲台的青涩年华到耄耋之年,他可谓桃李满天下,为国家培养、输送一批高科技专才,尤其是在人工智能领域。据统计,他培养的博士研究生近九十名。

    万事开头难。人工智能作为当时中国的新兴学科,科研和教学的条件都很艰苦。张钹介绍说,那时候,虽然他们的研究已经有了一定基础,但是软硬件条件与国际同行相比,差距很大,研究资料也不足,特别是专业、权威资料匮乏,更多是靠自力更生摸索。在那样的环境下,想留住优秀人才着实不易。面对徘徊在出国或留校读博士并向他请教的学生,张钹语重心长地说:“国外知名导师的科研、教学水平比我高,培养条件也比我这里好。你们选择出国深造和科研,我非常支持。但是如果你选择留下来,我会全心全意地培养你,绝不辜负。”肺腑之言感人至深,与他交谈的学生大部分选择了留下来,与他并肩奋战在人工智能领域并成长为行业的佼佼者。

    03

    NEWS

    从一片空白到创新中心

    中国人工智能造福全人类

    路漫漫其修远兮,吾将上下而求索。张钹和志同道合者正视差距、风雨兼程,一路追赶着国际人工智能发展前沿,取得了丰硕成果。

    1983年是张钹人工智能科研的丰收年。当年,国际人工智能大会在德国召开,张钹和张铃一起成为率先在国际人工智能大会上发表论文的中国科学家。1984年,他和张铃摘得一项欧洲人工智能奖项,成为首次获得该领域国际重要奖项的中国人。1985年,他领衔成立了中国首个智能机器人实验室。1987年,他培养的中国第一位人工智能领域的博士生毕业。1990年,他和同事一起成立了全国第一个人工智能国家重点实验室——“智能技术与系统”国家重点实验室。1987-1994年,张钹出任国家“863计划”即高技术计划智能机器人主题专家组专家,承担国家重点攻关课题。2018年,清华大学人工智能研究院成立,张钹出任研究院院长。

    作为中国人工智能主要奠基者和发展推动者,40多年来,张钹矢志不渝致力于中国人工智能领域的创新,发表或共同发表了数百篇学术论文,出版系列专著。他获得了诸多奖项,其中包括ICL欧洲人工智能奖、国家自然科学三等奖、国家科技进步三等奖、国家教委科技进步一、二等奖、电子工业部科技进步一等奖以及国防科工委科技进步一等奖,推动中国人工智能研究和产业向世界一流水平迈进。相关资料显示,中国在图像识别、语音识别等技术创新应用进入了世界先进行列,人工智能发明专利授权总量全球排名第一,核心产业规模持续增长。

    “在第三代人工智能发展上,中国科学家今天与国际同行处在同一起跑线上。我们已经摸索出中国人工智能的发展道路,正在向新的科技高峰继续攀登,我们有能力为造福国家和民族、造福全人类作出更多、更大贡献。”张钹表示。

    虽已经86岁高龄,但是张钹仍担任清华大学人工智能研究院名誉院长,活跃在科研创新领域。科技创新永无止境,人工智能技术发展永远在路上,矢志不移、创新不止的科学家永远年轻。这是张钹的写照。

    (原载于《人民日报海外版》 2021-08-30 09版)

    AI TIME欢迎AI领域学者投稿,期待大家剖析学科历史发展和前沿技术。针对热门话题,我们将邀请专家一起论道。同时,我们也长期招募优质的撰稿人,顶级的平台需要顶级的你!

    请将简历等信息发至yun.he@aminer.cn!

    微信联系:AITIME_HY

    AI TIME是清华大学计算机系一群关注人工智能发展,并有思想情怀的青年学者们创办的圈子,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法、场景、应用的本质问题进行探索,加强思想碰撞,打造一个知识分享的聚集地。

    更多资讯请扫码关注

    我知道你  在看  哦

    点击 阅读原文 了解更多

    展开全文
  • 清华张钹院士:走向真正的人工智能.pdf
  • 张钹院士人工智能独角兽为何不赚钱.pdf
  • 编者按:“「我们正在通往真正 AI 的路上」,现在走得并不远,在出发点附近,人工智能永远在路上,大家要有思想准备,这就是人工智能的魅力。”张钹院士此次演讲,字字珠玑,在现场听时,如在大学的讲堂,恍然大悟。...

    https://mp.weixin.qq.com/s/3Y76nhG-dRifdqSu95T7-w

     

    编者按:“「我们正在通往真正 AI 的路上」,现在走得并不远,在出发点附近,人工智能永远在路上,大家要有思想准备,这就是人工智能的魅力。”张钹院士此次演讲,字字珠玑,在现场听时,如在大学的讲堂,恍然大悟。从此,对于人工智能,不会被泡沫迷惑,也不会被悲观左右。

    我今天要讲的中心思想就是:我们现在离真正的人工智能还有一段很长的路。为了讲清这个思想,我必须回答下面三个问题:第一,什么叫做真正的人工智能?我们的目标是什么?第二,为什么我们需要真正的人工智能?第三,我们如何走向真正的人工智能?我现在回答这三个问题。

    首先我们如何评价目前人工智能取得的成果,我们的评价很简单,针对这 5 件事:

    第一是深蓝打败人类国际象棋冠军;第二是 IBM 在电视知识竞赛中打败了美国的前两个冠军,这两件事是一种类型,后面的三件事是另外一种类型;即 2015 年微软在 ImageNet 上做图象识别,它的误识率略低于人类。还有百度、讯飞也都宣布在单句的中文语音识别上,它的误识率也略低于人类。还有一个是大家非常熟悉的 AlphaGo 打败了李世石。这 5 件事情都是机器在一定的范围内超过了人类,我们如何来评价这 5 件事?

    大家一致认为这 5 件事之所以成功,是由于前面三个因素,一是大数据,二是计算能力提高,第三是有非常好的人工智能算法。这三个因素大家都讨论得非常多了,没必要我再来说,我现在要说的最后一个因素是被大家所忽略的,这个因素是说,这所有的成果必须建立在一个合适的应用场景下。这 5 件事虽然领域很不一样,但是它们都满足完全一样的条件,或满足下面的 5 个限制,首先你必须有丰富的数据或者丰富的知识,如果这两件东西没有,或者很少,你不用来谈人工智能,因为你无法实现无米之炊。人工智能唯一的两个资源,一个是数据,一个是知识。还有确定性信息、完全信息、静态的、单任务和有限领域。这 5 个条件里面任何一个条件不满足,现在的人工智能做起来就非常困难了。

    大家想想这 5 个限制条件下的应用场景是什么样的应用场景?就是照章办事,不需要任何灵活性,这显然不是智能的核心。

    我们现在分析一下上述 5 个场景。下象棋是完全信息博弈,信息完全和确定,没有问题。其次,它遵循着完全确定的游戏规则演化,我们把这种情况也叫做静态。Watson 机器人也是这样,Watson 是什么样的对话问题呢?它为什么选择知识竞赛呢?我们知道知识竞赛提的问题都没有二义性,都是明确的,它的答案总是唯一性的。所以这样的问答对机器人来讲是非常容易的。它涉及的领域虽然比较宽,但也是有限的,包括大家觉得很玄乎的围棋,也完全符合上面 5 个条件,所以对计算机来说也是很容易的。目前计算机打麻将就不行,因为牌类是不完全信息博弈,所以比棋类要难。总之,我们对目前人工智能取得的成果要有一个正确的评价。

    目前的人工智能技术在以下领域都可以找到它的应用,它们是交通、服务、教育、娱乐等等,但我要强调是这些领域里面只有满足上述 5 个条件的事情,计算机做起来才会容易,如果不满足这些条件,计算机就做起来就困难了。大家常常关心什么样的工作会被机器所替代,我可以明确告诉大家,满足这 5 个条件的工作,总有一天会被计算机取代,就是那些照章办事,不需要任何灵活性的工作,比如说出纳员、收银员等等。在座的所有工作都不可能被计算机完全代替,但不排斥你的工作中有一部分会被计算机取代,老师、企业家等的工作不可能被计算机完全代替。

    为什么有这 5 个限制?原因在于我们现在的人工智能是没有理解的人工智能。

    我们先看符号模型,理性行为的模型,举 Watson 的例子,它是个对话系统,我们现在所有做的对话系统都跟这个差不多,但是 Watson 做得更好些,它里面有知识库,有推理机制。沃森除了专家知识之外,还有大量互联网上大众的知识,还运用了多推理机制。请看,这就是 Watson 系统的体系结构。它里面有哪些知识呢?有很多,包括百科全书、有线新闻、文学作品等等。所有的知识用纸质来表示有 2 亿页,用存储量表示达到了 4TB。它能回答什么问题呢?用它的例子来说明。第一个问题,1974 年 9 月 8 日谁被总统赦免?这对美国人来讲很好回答,同样对计算机来讲也很好回答,你用这几个关键字「1974 年 9 月 8 日」、「被总统赦免」,就能在文献里头查出来是谁,他就是尼克松。也就是说根据问题中的关键字,可以在已有的文献里头直接找到答案,这就是一般的网络检索方法。

    第二个问题,荧光粉受到电子撞击以后,它的电磁能以什么方式释放出来?我们用「荧光粉」、「电子撞击」、「释放电磁能」等关键词,也可以找到答案:「光或者光子」。这种方法就是平时网络搜索的原理,应该说没有什么智能。

    回答下面的问题就需要「智能」了,跟智利陆地边界最长的是哪个国家?跟智利有陆地边界的国家可以检索到,它们是阿根廷和玻利维亚,但是谁的边境长?通常查不到。Watson 具备一定的推理能力,它从边界间发生的事件、边界的地理位置等等,经过分析推理以后就可以找出答案,它就是阿根廷。下一个问题也属于这种性质,跟美国没有外交关系的国家中哪个最靠北,跟美国没有外交关系的国家有 4 个,只要检索就行了,但是哪个国家最靠北,没有直接答案,但可以从其它信息中推导出来,比如各个国家所处的纬度、气候寒冷的程度等等分析出来,答案是北朝鲜。

    智能体现在推理能力上。但是很不幸,现在的对话系统推理能力都很差。Watson 系统好一些,但也很有限。换句话说,我们现在的对话系统离真正的智能还很远。

    我们通过索菲亚机器人就可以看出来,索菲亚的对话是面向开放领域,你可以随便提问,问题就暴露出来了。大家在电视上看到索菲亚侃侃而谈,问什么问题都能答得很好,这里面有玄机,如果你的问题是预先提出来的,因为里头有答案,因此回答得非常好,在电视上给大家演示的都是这种情况。

    如果我们临时提问题,问题就出来了。这是一个中国记者给索菲亚提的 4 个问题,它只答对了一个。「你几岁了」,这个问题很简单,它答不上来,它的回答是「你好,你看起来不错」,答非所问,因为它不理解你所问的问题。只有第二个问题它是有准备的,里面有答案,所以答得很好。「你的老板是谁」,这个肯定它有准备。第三个问题,「你能回答多少问题呢」?它说「请继续」,没听懂!。再问第四个问题,「你希望我问你什么问题呢」?它说「你经常在北京做户外活动吗」?这就告诉我们说,现代的问答系统基本上没有理解,只有少数有少量的理解,像 Watson 这样算是比较好的。

    为什么会这样?也就是说我们现在的人工智能基本方法有缺陷,我们必须走向具有理解的 AI,这才是真正的人工智能。我这里提出的概念跟强人工智能有什么区别?首先我们说它在这点上是相同的,我们都试图去准确地描述人类的智能行为,希望人工智能跟人类的智能相近,这也是强人工智能的一个目标,但是强人工智能只是从概念上提出来,并没有从方法上提出怎么解决。大家知道强人工智能提出了一个最主要的概念,就是通用人工智能。怎么个通用法?它没有回答。我们现在提出来的有理解的人工智能是可操作的,不只是概念,这是我们跟强人工智能的区别。

    人机对话的时候,机器为什么不能理解人们提的问题。我们看一个例子就知道了,我们在知识库里把「特朗普是美国总统」这个事实,用「特朗普-总统-美国」这三元组存在计算机里面,如果你提的问题是「谁是美国总统」?机器马上回答出来:「特朗普」。但是你如果问其它有关的问题,如「特朗普是一个人吗」?「特朗普是一个美国人吗」?「美国有没有总统」?它都回答不了。它太傻了,任何一个小学生,你只要告诉他特朗普是美国总统,后面这几个问题他们绝对回答得出来。机器为什么回答不了后面的三个问题呢?就是这个系统太笨了,没有常识,也没有常识推理。既然特朗普是美国的总统,美国当然有总统,但是它连这一点常识的推理能力都没有。所以要解决这个问题,必须在系统中加上常识库、常识推理,没有做到这一步,人机对话系统中机器不可能具有理解能力。但是大家知道,建立常识库是一项「AI 的曼哈顿工程」。大家想想常识库多么不好建,怎么告诉计算机,什么叫吃饭,怎么告诉计算机,什么叫睡觉,什么叫做睡不着觉,什么叫做梦,这些对人工智能来说都非常难,美国在 1984 年就搞了这样一个常识库的工程,做到现在还没完全做出来。可见,要走向真正的人工智能,有理解的人工智能,是一条很漫长的路。

    这里介绍一点我们现在做的工作,加入常识以后,对话的性能会不会有所改善。我们的基本做法是建立一个常识图谱,用这个图谱帮助理解提出的「问题」,同时利用常识图谱帮助产生合适的答案。

    下面就涉及到具体怎么做了,我不详细说了,我就说结果,结果是有了常识以后,性能有了显著的改善,对话的质量提高了。这篇文章已经发表,有兴趣可以去阅读。

    另外是准符号模型,深度学习、神经网络主要用来模拟感性行为,感性行为是一般很难采用符号模型,因为感性(感觉)没法精确描述。比如「马」,怎么告诉计算机什么叫做马?你说马有四条腿,什么叫做腿?你说细长的叫做腿,什么叫细?什么叫做长?没法告诉机器,因此不能用符号模型。目前用的办法就是我们现在说的神经网络或者准符号模型,也就是用人类同样的办法,学习、训练。我不告诉机器什么叫做马,只是给不同的马的图片给它看,进行训练。训练完以后,然后再用没见过的马的图片给它看,说对了,就是识别正确了,说不对就是识别不正确,如果 90% 是对的,就说明它的识别率是 90%。后来从浅层的神经网络又发展到多层的神经网络,从浅层发展到多层有两个本质性的变化,一个本质性的变化就是输入,深层网络一般不用人工选择的特征,用原始数据就行。所以深度学习的应用门槛降低了,你不要有专业知识,把原始数据输进去就行了。第二个是它的性能提高很多,所以现在深度学习用得很多,原因就在这个地方。

    通过数据驱动建立的系统能不能算是有智能呢?必须打一个很大的问号,就是说你做出来的人脸识别系统甚至识别率会比人还高,但是我们还不能说它有智能,为什么呢?这种通过数据驱动做出来的系统,它的性能跟人类差别非常大,鲁棒性很差,很容易受干扰,会发生重大的错误,需要大量的训练样本。我们刚才已经说过,给定一个图像库我们可以做到机器的识别率比人还要高,也就是说它可以识别各种各样的物体,但是这样的系统,我如果用这个噪声输给它,我可以让它识别成为知更鸟,我用另外的噪声输给它,可以让它识别成为猎豹。换句话讲,这样的系统只是一个机械的分类器,根本不是感知系统。也就是说它尽管把各种各样动物分得很清楚,但是它不认识这个动物,它尽管可以把猎豹跟知更鸟分开,但是它本质上不认识知更鸟和猎豹,它只到达了感觉的水平,并没有达到感知的水平,它只是「感」,没有上升到「知」。我们的结论是,只依靠深度学习很难到达真正的智能。这是很严峻的结论,因为如果有这样的问题,在决策系统里头是不能用这样的系统,因为它会犯大错。我在很多场合讲过,人类的最大的优点是「小错不断、大错不犯」,机器最大的缺点是「小错不犯,一犯就犯大错」。这在决策系统里头是不允许的,这就显示人跟机器的截然不同,人非常聪明,所以他做什么事都很灵活,这就使得他很容易犯各种各样的小错。但是他很理性,很难发生大错。计算机很笨,但是很认真,小错误绝对不会犯,但是它一犯就是天大的错误。刚才把那个把噪声看成知更鸟,这不是大错吗?你把敌人的大炮看成一匹马,不是大错吗?但是人类不会发生这种错误,人类只会把骡看成驴,但是计算机的识别系统会把驴看成一块石头。原因在哪儿?原因还是 AI 的理解能力问题。

    我们看这个自动驾驶,过去讲得很多,而且讲得很乐观,我们看看问题在什么地方。我们现在是这样做,我们通过数据驱动的学习方法,学习不同场景下的图象分割,并判别是车辆还是行人、道路等,然后建立三维模型,在三维模型上规划行驶路径。现在用硬件已经可以做到实时,请问大家,这样能不能解决问题?如果路况比较简单,行人、车辆很少,勉强可以用。复杂的路况就用不了。什么原因?非常简单,好多人总结出这个经验,行人或者司机都会有意无意破坏交通规则,包括外国人也一样,中国人更严重一点。这就使得数据驱动方法失效,比如说我们可以用数据驱动方法来了解各种各样行人的行为,我们可以通过大量进行训练,都训练完以后,如果出现新的情况呢?计算机能理解这是人从底下钻过来,很危险吗?所以你不可能把所有情况都训练到。自动驾驶不可能对付突发事件,如果这个突发事件它没见过,它就解决不了。怎么来解决这个问题呢?实际上就是要解决从「Without」到「With」理解的问题。人工智能现在有两种基本方法,一种是用符号模型来模拟理性行为,符号模型可以表达信息的内容,所以它是在一个语义的符号空间里头,但是非常不幸,这个离散的符号表示,数学工具很难用,很多数学工具用不上去,所以它发展很慢。在模拟感性行为的时候,我们用的是特征空间的向量,向量就是数,可以把所有的数学工具都用上,优化的工具、概率统计的工具全部用上。所以数据驱动方法这几年发展非常快,再难的问题,下围棋非常难吧,计算机也可以「算」出来。但是它有一个非常大的缺陷,它是在特征空间里,缺乏语义。我们用数据去训练一个模型,所谓「黑箱学习法」,加上你的数据质量不高,很难学出有用的东西。什么叫概率统计?重复多了就是真理。如果数据质量差,充满了「谎言」。谎言重复多了,就变成真理了。

    我们现在想出的解决办法是这样的,就是把这两个空间投射到一个空间去,这个空间叫做语义的向量空间。也就是说我们把符号变成向量,同时把特征空间的向量变成语义空间的向量。怎么做?一是通过 Embedding(嵌入)把符号变成向量,尽量保持语义不变,可惜现在的方法都会引起语义的丢失,我们只能在投射的过程中让语义丢失得少。第二方面做的工作比较少,就是 Raising(提升),把特征空间提升到语义空间去,这主要靠学科交叉,靠跟神经科学的结合。只有这些问题解决以后,我们才能够建立一个统一的理论,因为过去的感知和认知是不同的处理方法,大家说不到一块,如果我们能够投射到同一空间去,我们就可以建立一个统一的理论框架,这是我们的目标。在语义空间处理就可以解决理解问题,但是这项工作是非常艰巨的。

    介绍一项我们现在做的工作。人工神经网络为什么不能得到语义信息呢?人脑的神经网络为什么可以呢?差别就在这里,我们现在用的人工神经网络太简单了,我们正想办法把脑神经网络的许多结构与功能加进去,我们这里只用了「稀疏发电」这一性质,就可以看出一些效果,人脸、大象或者鸟的轮廓,神经网络可以把它提取出来。

    还有一个办法就是把数据驱动跟知识驱动结合起来。刚才讲了,人的智能没法通过单纯的大数据学习把它学出来,那怎么办?很简单,加上知识,让它有推理的能力,做决策的能力,这样就能解决突发事件。我们现在做的工作就是把这些结合起来,这是我们的基本思路,知识也好,数据也好,都投射到同一空间,然后都用同样的数学方法进行处理,这方面我们已经做了不少工作。

    最后做一个总结,我们从这个坐标看人工智能,横轴代表领域的宽窄,从单领域到多领域、到开放领域。纵轴代表信息的确定性与完全性,从完全到不完全、从确定到不确定。在左下角代表最容易的,就是刚才讲的符合 5 个条件的,现在人工智能在这部分解决得非常好,我们用白色来表示它,AlphaGo 在这里,深蓝在这里,工业机器人在这里。现在我们正在向灰色地区去走,打牌,信息不完全,现在打德州PUKE,一人对一人,计算机能战胜人类,多人对弈,计算机还不行,这是灰色地带,我们还可以做,为什么可以做?尽管打牌是不确定的,但是它在概率意义下是确定的,你拿的这副牌的概率,可以算出来,同花的概率是多少,排成顺的概率是多少,既然概率能算出来,最终人类肯定会被计算机打败。Watson 在右边,它的领域比较宽,但是它是确定性的,所以是在灰色的区域。往右上方去就比较难了,自动驾驶、服务机器人、大数据分析,它是一个大框,有的简单,有的困难,就自动驾驶来讲,专用道、行车很少,路况简单等,在白色或者灰色区,如果路况复杂就到了黄色区域,黄色区现在计算机还解决不好。最远的在哪儿呢?右上角,图灵测试。大家对图灵测试有很多误解,其实图灵测试是开领域问答,很难!索菲亚做得怎么样?很糟糕。自然语言理解也在这里,复杂环境下的决策在偏左一点的地方,这也是很难的。所以我们人工智能现在是从左下角往右上角走,我们现在处在出发点附近。有的人想把它用一些名词来区分人工智能的不同发展阶段,有专家问我,你的看法怎么样?我建议不要用新词,用新词往往说不清,很麻烦,有的人说现在是弱人工智能,以后是强人工智能,也有人说现在叫增强智能(Augmented Intelligence)也是 AI……概念太多说不清,还是简单一点,「我们正在通往真正 AI 的路上」,现在走得并不远,在出发点附近,人工智能永远在路上,大家要有思想准备,这就是人工智能的魅力。大家为什么这么重视人工智能?因为我们永远在路上,这就吸引我们去解决这些问题,这些问题一旦解决了,人类的社会进步、人类的生活就会发生本质上的改变。

    最后我用中文写最后一段作为总结,可惜我翻译不了。

     

    周穆王西巡狩,路遇匠人名偃师。翌日偃师谒见王,偕来一个假人。「趋步俯仰,信人也」。「领其颅,则歌合律;捧其手,则舞应节。千变万化,惟意所适。王以为实人也,与盛姫内御并观之,技将终,倡者瞬其目而招王之左右侍妾。王大怒,要杀这个偃师。偃师大慑,立剖其倡者以示王,皆傅会革、木、胶、漆、白 、黑、丹、青之所为。穆王始悦,诏贰车载之以归。

     

    这是 3000 年前我们古人对机器人的想象,看看现在的人工智能做得怎么样呢?索菲亚是我们现在达到的水平,可是她不会唱歌、不会跳舞,只会说英文,周王也听不懂,肯定没有印象。现在我们假设索菲亚「瞬其目而招王之左右侍妾」,向周王的姨太太们送去秋波,王会如何呢?我认为没反应,因为索菲亚是女的,他用不着吃醋。但是我们假设索菲亚「瞬其目而招王」,向大王送去秋波,王会大悦,立即神魂颠倒,坠入爱河?我认为不会,因为索菲亚根本不像人,它最近才刚刚安上手脚,走路都不利索,怎么行呢?所以我的结论是,「索菲亚通不过穆王的测试,当然它更通不过图灵测试」。

    我们的结论是什么?人工智能刚刚起步,离真正的 AI 还很遥远,大家共同努力吧,我们任重道远。

    展开全文
  • AI 科技评论按:12 月 27 日 AI 科技评论去清华蹭了一个研讨会,主题是「从阿尔法 Go 到通用人工智能:脑科学与人工智能」。这是清华大学脑与智能实验室自 12 月 15 日成立之后举办的首次学术研讨会。在这次研讨会上...

    AI 科技评论按:12 月 27 日 AI 科技评论去清华蹭了一个研讨会,主题是「从阿尔法 Go 到通用人工智能:脑科学与人工智能」。

    这是清华大学脑与智能实验室自 12 月 15 日成立之后举办的首次学术研讨会。

    在这次研讨会上,AI 科技评论第一次看到这么多脑科学家讲怎么用老鼠、猴子做实验。除此之外,AI 科技评论也听到两场非常引人深思的 AI 相关报告——一场为张钹院士做的《 AI 和神经科学》,另一场是今日头条 AI Lab 主任李航博士的《 NLP 现状和未来》。

    听完之后 AI 科技评论深觉遗憾,为什么呢?因为张钹院士和李航博士的报告非常值得 AI 研究人员细细品味,但在场的人并不是很多,且多数并不是「AIer」。

    回来后 AI 科技评论决定根据现场拍的一些照片和做的一些笔记简单还原一下张钹院士的报告现场(没能完整记录李航博士的报告,sad!),聊解遗憾。

    张钹院士的报告全程英文,但最后用中文做了点睛之笔。

    张钹院士在报告中首先分析了什么是智能。他认为智能包含三个成分:perceive、rational thinking 和 taking action。综合来说就是,一个智能体要能够感知它周围的环境,进行思考并采取行动来最大化它实现某些目的的机会。

    现在的 AI model 无外乎两种类型:符号模型(Symbolic model)和亚符号模型(Sub-symbolic model)或者称为连接主义(Connectionism)。

    符号模型

    符号模型的基本思想主要由 J. McCarthy 等人于 1955 年提出。他们认为 AI 的研究基于这样一个猜想,即学习或者任何其他的智能特征原则上都可以被精确地描述。他们提出两个基本假设:

    • 物理符号系统假设:物理符号系统是智能的充分必要条件;

    • 人脑和计算机都是物理符号系统,认知过程就是在符号表示上的运算。

    在 1976 年 Newell 和 Simon 提出了一个符号模型。它包含两部分:知识库和推理机(Inference Engine)。这种 AI 主要是知识驱动或者基于规则的模型。

    在 McCarthy 等人提出符号模型之后大约 40 年,1997 年 IBM 推出的基于符号模型的 IBM 深蓝(Deep Blue)在国际象棋比赛中以 2 赢 1 败 3 平打败了当时的世界冠军 Kaspanov。在深蓝的系统中,包含了 700,000 份人类大师的棋谱,这些棋谱分别用 V-value 函数来表示,函数有 8000 多个变量。

    IBM 沃森的结构

    2011 年,IBM 沃森在综艺节目《危险边缘》中打败了最高奖金得主布拉德·鲁特尔和连胜纪录保持者肯·詹宁斯。同样它也是基于知识的符号型 AI 系统,它的知识来源于百科全书、字典 、词典、新闻、文学作品以及维基百科的全部文本,在其 4TB 的磁盘中包含了 2 亿页结构化和非结构化的信息。

    以Watson为代表的新一代的基于知识的符号模型系统相对之前有少许变化。其一是知识库中的知识表示变成多样化;其二是多推理机(Multi-Inference Engines)结构;其三是增加了大众知识(来自互联网)。

    但是这种知识驱动的符号模型也有其局限之处,如下:

    • 有很多人类行为(知识)并不能精确描述,例如常识;

    • 知识库总是有限的,它不能包含所有的信息;

    • 知识是确定的;

    • 它只能描述特定的领域;

    • 大量知识不能做到定量化(例如质量)。

    所以这种模型只能在宏观层面上用来模拟人类的某些行为。

    亚符号模型/连接主义

    1965 年,在达特茅斯夏季研讨会的提议文件(http://t.cn/RAnjsCF)的问题 2 中说到「怎么安排一组(假设的)神经元来形成概念?……这个问题仍需要更多的理论工作。」

    对于神经网络,大致有两个时期。第一个为浅层神经网络(Shallow Neural Network),这个网络只有一层隐藏层。在这种网络中,需要手工特征(Hand-crafted Features)来构建分类器,因此它需要有领域的知识。

    另外一种是在 2000-2006 年间,由 Igor Aizenberg 和 Geoff Hinton 完成。这个网络有更多的隐藏层,称为多隐藏层(深度)神经网络。多隐藏层的结构带来了很大的变化。首先是,我们可以用 Raw data 代替手工特征,所以领域知识也就不再是必须的了。以图像为例,我们只需要将图像按照 pixel 的格式输入即可。其次,深度神经网络让亚符号模型的表现有了很大的提高。再次,在 90 年代 AI 研究人员发展了一系列成熟的统计数学工具,这在模型中有很多表现,让模型变得更具可度量和可验证性。另外,这个模型有很清晰的神经科学的解释。

    这种 AI 系统主要是基于数据驱动。只要有数据,我们不需要有太多的领域知识就可以在任务中做得很好。基于深度神经网络的例子很多,例如 AlphaGo。

    相比于人类的神经网络,它仍有一系列的缺点。如下:

    以 2014 年 Goodfellow 发表的《Adversarial examples and adversarial training》为例,输入的图片加上一点点的噪声,AI 系统就将一张明显是熊猫的图片以 99.3% 的置信度识别成长臂猿。所以目前的 AI 系统在 robustness 上还是非常弱的。

    这种 AI 系统只是一种分类机器,是一个 AI without Understanding,所以仅仅依靠基于数据驱动的深度学习很难产生真正的智能,也远没有触及智能的核心。若想做到真正的智能,就必须

    人工智能的核心

    前面说道,深度学习并没有触及到人工智能的核心,那么人工智能的核心是什么呢?张钹院士认为主要表现为以下五个方面:

    • 在缺乏知识和数据的情况下依然能够完成任务;

    • 在信息不完善(甚至缺乏信息)的情况下依然能够完成任务;

    • 能够处理非确定性的任务;

    • 能够处理动态任务;

    • 能够处理多领域和多任务。

    AI 研究的新趋势

    基于对上面的讨论,可以看出目前 AI 的研究有两种,基于知识的符号模型和基于数据的亚符号模型(连接主义)。张钹院士认为现在在 AI 研究中渐渐出现了一种新的趋势,即建立一种同时基于知识和数据的 AI 系统

    他认为,处理知识是人类所擅长的,而处理数据是计算机所擅长的。如果能够将二者结合起来,一定能够构建出一个比人类更加智能的系统。

    如何去做呢?

    现在我们有两种基本的 AI 方法。一种是基于语义符号的方法,一般用在处理文本和语言,我们会构建一个语义符号空间(Semantic Symbolic Space)。另一种是基于数据的特性向量的方法,用来处理图像和语音,我们会构建一个特性向量空间(Feature Vector Space)。

    因此我们可以构建一个新的空间,叫做语义向量空间(Semantic Vector Space),即将语义符号空间进行 embedding 处理或者将特性向量空间进行 Raising 处理。通过这种方法,我们将可以统一处理 text、language、image 和 speech。

    张钹院士认为在这些方面,尤其是在将特性向量空间 raising 到语义空间上,我们应该向神经科学学习。例如脑神经中有 feedback connection、lateral connections、sparse firing、attention mechanism、multi-model、memory 等机制,这些都值得设计 AI 系统的人员去注意和学习。

    研究案例

    张钹院士介绍了四个案例来说明如何向神经科学学习,以及如何构建同时基于知识和数据的 AI 系统。(公众号后台发送「张钹」,获取四篇案例论文原文)

    一、Sparse Firing + HMAX

    论文:Sparsity-Regularized HMAX for Visual Recognition

    这项工作的一个创新点在于将神经科学中的发现 Sparse firing 和 HMAX 结合在一起。

    HMAX 模型是 Riesenhuber, M. & Poggio, T 等人于 1999 年提出,其理念是模仿人的认知,由点到线到面逐级抽象,还原高级特性。HMAX 是计算机视觉中非常重要的一个模型。

    Sparse firing 是神经科学中的一个概念。神经科学的研究表明在人的大脑中,针对一个刺激大多数神经元是沉默的。例如依照大脑内细胞的密度、探针大小以及探针可以测量到的信号距离来估计,一根探针应该可以测到周围十个甚至上百个神经元的信号,但实际情况通常只能测到几个神经元信号,90% 以上的神经元是测不到的。这就是说针对一个刺激,只有少数(稀疏)神经元是被激活的。

    大脑神经元的这种 sparse firing 激活方式,或者说 sparse coding 方式有许多优点,一方面可以用少量的神经元对大量的特征进行编码,另一方面也能降低解码误判以及能量损耗等等。

    这篇文章的工作正是将 Sparse firing 与 HMAX 模型相结合,应用于图像识别任务当中。工作非常有意思,感兴趣的读者不妨一读。

    二、视觉识别验证码

    论文:A generative vision model that trains with high data efficiency and breaks text-based CAPTCHAs ( Science, 26 Oct. 2017)

    这篇文章于今年 10 月份发表于《Science》期刊,是人工智能向神经科学学习的一个范例。

    目前的机器学习模型在图像识别的任务中往往需要大量的训练数据集,而训练的结果往往只能应用于特定的领域内。但人类的视觉智能则可以通过少数样本(甚至不需要样本)来学习并能够很轻易地迁移到完全不同的情景当中。所以向人类的视觉神经机理学习或许是机器学习模型进一步发展的方向。

    在这篇文章中,知名的人工智能创业公司 Vicarious 就通过人类视觉一些工作机理的启发,构建了一个层级模型,他们称之为「递归皮层网络」(Recursive Cortical Network, RCN)。在模型中他们引入了视觉概率生成的模型框架,其中基于消息传送(message-passing)的推断,以统一的方式处理图像的识别、分割和推理(Reasoning)。

    这个方法表现出了非常优秀的泛化和遮挡推理(occlusion-reasoning)能力,在困难的场景文字识别任务上远优于深度神经网络,且具有 300 倍的数据效率(data efficient)优势。

    其实验结果如下表

    在 reCAPTCHA 的验证码单词识别准确率已经可以达到 66.6%,BotDetect 为 64.4%,雅虎上为 57.4%,PayPal 上为 57.1%。

    三、DNN 的可解释性

    论文:Improving interpretability of deep neural networks with semantic information (2017)

    这篇文章是张钹院士组在 CVPR 2017 上的一篇论文,是「Knowledge+data」的一个典型范例。

    在传统的图像识别的 DNN 模型中,我们输入图片,得到描述性结果,但是我们却不知道为什么会得到这样的结果,也不知道隐藏层中都是什么 feature,或者当得到一个错误结果时我们不知道为什么会错。

    这篇文章的研究主要方法就是先获得一些人类对图片的描述作为语义信息数据;将这些数据和图片同时送入到 DNN 模型中进行训练;这里每一个神经元都会与一个 topic 进行关联,于是整个网络变得具有可解释性。

    四、Zero-shot 视频识别

    论文:Recognizing an Action Using Its Name: A Knowledge-Based Approach

    这篇文章的工作也是一个典型的「Knowledge+data」范例。

    现有的动作识别算法需要一组正面的示例来训练每个动作的分类器。但是,我们知道,动作类的数量非常大,用户的查询变化也很大。预先定义所有可能的行动类别是不切实际的。

    在本文中作者提出了一种不需要正面示例的方法,通常这种方法被称为「Zero-shot Learning」。目前的零点学习模式通常训练一系列属性分类器,然后根据属性表示识别目标动作。为了确保特定动作类别的最大覆盖范围,基于属性的方法需要大量可靠且准确的属性分类器,这在现实世界中通常是不可用的。

    在这篇论文中,作者提出的方法只需要一个行动名称作为输入来识别感兴趣的行为,没有任何预先训练的属性分类器和正面的示例。

    给定一个动作名称后,首先根据外部知识(例如 Wikipedia)建立一个类比池,类比池中的每个动作都会与不同层次的目标动作有关。

    从外部知识推断的相关性信息可能是嘈杂的。所以他们又提出一种算法,即自适应多模型秩保持映射(Adaptive multi-model rank-preserving mapping model, AMRM)来训练动作识别的分类器,能够自适应地评估类比池中每个图片的相关性。

    以上四个例子有两类,一类是向神经科学学习的结果;一类是基于「数据+知识」的结果。(公众号后台发送「张钹」,获取四篇案例论文原文)

    张钹院士介绍说他们工作的一个思路就是:数据+知识=统计学习模型。其中知识包括先验模型、逻辑规则、表示学习、强健的统计约束等。

    此外他还提到了的 Bayesian Deep Learning 的概念。

    最后他认为我们目前的 AI 系统是在介观层面上模仿了人类,我们还需要向神经科学学习和合作。在 AI 系统的研究中应当将知识驱动和数据驱动结合起来,将理性行为和感性行为结合起来。

    总结(划重点)

    张钹院士演讲的亮点在最后的 summary,原文整理如下(稍作修改):

    鲁迅说到,不同的人对《红楼梦》有不同的看法,经济学家看到《易》,道学家看到淫,才子看到缠绵,革命家看到反满,流言家看到宫闱秘事。

    现在的人工智能有点儿像《红楼梦》,不同的人有不同的看法。企业家看到商机,科学家(霍金)看到危险,工程师看到应用前景,老百姓看到 AlphaGo 打败李世石。我现在就说教授们应该看到什么,这也是我今天报告希望大家能够看到的。

    看到什么呢?就是——AI 科学的曙光。

    大家看待 AI,有两个过程。过去是低看了 AI,觉得 AI 没什么。现在 AlphaGo 出来以后,突然 AI 上天了,大家对它仰视了。我告诉大家,这两个都不对。大家要平视 AI。

    为什么过去对 AI 有这个印象呢?确实,过去的 AI 我们没有资格去谈,因为我们只有猜测、假设,只有 case by case。我们没有什么本事。再加上有些人炒作,不靠谱的东西很多。所以过去我们不能给大家谈。

    现在我们有希望给大家谈的,就是刚才讲的。现在从深度学习中大家看到的是广泛的应用。但是没有看到深度学习给我们点燃了一个曙光,就是人工智能完全可以用建立数学模型的方法来做。当然它也告诉我们,光用数学的方法来建造人工智能是不行的,例如深度学习获得的结果只是一个机械的分类器,这跟人的认知或感知完全是两码事。

    那么我们接下来怎么走向建造人工智能的数学模型这一步呢?只有两条路。一条就是向脑科学学习,看大脑里面是怎么做到智能的。大脑里面也是使用神经网络,   为什么它可以认识「鸟」,而计算机就不行呢?我们很清楚,计算机的这个神经网络和大脑的神经网络不可同日而语。我们必须向大脑学习。

    另一条路就是把知识和数据结合起来。大家想一想,人的智能主要不是来自于数据,而是来自于知识。但是为什么大家要把数据看得这么重呢?这是因为数据很多,而且计算机最擅长的就是数据的处理。所以就给大家一个模糊的认识,以为数据决定一切。这是错的。但是这也给我们提了个希望,既然计算机搞数据厉害,人利用知识厉害,如果我们能够让这两个结合起来,我们就有希望做出比人还要好的系统。

    问:张老师您好。您最后一个 slice 说在 AI 中商人看到了商机等等。所以我特别想知道您最后问的问题的答案,教授们应该看到的什么

    张钹:教授应当看到的是——去做人工智能的基础问题。我们不能去看那个商机,商机应该让企业家去看。我现在认为人工智能正处在突破的前夜。深度学习不是我们的突破,深度学习只是展示了突破的希望,因为深度学习并没有构造真正的 Intelligence。

    现在我们有机会触及到 the core of intelligence。在什么情况下我们才有可能触碰 the core of intelligence 呢?就是刚才我讲那 5 个条件,即

    • 在缺乏知识和数据的情况下依然能够完成任务;

    • 在信息不完善(甚至缺乏信息)的情况下依然能够完成任务;

    • 能够处理非确定性的任务;

    • 能够处理动态任务;

    • 能够处理多领域和多任务。

    现在的人工智能做的并不是真正的智能。它是选择了那些确定性的、静态的问题,这个本来就是计算机会干的事。计算机不会干的事是随机应变,举一反三,由表及里,这才是智能的本质。我们过去做的系统,没法做到智能的本质,因为我们还不知道。深度学习给了我们一个提示,就是我们已经接触到了智能的本质。那么我们沿着这个去做,才有希望。

    大家现在都在消费深度学习。我们都知道,如果用深度学习来做识别,把石头看成人没有关系;但是做决策,把敌人看成朋友是不允许的。深度学习不解决这个问题,它绝对会产生大错。这是它本质造成的。   所以我一直说,到目前为止,在复杂路况下,还很难实现真正的无人车,「无人车」旁边还需要坐一个人。为什么?稍微懂点人工智能的人都知道,目前人工智能还不能解决突发事件。

    过去我们没有能力做到真正智能这一点。而今天是科学研究人员的一个机会。希望大家去做。如果大家持续去做,我相信会有新的发现。现在很多人看到了商机,看到了应用,看到了计算机打败李世石,但却很少人有看到这一点。局外人看不清,作为局内人,我提醒大家,教授应当看到——AI 科学的曙光。





    人工智能赛博物理操作系统

    AI-CPS OS

    人工智能赛博物理操作系统新一代技术+商业操作系统“AI-CPS OS:云计算+大数据+物联网+区块链+人工智能)分支用来的今天,企业领导者必须了解如何将“技术”全面渗入整个公司、产品等“商业”场景中,利用AI-CPS OS形成数字化+智能化力量,实现行业的重新布局、企业的重新构建和自我的焕然新生。


    AI-CPS OS的真正价值并不来自构成技术或功能,而是要以一种传递独特竞争优势的方式将自动化+信息化、智造+产品+服务数据+分析一体化,这种整合方式能够释放新的业务和运营模式。如果不能实现跨功能的更大规模融合,没有颠覆现状的意愿,这些将不可能实现。


    领导者无法依靠某种单一战略方法来应对多维度的数字化变革。面对新一代技术+商业操作系统AI-CPS OS颠覆性的数字化+智能化力量,领导者必须在行业、企业与个人这三个层面都保持领先地位:

    1. 重新行业布局:你的世界观要怎样改变才算足够?你必须对行业典范进行怎样的反思?

    2. 重新构建企业:你的企业需要做出什么样的变化?你准备如何重新定义你的公司?

    3. 重新打造自己:你需要成为怎样的人?要重塑自己并在数字化+智能化时代保有领先地位,你必须如何去做?

    AI-CPS OS是数字化智能化创新平台,设计思路是将大数据、物联网、区块链和人工智能等无缝整合在云端,可以帮助企业将创新成果融入自身业务体系,实现各个前沿技术在云端的优势协同。AI-CPS OS形成的字化+智能化力量与行业、企业及个人三个层面的交叉,形成了领导力模式,使数字化融入到领导者所在企业与领导方式的核心位置:

    1. 精细种力量能够使人在更加真实、细致的层面观察与感知现实世界和数字化世界正在发生的一切,进而理解和更加精细地进行产品个性化控制、微观业务场景事件和结果控制。

    2. 智能:模型随着时间(数据)的变化而变化,整个系统就具备了智能(自学习)的能力。

    3. 高效:企业需要建立实时或者准实时的数据采集传输、模型预测和响应决策能力,这样智能就从批量性、阶段性的行为变成一个可以实时触达的行为。

    4. 不确定性:数字化变更颠覆和改变了领导者曾经仰仗的思维方式、结构和实践经验,其结果就是形成了复合不确定性这种颠覆性力量。主要的不确定性蕴含于三个领域:技术、文化、制度。

    5. 边界模糊:数字世界与现实世界的不断融合成CPS不仅让人们所知行业的核心产品、经济学定理和可能性都产生了变化,还模糊了不同行业间的界限。这种效应正在向生态系统、企业、客户、产品快速蔓延。

    AI-CPS OS形成的数字化+智能化力量通过三个方式激发经济增长:

    1. 创造虚拟劳动力,承担需要适应性和敏捷性的复杂任务,即“智能自动化”,以区别于传统的自动化解决方案;

    2. 对现有劳动力和实物资产进行有利的补充和提升,提高资本效率

    3. 人工智能的普及,将推动多行业的相关创新,开辟崭新的经济增长空间


    给决策制定者和商业领袖的建议:

    1. 超越自动化,开启新创新模式:利用具有自主学习和自我控制能力的动态机器智能,为企业创造新商机;

    2. 迎接新一代信息技术,迎接人工智能:无缝整合人类智慧与机器智能,重新

      评估未来的知识和技能类型;

    3. 制定道德规范:切实为人工智能生态系统制定道德准则,并在智能机器的开

      发过程中确定更加明晰的标准和最佳实践;

    4. 重视再分配效应:对人工智能可能带来的冲击做好准备,制定战略帮助面临

      较高失业风险的人群;

    5. 开发数字化+智能化企业所需新能力:员工团队需要积极掌握判断、沟通及想象力和创造力等人类所特有的重要能力。对于中国企业来说,创造兼具包容性和多样性的文化也非常重要。


    子曰:“君子和而不同,小人同而不和。”  《论语·子路》云计算、大数据、物联网、区块链和 人工智能,像君子一般融合,一起体现科技就是生产力。


    如果说上一次哥伦布地理大发现,拓展的是人类的物理空间。那么这一次地理大发现,拓展的就是人们的数字空间。在数学空间,建立新的商业文明,从而发现新的创富模式,为人类社会带来新的财富空间。云计算,大数据、物联网和区块链,是进入这个数字空间的船,而人工智能就是那船上的帆,哥伦布之帆!


    新一代技术+商业的人工智能赛博物理操作系统AI-CPS OS作为新一轮产业变革的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎。重构生产、分配、交换、消费等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生新技术、新产品、新产业、新业态、新模式。引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。





    产业智能官  AI-CPS



    用“人工智能赛博物理操作系统新一代技术+商业操作系统“AI-CPS OS:云计算+大数据+物联网+区块链+人工智能)在场景中构建状态感知-实时分析-自主决策-精准执行-学习提升的认知计算和机器智能;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链






    长按上方二维码关注微信公众号: AI-CPS,更多信息回复:


    新技术“云计算”、“大数据”、“物联网”、“区块链”、“人工智能新产业:智能制造”、“智能农业”、“智能金融”、“智能零售”、“智能城市、“智能驾驶”新模式:“财富空间、“数据科学家”、“赛博物理”、“供应链金融”


    官方网站:AI-CPS.NET




    本文系“产业智能官”(公众号ID:AI-CPS)收集整理,转载请注明出处!



    版权声明产业智能官(公众号ID:AI-CPS推荐的文章,除非确实无法确认,我们都会注明作者和来源。部分文章推送时未能与原作者取得联系。若涉及版权问题,烦请原作者联系我们,与您共同协商解决。联系、投稿邮箱:erp_vip@hotmail.com





    展开全文
  • 《人民日报》海外版于2021年8月30日刊发了中国人工智能主要奠基者和发展推动者——张钹院士人工智能领域奋斗不息、矢志不移、创新不止、诲人不倦的历程。以下全文转发: 当前,全球科技创新进入空前密集活跃...

    开篇语

    《人民日报》海外版于2021年8月30日刊发了中国人工智能主要奠基者和发展推动者——张钹院士在人工智能领域奋斗不息、矢志不移、创新不止、诲人不倦的历程。以下全文转发:

    当前,全球科技创新进入空前密集活跃期,特别是新一代信息技术加速突破应用,推动新一轮科技革命和产业变革重构全球创新版图。人工智能作为新一代信息技术的战略重点之一,近年来获得长足进步,给经济社会发展产生了重大而深远的影响。

    近年来,中国在人工智能领域表现亮眼,已成为世界人工智能主要创新中心之一。根据《人工智能发展报告2020》,在人工智能高层次人才数量和专利申请量等关键指标上,中国位居世界前列。这亮眼表现的背后离不开以中国科学院院士张钹等为代表的中国科学家作出的奠基性、开创性贡献。

    图: 张钹院士近影

    早在40多年前,张钹就开始投身人工智能领域研究,发表了中国第一篇人工智能领域的学术论文、获得中国在人工智能领域的第一个国际重要奖项、领衔成立国内首个智能机器人实验室、培养了本土第一位人工智能领域博士毕业生,组建中国第一个人工智能国家重点实验室……这些“第一”树立了中国人工智能发展的一个个里程碑,推动中国在此领域大踏步前进。

    01| 从不被看好到刮目相看 中年成功转型研究人工智能

    今天,“人工智能”是人们耳熟能详的热词,但是在40多年前,中国科技界对该词汇还很陌生,科技领域的专业人士对该领域也知之甚少。1978年,已从清华大学毕业留校任教20年的张钹由于所在系调整而改变专业方向,进入一个全新研究领域——人工智能。

    张钹时年43岁,中年转型不仅知识结构上面临很大挑战,而且对人工智能领域国内知之甚少,求教无门。张钹回忆说:“当时国内科研人员对人工智能领域发展的认识很有限,甚至相关资料也非常少。”当时,国际上人工智能已经有了约20年发展历程。随着国门打开,国际科技合作与交流兴起,张钹获得了与国际同行交往的机会。

    1980年初,张钹赴美访学。然而,抵达美国后,他就在与外国同行交流中感到一种说不出的尴尬和郁闷。“你们是从中国来的?知道什么是人工智能吗?”有外国研究者提出这样的问题。张钹很受刺激,立志让中国在人工智能领域奋起直追,迎头赶上国际先进水平,赢得外国同行的尊敬。

    在访学过程中,张钹率先发现数学与人工智能结合的广阔前景。张钹说:“当时,我觉得人工智能要深入发展下去,提高算法效率,必须要很好利用数学这个工具。”于是,他选择跟数学出身当时尚在安徽大学任教的张铃教授合作,一起推进人工智能研究。

    由于跨国电话资费昂贵,两人只能通过邮寄书信的方式进行沟通。对当年与张铃中美飞鸿、合作科研的往事,张钹介绍说:“当时,中美间一封航空信大概要人民币8角钱,寄给对方约10天才能收到,一来一回就要约20天。我们计算过,一封信如果超过5张纸,就会超重,须多付邮资。为了省钱,我们特意挑相对薄的纸,写非常小的字。”

    图:张钹(右)与张铃讨论人工智能学术问题。(1992年)

    就这样,张钹跟张铃开始了一场跨越大洋的人工智能合作研究。约1年后,他们联手完成了一篇人工智能领域的论文,实际上这也是中国科学家在人工智能领域的第一篇学术论文,成功发表于人工智能领域顶级国际期刊《IEEE模式分析与机器智能汇刊》,引起了国际同行的高度关注,这让张钹等中国学人颇为扬眉吐气,也增强了他为中国人工智能发展作出更大贡献的信心和决心。

    02| 从少年郎到白发翁 水木清华育人六十余载

    1982年初,张钹结束访学回国,着手进一步开拓人工智能研究。为了解产业界对人工智能技术的需求,更好促进科技成果转化,张钹与其他科研人员一起深入从西南到东北的很多工厂调研,形成了基本判断:机器人将来会成为国内一项重大需求。

    根据上述判断,张钹领衔组建了清华大学智能机器人实验室并着手购置重要试验装备。为此,张钹与同事们多方奔走、筹措经费,联系国内外相关厂家,进行洽谈协商。在有关方面的大力协助下,清华大学智能机器人实验室成功添置了中国第一台进口机械臂。

    机械臂是高精度、高度非线性、强耦合的复杂系统,是人工智能的工业智能化应用的典型。对于清华大学智能机器人实验室而言,引入这款机械臂对于科研和教学无疑具有重要价值和意义。张钹对此非常期待并倾注了大量心血。他回忆说:“当我知道机器臂已经装上飞机,正在飞往北京时,那种兴奋真的难以言表。” 机械臂运抵北京后,张钹亲自跟车到机场“迎接”,直到搬运、装车、运抵清华园,他才终于松了一口气。

    图:参与清华大学智能机器人实验室建设的科研人员合影。左一为张钹。(1985年)

    关于自己的职业生涯,张钹曾这样概括说:“我一辈子就做了两件事,一件是读书,另一件就是在清华大学教书育人。”

    从毕业留校至今,张钹在清华大学的三尺讲台上坚守了超过一甲子。从不满24岁初登讲台的青涩年华到耄耋之年,他可谓桃李满天下,为国家培养、输送一批高科技专才,尤其是在人工智能领域。据统计,他培养的博士研究生近九十名。

    万事开头难。人工智能作为当时中国的新兴学科,科研和教学的条件都很艰苦。张钹介绍说,那时候,虽然他们的研究已经有了一定基础,但是软硬件条件与国际同行相比,差距很大,研究资料也不足,特别是专业、权威资料匮乏,更多是靠自力更生摸索。在那样的环境下,想留住优秀人才着实不易。面对徘徊在出国或留校读博士并向他请教的学生,张钹语重心长地说:“国外知名导师的科研、教学水平比我高,培养条件也比我这里好。你们选择出国深造和科研,我非常支持。但是如果你选择留下来,我会全心全意地培养你,绝不辜负。”肺腑之言感人至深,与他交谈的学生大部分选择了留下来,与他并肩奋战在人工智能领域并成长为行业的佼佼者。

    03| 从一片空白到创新中心 中国人工智能造福全人类

    路漫漫其修远兮,吾将上下而求索。张钹和志同道合者正视差距、风雨兼程,一路追赶着国际人工智能发展前沿,取得了丰硕成果。

    1983年是张钹人工智能科研的丰收年。当年,国际人工智能大会在德国召开,张钹和张铃一起成为率先在国际人工智能大会上发表论文的中国科学家。1984年,他和张铃摘得一项欧洲人工智能奖项,成为首次获得该领域国际重要奖项的中国人。1985年,他领衔成立了中国首个智能机器人实验室。1987年,他培养的中国第一位人工智能领域的博士生毕业。1990年,他和同事一起成立了全国第一个人工智能国家重点实验室——“智能技术与系统”国家重点实验室。1987-1994年,张钹出任国家“863计划”即高技术计划智能机器人主题专家组专家,承担国家重点攻关课题。2018年,清华大学人工智能研究院成立,张钹出任研究院院长。

    图:张钹(左一)在实验室与博士生讨论。(1995年)

    作为中国人工智能主要奠基者和发展推动者,40多年来,张钹矢志不渝致力于中国人工智能领域的创新,发表或共同发表了数百篇学术论文,出版系列专著。他获得了诸多奖项,其中包括ICL欧洲人工智能奖、国家自然科学三等奖、国家科技进步三等奖、国家教委科技进步一、二等奖、电子工业部科技进步一等奖以及国防科工委科技进步一等奖,推动中国人工智能研究和产业向世界一流水平迈进。相关资料显示,中国在图像识别、语音识别等技术创新应用进入了世界先进行列,人工智能发明专利授权总量全球排名第一,核心产业规模持续增长。

    “在第三代人工智能发展上,中国科学家今天与国际同行处在同一起跑线上。我们已经摸索出中国人工智能的发展道路,正在向新的科技高峰继续攀登,我们有能力为造福国家和民族、造福全人类作出更多、更大贡献。”张钹表示。

    虽已经86岁高龄,但是张钹仍担任清华大学人工智能研究院名誉院长,活跃在科研创新领域。科技创新永无止境,人工智能技术发展永远在路上,矢志不移、创新不止的科学家永远年轻。这是张钹的写照。(文/贺迎春 丁亦鑫)

    左下图:UltipaCOO Monica Liu(右1);UltipaCEO 孙宇熙(右2);右下图:孙宇熙(右1);技术合伙人王昊(左1)

    ​​青蓝相接,薪火相传。面对深度学习技术潜力已近天花板以及第三代人工智能对可解释以及高鲁棒性AI需求的必要性等,张钹教授期望并鞭策Ultipa团队要深入探索图数据库前沿科技,不断在底层技术架构、算法与算力以及通过知识图谱的可解释性上做出突破与创新。

    展开全文
  • 基于科学素养的机器人教育与人才培养--访清华大学人工智能研究院院长张钹院士.pdf
  • 今天有幸听到张钹院士及其团队在学校做的报告,故转载一下张钹院士对于第三代人工智能的特点、发展现状及未来趋势 本文转载自https://blog.csdn.net/tMb8Z9Vdm66wH68VX1/article/details/108612820 来源:探臻...
  • Evaluation only. Created with Aspose.Slides for .NET 4.0 Client Profile 17.1. Copyright 2004-2017Aspose Pty Ltd. Evaluation only. Created with Aspose.Slides for .NET 4.0 Client Profile 17.1. Copyrigh
  • 在世界机器人大会“青年创新创业专题论坛”上,清华大学人工智能研究院院长、中国科学院张钹院士作了题为《中国人工智能发展若干思考》的演讲,指出人工智能的应用场景问题是最大的问题,需要建立一个良好的“政...
  • 来源:AI科技评论摘要:6 月 29 日上午,清华大学研究院院长张钹院士为 CCF-GAIR 2018 主会场「AI 前沿技术」做了题为「走向真正的人工智能」(Towar...
  • 来源:经济观察报近日,中科院院士、清华大学人工智能研究院院长张钹教授接受记者采访时认为,目前基于深度学习的人工智能在技术上已经触及天花板。从长远来看,必须得走人类智能这条...
  • 如今,频频提及的人工智能AI)独角兽企业主要分布在交通、金融、医疗、健康、社区服务等领域,估值在70亿~500亿元之间。与此同时,人工智能独角兽企业也暴露出一些问题,比如估值高、销量少。 举个例子,一家...
  • 吴文俊AI最高成就奖颁给清华张钹院士,之前曾空缺七年.pdf
  • 在上一个十年里,我们见证了人工智能的「复兴」,见证了人工智能技术对于众多行业的颠覆性变革,也感受到了人工智能对每个人生活的深刻影响。随之而来的,人工智能专业也成为了当前高校中最热门的专业之一。
  • 关注:决策智能与机器学习,深耕AI脱水干货作者:张钹, 朱军, 苏航 报道:中国科学杂志社如需转载,请联系作者摘 要人工智能 (artificial intelligence, AI)...
  • 来源:经济观察报近日,中科院院士、清华大学人工智能研究院院长张钹教授接受记者采访时认为,目前基于深度学习的人工智能在技术上已经触及天花板。从长远来看,必须得走人类智能这条...
  • 1 人工智能发展 人工智能经历了两种发展范式:符号主义、连接主义,分别称之为第一代和第二代人工智能。这两种范式发展至今都遇到了瓶颈,触及天花板。今后发展的方向是第三代人工智能,需要去探索。 第一代人工智能...
  • 微信公众号二进制人工智能回复Ai3获取思维导图pdf
  • 来源:清华大学人工智能研究院作者:张钹、朱军、苏航在这篇评述文章中,清华大学人工智能研究院院长、中国科学院院士张钹教授阐述了自己对于「第三代人工智能」的看法。他认为,第三代 AI 发展的...
  • ▼点击上方蓝字 关注网易智能为你解读AI领域大公司大事件,新观点新应用【网易智能讯 6月29日消息】2018 CCF-GAIR 全球人工智能与机器人峰会今日在深圳举行。会...
  • 点上方蓝字计算机视觉联盟获取更多干货在右上方···设为星标★,与你不见不散仅作学术分享,不代表本公众号立场,侵权联系删除转载于:机器之心AI博士笔记系列推荐周志华《机器学习》手推笔...
  • 记录:第一次参加黄老师项目的工作报告暨学习老师分享《迈向第三代人工智能》论文总结。 写在前面:本文主要记录老师分享论文时ppt的内容,供学习和自己复习。**表示**:原论文并未如此论述,个人理解。 论文背景...
  • 中国科学院院士张钹对国内外人工智能产业发展现状,提出我国仅靠跟随性的应用深度学习发展人工智能,是无法引领这项技术实现革命性突破的。语音也在里面学,文字也在里面学,图像也在里面学,会不会互相干扰呢?其实...
  • 作者 |杨晓凡编辑 | 唐里2019年9月21日,2019第五届中国人工智能大会(CCAI 2019)在山东省青岛市举行。大会为期两天,包括中国人工智能学会理事长、中国工程院院士李德毅...
  • 张钹院士人工智能是让计算机模拟人的三种功能现在人工智能为什么这么热,大家热情这么高,我觉得一个重要的原因是需求很旺盛,不管是第一产业、第二产业(制造业)或者第三产业(服务业)都存在智能化的需求。...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 752
精华内容 300
关键字:

人工智能张钹院士