精华内容
下载资源
问答
  • 关于JAVA形参详解

    2019-10-09 09:35:13
    JAVA中形式参数主要有基本类型,类名,抽象类名,接口名。下面我们来各自讲述。 1.基本类型 这个太简单不做简述。 2.类名  类名:需要该类的对象 1 class Student { 2 public void study() { 3 System...

    在JAVA中形式参数主要有基本类型,类名,抽象类名,接口名。下面我们来各自讲述。

    1.基本类型 这个太简单不做简述。

    2.类名

      类名:需要该类的对象

     1 class Student {
     2     public void study() {
     3         System.out.println("Good Good Study,Day Day Up");
     4     }
     5 }
     6 
     7 class StudentDemo {
     8     public void method(Student s) { //ss; ss = new Student();  Student s = new Student();
     9         s.study();
    10     }
    11 }
    12 
    13 class StudentTest {
    14     public static void main(String[] args) {
    15         //需求:我要测试Student类的study()方法
    16         Student s = new Student();
    17         s.study();
    18         System.out.println("----------------");
    19         
    20         //需求2:我要测试StudentDemo类中的method()方法
    21         StudentDemo sd = new StudentDemo();
    22         Student ss = new Student();
    23         sd.method(ss);
    24         System.out.println("----------------");
    25         
    26         //匿名对象用法
    27         new StudentDemo().method(new Student());
    28     }
    29 }

      3.抽象类名:需要该类的子类对象

    abstract class Person {
        public abstract void study();
    }
    
    class PersonDemo {
        public void method(Person p) {//p; p = new Student();  Person p = new Student(); //多态
            p.study();
        }
    }
    
    //定义一个具体的学生类
    class Student extends Person {
        public void study() {
            System.out.println("Good Good Study,Day Day Up");
        }
    }
    
    class PersonTest {
        public static void main(String[] args) {
            //目前是没有办法的使用的
            //因为抽象类没有对应的具体类
            //那么,我们就应该先定义一个具体类
            //需求:我要使用PersonDemo类中的method()方法
            PersonDemo pd = new PersonDemo();
            Person p = new Student();
            pd.method(p);
        }
    }

    4.接口名:需要该接口的实现类对象

    和抽象类名很相似

     1 //定义一个爱好的接口
     2 interface Love {
     3     public abstract void love();
     4 }
     5 
     6 class LoveDemo {
     7     public void method(Love l) { //l; l = new Teacher();  Love l = new Teacher(); 多态
     8         l.love();
     9     }
    10 }
    11 
    12 //定义具体类实现接口
    13 class Teacher implements Love {
    14     public void love() {
    15         System.out.println("老师爱学生,爱Java,爱林青霞");
    16     }
    17 }
    18 
    19 class TeacherTest {
    20     public static void main(String[] args) {
    21         //需求:我要测试LoveDemo类中的love()方法
    22         LoveDemo ld = new LoveDemo();
    23         Love l = new Teacher();
    24         ld.method(l);
    25     }
    26 }

     

    转载于:https://www.cnblogs.com/songxiaojun/p/4554897.html

    展开全文
  • 本文参考java 泛型详解Java中的泛型方法、 java泛型详解 1. 概述泛型在java中有很重要的地位,在面向对象编程及各种设计模式中有非常广泛的应用。什么是泛型?为什么要使用泛型? 泛型,即“参数化类型”。一...

    对java的泛型特性的了解仅限于表面的浅浅一层,直到在学习设计模式时发现有不了解的用法,才想起详细的记录一下。

    本文参考java 泛型详解Java中的泛型方法、 java泛型详解

    1. 概述

    泛型在java中有很重要的地位,在面向对象编程及各种设计模式中有非常广泛的应用。

    什么是泛型?为什么要使用泛型?

    泛型,即“参数化类型”。一提到参数,最熟悉的就是定义方法时有形参,然后调用此方法时传递实参。那么参数化类型怎么理解呢?顾名思义,就是将类型由原来的具体的类型参数化,类似于方法中的变量参数,此时类型也定义成参数形式(可以称之为类型形参),然后在使用/调用时传入具体的类型(类型实参)。

    泛型的本质是为了参数化类型(在不创建新的类型的情况下,通过泛型指定的不同类型来控制形参具体限制的类型)。也就是说在泛型使用过程中,操作的数据类型被指定为一个参数,这种参数类型可以用在类、接口和方法中,分别被称为泛型类、泛型接口、泛型方法。

    2. 一个栗子

    一个被举了无数次的例子:

    List arrayList = new ArrayList();
    arrayList.add("aaaa");
    arrayList.add(100);
    
    for(int i = 0; i< arrayList.size();i++){
        String item = (String)arrayList.get(i);
        Log.d("泛型测试","item = " + item);
    }

    毫无疑问,程序的运行结果会以崩溃结束:

    java.lang.ClassCastException: java.lang.Integer cannot be cast to java.lang.String

    ArrayList可以存放任意类型,例子中添加了一个String类型,添加了一个Integer类型,再使用时都以String的方式使用,因此程序崩溃了。为了解决类似这样的问题(在编译阶段就可以解决),泛型应运而生。

    我们将第一行声明初始化list的代码更改一下,编译器会在编译阶段就能够帮我们发现类似这样的问题。

    List<String> arrayList = new ArrayList<String>();
    ...
    //arrayList.add(100); 在编译阶段,编译器就会报错

    3. 特性

    泛型只在编译阶段有效。看下面的代码:

    List<String> stringArrayList = new ArrayList<String>();
    List<Integer> integerArrayList = new ArrayList<Integer>();
    
    Class classStringArrayList = stringArrayList.getClass();
    Class classIntegerArrayList = integerArrayList.getClass();
    
    if(classStringArrayList.equals(classIntegerArrayList)){
        Log.d("泛型测试","类型相同");
    }

    输出结果:D/泛型测试: 类型相同

    通过上面的例子可以证明,在编译之后程序会采取去泛型化的措施。也就是说Java中的泛型,只在编译阶段有效。在编译过程中,正确检验泛型结果后,会将泛型的相关信息擦出,并且在对象进入和离开方法的边界处添加类型检查和类型转换的方法。也就是说,泛型信息不会进入到运行时阶段。

    对此总结成一句话:泛型类型在逻辑上看以看成是多个不同的类型,实际上都是相同的基本类型。

    4. 泛型的使用

    泛型有三种使用方式,分别为:泛型类、泛型接口、泛型方法

    4.3 泛型类

    泛型类型用于类的定义中,被称为泛型类。通过泛型可以完成对一组类的操作对外开放相同的接口。最典型的就是各种容器类,如:List、Set、Map。

    泛型类的最基本写法(这么看可能会有点晕,会在下面的例子中详解):

    class 类名称 <泛型标识:可以随便写任意标识号,标识指定的泛型的类型>{
      private 泛型标识 /*(成员变量类型)*/ var; 
      .....
    
      }
    }

    一个最普通的泛型类:

    //此处T可以随便写为任意标识,常见的如T、E、K、V等形式的参数常用于表示泛型
    //在实例化泛型类时,必须指定T的具体类型
    public class Generic<T>{ 
        //key这个成员变量的类型为T,T的类型由外部指定  
        private T key;
    
        public Generic(T key) { //泛型构造方法形参key的类型也为T,T的类型由外部指定
            this.key = key;
        }
    
        public T getKey(){ //泛型方法getKey的返回值类型为T,T的类型由外部指定
            return key;
        }
    }
    //泛型的类型参数只能是类类型(包括自定义类),不能是简单类型
    //传入的实参类型需与泛型的类型参数类型相同,即为Integer.
    Generic<Integer> genericInteger = new Generic<Integer>(123456);
    
    //传入的实参类型需与泛型的类型参数类型相同,即为String.
    Generic<String> genericString = new Generic<String>("key_vlaue");
    Log.d("泛型测试","key is " + genericInteger.getKey());
    Log.d("泛型测试","key is " + genericString.getKey());
    12-27 09:20:04.432 13063-13063/? D/泛型测试: key is 123456
    12-27 09:20:04.432 13063-13063/? D/泛型测试: key is key_vlaue

    定义的泛型类,就一定要传入泛型类型实参么?并不是这样,在使用泛型的时候如果传入泛型实参,则会根据传入的泛型实参做相应的限制,此时泛型才会起到本应起到的限制作用。如果不传入泛型类型实参的话,在泛型类中使用泛型的方法或成员变量定义的类型可以为任何的类型。

    看一个例子:

    Generic generic = new Generic("111111");
    Generic generic1 = new Generic(4444);
    Generic generic2 = new Generic(55.55);
    Generic generic3 = new Generic(false);
    
    Log.d("泛型测试","key is " + generic.getKey());
    Log.d("泛型测试","key is " + generic1.getKey());
    Log.d("泛型测试","key is " + generic2.getKey());
    Log.d("泛型测试","key is " + generic3.getKey());
    D/泛型测试: key is 111111
    D/泛型测试: key is 4444
    D/泛型测试: key is 55.55
    D/泛型测试: key is false

    注意:

      1. 泛型的类型参数只能是类类型,不能是简单类型。
      1. 不能对确切的泛型类型使用instanceof操作。如下面的操作是非法的,编译时会出错。

        if(ex_num instanceof Generic<Number>){   
        } 

    4.4 泛型接口

    泛型接口与泛型类的定义及使用基本相同。泛型接口常被用在各种类的生产器中,可以看一个例子:

    //定义一个泛型接口
    public interface Generator<T> {
        public T next();
    }

    当实现泛型接口的类,未传入泛型实参时:

    /**
     * 未传入泛型实参时,与泛型类的定义相同,在声明类的时候,需将泛型的声明也一起加到类中
     * 即:class FruitGenerator<T> implements Generator<T>{
     * 如果不声明泛型,如:class FruitGenerator implements Generator<T>,编译器会报错:"Unknown class"
     */
    class FruitGenerator<T> implements Generator<T>{
        @Override
        public T next() {
            return null;
        }
    }

    当实现泛型接口的类,传入泛型实参时:

    /**
     * 传入泛型实参时:
     * 定义一个生产器实现这个接口,虽然我们只创建了一个泛型接口Generator<T>
     * 但是我们可以为T传入无数个实参,形成无数种类型的Generator接口。
     * 在实现类实现泛型接口时,如已将泛型类型传入实参类型,则所有使用泛型的地方都要替换成传入的实参类型
     * 即:Generator<T>,public T next();中的的T都要替换成传入的String类型。
     */
    public class FruitGenerator implements Generator<String> {
    
        private String[] fruits = new String[]{"Apple", "Banana", "Pear"};
    
        @Override
        public String next() {
            Random rand = new Random();
            return fruits[rand.nextInt(3)];
        }
    }

    4.5 泛型通配符

    我们知道IngeterNumber的一个子类,同时在特性章节中我们也验证过Generic<Ingeter>Generic<Number>实际上是相同的一种基本类型。那么问题来了,在使用Generic<Number>作为形参的方法中,能否使用Generic<Ingeter>的实例传入呢?在逻辑上类似于Generic<Number>Generic<Ingeter>是否可以看成具有父子关系的泛型类型呢?

    为了弄清楚这个问题,我们使用Generic<T>这个泛型类继续看下面的例子:

    public void showKeyValue1(Generic<Number> obj){
        Log.d("泛型测试","key value is " + obj.getKey());
    }
    Generic<Integer> gInteger = new Generic<Integer>(123);
    Generic<Number> gNumber = new Generic<Number>(456);
    
    showKeyValue(gNumber);
    
    // showKeyValue这个方法编译器会为我们报错:Generic<java.lang.Integer> 
    // cannot be applied to Generic<java.lang.Number>
    // showKeyValue(gInteger);

    通过提示信息我们可以看到Generic<Integer>不能被看作为`Generic<Number>的子类。由此可以看出:同一种泛型可以对应多个版本(因为参数类型是不确定的),不同版本的泛型类实例是不兼容的

    回到上面的例子,如何解决上面的问题?总不能为了定义一个新的方法来处理Generic<Integer>类型的类,这显然与java中的多台理念相违背。因此我们需要一个在逻辑上可以表示同时Generic<Integer>Generic<Number>父类的引用类型。由此类型通配符应运而生。

    我们可以将上面的方法改一下:

    public void showKeyValue1(Generic<?> obj){
        Log.d("泛型测试","key value is " + obj.getKey());
    }

    类型通配符一般是使用?代替具体的类型实参,注意了,此处’?’是类型实参,而不是类型形参 。重要说三遍!此处’?’是类型实参,而不是类型形参此处’?’是类型实参,而不是类型形参 !再直白点的意思就是,此处的?和Number、String、Integer一样都是一种实际的类型,可以把?看成所有类型的父类。是一种真实的类型。

    可以解决当具体类型不确定的时候,这个通配符就是 ?  ;当操作类型时,不需要使用类型的具体功能时,只使用Object类中的功能。那么可以用 ? 通配符来表未知类型。

    4.6 泛型方法

    在java中,泛型类的定义非常简单,但是泛型方法就比较复杂了。

    尤其是我们见到的大多数泛型类中的成员方法也都使用了泛型,有的甚至泛型类中也包含着泛型方法,这样在初学者中非常容易将泛型方法理解错了。

    泛型类,是在实例化类的时候指明泛型的具体类型;泛型方法,是在调用方法的时候指明泛型的具体类型

    /**
     * 泛型方法的基本介绍
     * @param tClass 传入的泛型实参
     * @return T 返回值为T类型
     * 说明:
     *     1)public 与 返回值中间<T>非常重要,可以理解为声明此方法为泛型方法。
     *     2)只有声明了<T>的方法才是泛型方法,泛型类中的使用了泛型的成员方法并不是泛型方法。
     *     3)<T>表明该方法将使用泛型类型T,此时才可以在方法中使用泛型类型T。
     *     4)与泛型类的定义一样,此处T可以随便写为任意标识,常见的如T、E、K、V等形式的参数常用于表示泛型。
     */
    public <T> T genericMethod(Class<T> tClass)throws InstantiationException ,
      IllegalAccessException{
            T instance = tClass.newInstance();
            return instance;
    }
    Object obj = genericMethod(Class.forName("com.test.test"));

    4.6.1 泛型方法的基本用法

    光看上面的例子有的同学可能依然会非常迷糊,我们再通过一个例子,把我泛型方法再总结一下。

    public class GenericTest {
       //这个类是个泛型类,在上面已经介绍过
       public class Generic<T>{     
            private T key;
    
            public Generic(T key) {
                this.key = key;
            }
    
            //我想说的其实是这个,虽然在方法中使用了泛型,但是这并不是一个泛型方法。
            //这只是类中一个普通的成员方法,只不过他的返回值是在声明泛型类已经声明过的泛型。
            //所以在这个方法中才可以继续使用 T 这个泛型。
            public T getKey(){
                return key;
            }
    
            /**
             * 这个方法显然是有问题的,在编译器会给我们提示这样的错误信息"cannot reslove symbol E"
             * 因为在类的声明中并未声明泛型E,所以在使用E做形参和返回值类型时,编译器会无法识别。
            public E setKey(E key){
                 this.key = keu
            }
            */
        }
    
        /** 
         * 这才是一个真正的泛型方法。
         * 首先在public与返回值之间的<T>必不可少,这表明这是一个泛型方法,并且声明了一个泛型T
         * 这个T可以出现在这个泛型方法的任意位置.
         * 泛型的数量也可以为任意多个 
         *    如:public <T,K> K showKeyName(Generic<T> container){
         *        ...
         *        }
         */
        public <T> T showKeyName(Generic<T> container){
            System.out.println("container key :" + container.getKey());
            //当然这个例子举的不太合适,只是为了说明泛型方法的特性。
            T test = container.getKey();
            return test;
        }
    
        //这也不是一个泛型方法,这就是一个普通的方法,只是使用了Generic<Number>这个泛型类做形参而已。
        public void showKeyValue1(Generic<Number> obj){
            Log.d("泛型测试","key value is " + obj.getKey());
        }
    
        //这也不是一个泛型方法,这也是一个普通的方法,只不过使用了泛型通配符?
        //同时这也印证了泛型通配符章节所描述的,?是一种类型实参,可以看做为Number等所有类的父类
        public void showKeyValue2(Generic<?> obj){
            Log.d("泛型测试","key value is " + obj.getKey());
        }
    
         /**
         * 这个方法是有问题的,编译器会为我们提示错误信息:"UnKnown class 'E' "
         * 虽然我们声明了<T>,也表明了这是一个可以处理泛型的类型的泛型方法。
         * 但是只声明了泛型类型T,并未声明泛型类型E,因此编译器并不知道该如何处理E这个类型。
        public <T> T showKeyName(Generic<E> container){
            ...
        }  
        */
    
        /**
         * 这个方法也是有问题的,编译器会为我们提示错误信息:"UnKnown class 'T' "
         * 对于编译器来说T这个类型并未项目中声明过,因此编译也不知道该如何编译这个类。
         * 所以这也不是一个正确的泛型方法声明。
        public void showkey(T genericObj){
    
        }
        */
    
        public static void main(String[] args) {
    
    
        }
    }

    4.6.2 类中的泛型方法

    当然这并不是泛型方法的全部,泛型方法可以出现杂任何地方和任何场景中使用。但是有一种情况是非常特殊的,当泛型方法出现在泛型类中时,我们再通过一个例子看一下

    public class GenericFruit {
        class Fruit{
            @Override
            public String toString() {
                return "fruit";
            }
        }
    
        class Apple extends Fruit{
            @Override
            public String toString() {
                return "apple";
            }
        }
    
        class Person{
            @Override
            public String toString() {
                return "Person";
            }
        }
    
        class GenerateTest<T>{
            public void show_1(T t){
                System.out.println(t.toString());
            }
    
            //在泛型类中声明了一个泛型方法,使用泛型E,这种泛型E可以为任意类型。可以类型与T相同,也可以不同。
            //由于泛型方法在声明的时候会声明泛型<E>,因此即使在泛型类中并未声明泛型,编译器也能够正确识别泛型方法中识别的泛型。
            public <E> void show_3(E t){
                System.out.println(t.toString());
            }
    
            //在泛型类中声明了一个泛型方法,使用泛型T,注意这个T是一种全新的类型,可以与泛型类中声明的T不是同一种类型。
            public <T> void show_2(T t){
                System.out.println(t.toString());
            }
        }
    
        public static void main(String[] args) {
            Apple apple = new Apple();
            Person person = new Person();
    
            GenerateTest<Fruit> generateTest = new GenerateTest<Fruit>();
            //apple是Fruit的子类,所以这里可以
            generateTest.show_1(apple);
            //编译器会报错,因为泛型类型实参指定的是Fruit,而传入的实参类是Person
            //generateTest.show_1(person);
    
            //使用这两个方法都可以成功
            generateTest.show_2(apple);
            generateTest.show_2(person);
    
            //使用这两个方法也都可以成功
            generateTest.show_3(apple);
            generateTest.show_3(person);
        }
    }

    4.6.3 泛型方法与可变参数

    再看一个泛型方法和可变参数的例子:

    public <T> void printMsg( T... args){
        for(T t : args){
            Log.d("泛型测试","t is " + t);
        }
    }
    printMsg("111",222,"aaaa","2323.4",55.55);

    4.6.4 静态方法与泛型

    静态方法有一种情况需要注意一下,那就是在类中的静态方法使用泛型:静态方法无法访问类上定义的泛型;如果静态方法操作的引用数据类型不确定的时候,必须要将泛型定义在方法上。

    即:如果静态方法要使用泛型的话,必须将静态方法也定义成泛型方法

    public class StaticGenerator<T> {
        ....
        ....
        /**
         * 如果在类中定义使用泛型的静态方法,需要添加额外的泛型声明(将这个方法定义成泛型方法)
         * 即使静态方法要使用泛型类中已经声明过的泛型也不可以。
         * 如:public static void show(T t){..},此时编译器会提示错误信息:
              "StaticGenerator cannot be refrenced from static context"
         */
        public static <T> void show(T t){
    
        }
    }

    4.6.5 泛型方法总结

    泛型方法能使方法独立于类而产生变化,以下是一个基本的指导原则:

    无论何时,如果你能做到,你就该尽量使用泛型方法。也就是说,如果使用泛型方法将整个类泛型化,那么就应该使用泛型方法。另外对于一个static的方法而已,无法访问泛型类型的参数。所以如果static方法要使用泛型能力,就必须使其成为泛型方法。

    4.6 泛型上下边界

    在使用泛型的时候,我们还可以为传入的泛型类型实参进行上下边界的限制,如:类型实参只准传入某种类型的父类或某种类型的子类。

    • 为泛型添加上边界,即传入的类型实参必须是指定类型的子类型

    public void showKeyValue1(Generic<? extends Number> obj){
        Log.d("泛型测试","key value is " + obj.getKey());
    }
    Generic<String> generic1 = new Generic<String>("11111");
    Generic<Integer> generic2 = new Generic<Integer>(2222);
    Generic<Float> generic3 = new Generic<Float>(2.4f);
    Generic<Double> generic4 = new Generic<Double>(2.56);
    
    //这一行代码编译器会提示错误,因为String类型并不是Number类型的子类
    //showKeyValue1(generic1);
    
    showKeyValue1(generic2);
    showKeyValue1(generic3);
    showKeyValue1(generic4);

    如果我们把泛型类的定义也改一下:

    public class Generic<T extends Number>{
        private T key;
    
        public Generic(T key) {
            this.key = key;
        }
    
        public T getKey(){
            return key;
        }
    }
    //这一行代码也会报错,因为String不是Number的子类
    Generic<String> generic1 = new Generic<String>("11111");

    再来一个泛型方法的例子:

    //在泛型方法中添加上下边界限制的时候,必须在权限声明与返回值之间的<T>上添加上下边界,即在泛型声明的时候添加
    //public <T> T showKeyName(Generic<T extends Number> container),编译器会报错:"Unexpected bound"
    public <T extends Number> T showKeyName(Generic<T> container){
        System.out.println("container key :" + container.getKey());
        T test = container.getKey();
        return test;
    }

    通过上面的两个例子可以看出:泛型的上下边界添加,必须与泛型的声明在一起

    4.7 关于泛型数组要提一下

    看到了很多文章中都会提起泛型数组,经过查看sun的说明文档,在java中是”不能创建一个确切的泛型类型的数组”的。

    也就是说下面的这个例子是不可以的:

    List<String>[] ls = new ArrayList<String>[10];  

    而使用通配符创建泛型数组是可以的,如下面这个例子:

    List<?>[] ls = new ArrayList<?>[10];  

    这样也是可以的:

    List<String>[] ls = new ArrayList[10];

    下面使用Sun的一篇文档的一个例子来说明这个问题:

    List<String>[] lsa = new List<String>[10]; // Not really allowed.    
    Object o = lsa;    
    Object[] oa = (Object[]) o;    
    List<Integer> li = new ArrayList<Integer>();    
    li.add(new Integer(3));    
    oa[1] = li; // Unsound, but passes run time store check    
    String s = lsa[1].get(0); // Run-time error: ClassCastException.

    这种情况下,由于JVM泛型的擦除机制,在运行时JVM是不知道泛型信息的,所以可以给oa[1]赋上一个ArrayList而不会出现异常,但是在取出数据的时候却要做一次类型转换,所以就会出现ClassCastException,如果可以进行泛型数组的声明,上面说的这种情况在编译期将不会出现任何的警告和错误,只有在运行时才会出错。

    而对泛型数组的声明进行限制,对于这样的情况,可以在编译期提示代码有类型安全问题,比没有任何提示要强很多。

    下面采用通配符的方式是被允许的:数组的类型不可以是类型变量,除非是采用通配符的方式,因为对于通配符的方式,最后取出数据是要做显式的类型转换的。

    List<?>[] lsa = new List<?>[10]; // OK, array of unbounded wildcard type.    
    Object o = lsa;    
    Object[] oa = (Object[]) o;    
    List<Integer> li = new ArrayList<Integer>();    
    li.add(new Integer(3));    
    oa[1] = li; // Correct.    
    Integer i = (Integer) lsa[1].get(0); // OK 

    5. 最后

    本文中的例子主要是为了阐述泛型中的一些思想而简单举出的,并不一定有着实际的可用性。另外,一提到泛型,相信大家用到最多的就是在集合中,其实,在实际的编程过程中,自己可以使用泛型去简化开发,且能很好的保证代码质量。

    展开全文
  • public class lll { public static void main(String[] args) { StringBuffer buffer1 = new StringBuffer("A"); StringBuffer buffer2 = new StringBuffer("B"); test(buffer1, buffer2);...
  • JavaJava方法详解

    万次阅读 2020-06-11 16:24:18
    文章目录【Javajava方法详解篇方法void修饰的方法的调用方法的重载方法的形参是基本数据类型方法的形参是引用类型递归结构 方法 方法:完成特定功能的饿代码块 作用: 提高代码复用性和可维护性 但是并不能提高...

    【Java】java方法详解篇



    方法

    方法:完成特定功能的饿代码块
    作用:

    • 提高代码复用性和可维护性
    • 但是并不能提高程序的运行效率

    定义格式:

    • 修饰符
    • 返回值类型:用于限定返回值的数据类型
    • 方法名:方法的名字,便于我们调用
    • 参数类型:用于限定调用方法时传入数据的类型
    • 参数名:用于接收调用方法时传入数据的变量(用于告诉方法的使用者,调用该方法时的需要)
    • 方法体:完成我们需要的功能的代码
    • return语句:结束方法,并把返回值传递给调用者
    修饰符 返回值类型 方法名(参数类型 参数名1,参数类型 参数名2……){
    		方法体;
    		return 返回值;
    }
    

    注意事项

    • 实参的数目,数据类型和顺序需和所调用的方法声明的形式参数列表匹配
    • return终止方法的运行并指定返回数据
    • java中进行方法调用中传递参数时,遵循值传递的原则(传递的都是数据的副本)
    • 基本数据类型传递的时该数据的copy值
    • 引用数据类型传递的是该对象引用的copy值,但指向的是同一个对象

    void修饰的方法的调用

    void:

    • 当没有方法返回值时,返回值类型写void

    注意:

    • 返回值类型为void的方法只能单独调用
    • void作为返回值类型的方法,可以不写return语句,或使用ruturn;结束方法,
    public static void testOne(){
    	System.out.println("HelloWorld");
    	//可以不写return,方法中的代码执行完毕后,方法会自动结束
    }
    
    public static void testTwo(){
    	System.out.println("HelloWorld");
    	rerurn;
    	System.out.println("这句话不会执行,因为上面结束了方法");
    }
    
    public static void testThree(){
    	System.out.println("HelloWorld");
    	return 0;
    	//void方法不能return值,因为返回值的话必须要有返回值类型
    }
    

    方法的重载

    方法的重载

    • 英文Overload

    • 概念:在同一个类中,有多个方法名相同,参数列表不同的方法

    • 方法重载的特点

      • 参数个数不同
      • 参数的数据类型不同(包括数据类型相同,但数据顺序不同,例如:int a,double b 和 double b,int a也是不一样的)
    • 方法重载和什么无关

      • 和返回值类型无关
      • 和参数变量名无关
      • 和方法体无关

    方法的形参是基本数据类型

    • 方法的形参是基本数据类型,形参的值改变不会影响实际参数
      • 原因:因为形参是在方法内部定义的一个新的局部变量,与方法外的实际参数变量是2个不同的变量,所以互不影响

    方法的形参是引用类型

    注意

    • 方法的形参是引用数据类型:形参的值改变是否影响实际参数要看引用关系
      • 如果形参是修改自身保存的引用,不会影响实际参数
        • 原因:因为形参是调用方法中的一个单独变量,实际参数是定义在main方法中的另一个单独变量,形参改变其保存的引用指向,并不影响实际参数的引用指向
      • 如果形参是通过引用修改堆内存中保存的数据,会影响实际参数获取的值
        • 原因:因为形参是调用方法中的一个单独变量,实际参数是定义在main方法中的另一个单独变量,形参通过引用修改的是堆内存中的数据,而实际参数也是指向该堆内存中的数据,所以形参修改后,实际参数获取的值也会改变
    // 形参是引用数据类型,是否影响实际参数
    public class demo{
    	public static void main(String[] args) {
    		// 数组
    		System.out.println("------------修改数组的引用指向------------");
    		int[] arr = {1, 2, 3};
    		System.out.println("原始值: arr=" + Arrays.toString(arr));
    		changeArr(arr);
    		System.out.println("修改后: arr=" + Arrays.toString(arr));
    		
    		
    		System.out.println("------------通过数组引用修改堆内存中数组的元素值------------");
    		System.out.println("原始值: arr=" + Arrays.toString(arr));
    		changeArrElement(arr);
    		System.out.println("修改后: arr=" + Arrays.toString(arr));
    	}
    	
    	// 修改数组的引用: 不会影响实际参数
    	private static void changeArr(int[] arr) {
    		arr = new int[]{999, 999};
    	}
    	
    	// 通过数组变量的引用修改堆内存中数组的元素: 会影响实际参数
    	private static void changeArrElement(int[] arr) {
    		arr[0] = -1;
    		arr[1] = -1;
    		arr[2] = -1;
    	}
    }
    

    结果:
    在这里插入图片描述


    递归结构

    递归是一种常见的解决问题的方法,即把问题逐渐简单化。递归的基本思想就是“自己调用自己”,一个使用递归技术的方法将会直接或者间接的调用自己。

    利用递归可以用简单的程序来解决一些复杂的问题。比如:斐波那契数列的计算、汉诺塔、快排等问题。

    例如

    void aa(int a) {
    		
    		if (a<10) {
    			a++;
    			aa(a);
    		}
    		
    	}
    

    递归结构包括两个部分:

    1. 定义递归头。解答:什么时候不调用自身方法。如果没有头,将陷入死循环,也就是递归的结束条件。
    2. 递归体。解答:什么时候需要调用自身方法。

    递归的缺陷
    简单的程序是递归的优点之一。但是递归调用会占用大量的系统堆栈,内存耗用多,在递归调用层次多时速度要比循环慢的多,所以在使用递归时要慎重。

    展开全文
  • 本文参考java 泛型详解Java中的泛型方法、 java泛型详解 概述 泛型在java中有很重要的地位,在面向对象编程及各种设计模式中有非常广泛的应用。 什么是泛型?为什么要使用泛型? 泛型,即“参数化类型”。一提到...

    本文参考java 泛型详解、Java中的泛型方法、 java泛型详解

    1. 概述

    泛型在java中有很重要的地位,在面向对象编程及各种设计模式中有非常广泛的应用。

    什么是泛型?为什么要使用泛型?

    泛型,即“参数化类型”。一提到参数,最熟悉的就是定义方法时有形参,然后调用此方法时传递实参。那么参数化类型怎么理解呢?顾名思义,就是将类型由原来的具体的类型参数化,类似于方法中的变量参数,此时类型也定义成参数形式(可以称之为类型形参),然后在使用/调用时传入具体的类型(类型实参)。

    泛型的本质是为了参数化类型(在不创建新的类型的情况下,通过泛型指定的不同类型来控制形参具体限制的类型)。也就是说在泛型使用过程中,操作的数据类型被指定为一个参数,这种参数类型可以用在类、接口和方法中,分别被称为泛型类、泛型接口、泛型方法。
    2.一个栗子

    一个被举了无数次的例子:

    List arrayList = new ArrayList();
    arrayList.add("aaaa");
    arrayList.add(100);
    
    for(int i = 0; i< arrayList.size();i++){
        String item = (String)arrayList.get(i);
        Log.d("泛型测试","item = " + item);
    }
    

    毫无疑问,程序的运行结果会以崩溃结束:

    java.lang.ClassCastException: java.lang.Integer cannot be cast to java.lang.String
    

    ArrayList可以存放任意类型,例子中添加了一个String类型,添加了一个Integer类型,再使用时都以String的方式使用,因此程序崩溃了。为了解决类似这样的问题(在编译阶段就可以解决),泛型应运而生。

    我们将第一行声明初始化list的代码更改一下,编译器会在编译阶段就能够帮我们发现类似这样的问题。

    List<String> arrayList = new ArrayList<String>();
    ...
    //arrayList.add(100); 在编译阶段,编译器就会报错
    

    3.特性

    泛型只在编译阶段有效。看下面的代码:

    List<String> stringArrayList = new ArrayList<String>();
    List<Integer> integerArrayList = new ArrayList<Integer>();
    
    Class classStringArrayList = stringArrayList.getClass();
    Class classIntegerArrayList = integerArrayList.getClass();
    
    if(classStringArrayList.equals(classIntegerArrayList)){
        Log.d("泛型测试","类型相同");
    }
    

    输出结果:D/泛型测试: 类型相同。

    通过上面的例子可以证明,在编译之后程序会采取去泛型化的措施。也就是说Java中的泛型,只在编译阶段有效。在编译过程中,正确检验泛型结果后,会将泛型的相关信息擦出,并且在对象进入和离开方法的边界处添加类型检查和类型转换的方法。也就是说,泛型信息不会进入到运行时阶段。

    对此总结成一句话:泛型类型在逻辑上看以看成是多个不同的类型,实际上都是相同的基本类型。

    4.泛型的使用

    泛型有三种使用方式,分别为:泛型类、泛型接口、泛型方法

    4.3 泛型类

    泛型类型用于类的定义中,被称为泛型类。通过泛型可以完成对一组类的操作对外开放相同的接口。最典型的就是各种容器类,如:List、Set、Map。

    泛型类的最基本写法(这么看可能会有点晕,会在下面的例子中详解):

    class 类名称 <泛型标识:可以随便写任意标识号,标识指定的泛型的类型>{
      private 泛型标识 /*(成员变量类型)*/ var; 
      }
    }
    

    一个最普通的泛型类:

    //此处T可以随便写为任意标识,常见的如T、E、K、V等形式的参数常用于表示泛型
    //在实例化泛型类时,必须指定T的具体类型
    public class Generic<T>{ 
        //key这个成员变量的类型为T,T的类型由外部指定  
        private T key;
    
        public Generic(T key) { //泛型构造方法形参key的类型也为T,T的类型由外部指定
            this.key = key;
        }
    
        public T getKey(){ //泛型方法getKey的返回值类型为T,T的类型由外部指定
            return key;
        }
    }
    
    //泛型的类型参数只能是类类型(包括自定义类),不能是简单类型
    //传入的实参类型需与泛型的类型参数类型相同,即为Integer.
    Generic<Integer> genericInteger = new Generic<Integer>(123456);
    
    //传入的实参类型需与泛型的类型参数类型相同,即为String.
    Generic<String> genericString = new Generic<String>("key_vlaue");
    Log.d("泛型测试","key is " + genericInteger.getKey());
    Log.d("泛型测试","key is " + genericString.getKey());
    
    12-27 09:20:04.432 13063-13063/? D/泛型测试: key is 123456
    12-27 09:20:04.432 13063-13063/? D/泛型测试: key is key_vlaue
    

    定义的泛型类,就一定要传入泛型类型实参么?并不是这样,在使用泛型的时候如果传入泛型实参,则会根据传入的泛型实参做相应的限制,此时泛型才会起到本应起到的限制作用。如果不传入泛型类型实参的话,在泛型类中使用泛型的方法或成员变量定义的类型可以为任何的类型。

    看一个例子:

    Generic generic = new Generic("111111");
    Generic generic1 = new Generic(4444);
    Generic generic2 = new Generic(55.55);
    Generic generic3 = new Generic(false);
    
    Log.d("泛型测试","key is " + generic.getKey());
    Log.d("泛型测试","key is " + generic1.getKey());
    Log.d("泛型测试","key is " + generic2.getKey());
    Log.d("泛型测试","key is " + generic3.getKey());
    
    D/泛型测试: key is 111111
    D/泛型测试: key is 4444
    D/泛型测试: key is 55.55
    D/泛型测试: key is false
    

    注意:

    泛型的类型参数只能是类类型,不能是简单类型。
    不能对确切的泛型类型使用instanceof操作。如下面的操作是非法的,编译时会出错。

    if(ex_num instanceof Generic<Number>){   
    }
    

    4.4 泛型接口

    泛型接口与泛型类的定义及使用基本相同。泛型接口常被用在各种类的生产器中,可以看一个例子:

    //定义一个泛型接口
    public interface Generator<T> {
        public T next();
    }
    

    当实现泛型接口的类,未传入泛型实参时:

    /**
     * 未传入泛型实参时,与泛型类的定义相同,在声明类的时候,需将泛型的声明也一起加到类中
     * 即:class FruitGenerator<T> implements Generator<T>{
     * 如果不声明泛型,如:class FruitGenerator implements Generator<T>,编译器会报错:"Unknown class"
     */
    class FruitGenerator<T> implements Generator<T>{
        @Override
        public T next() {
            return null;
        }
    }
    

    当实现泛型接口的类,传入泛型实参时:

    /**
     * 传入泛型实参时:
     * 定义一个生产器实现这个接口,虽然我们只创建了一个泛型接口Generator<T>
     * 但是我们可以为T传入无数个实参,形成无数种类型的Generator接口。
     * 在实现类实现泛型接口时,如已将泛型类型传入实参类型,则所有使用泛型的地方都要替换成传入的实参类型
     * 即:Generator<T>,public T next();中的的T都要替换成传入的String类型。
     */
    public class FruitGenerator implements Generator<String> {
    
        private String[] fruits = new String[]{"Apple", "Banana", "Pear"};
    
        @Override
        public String next() {
            Random rand = new Random();
            return fruits[rand.nextInt(3)];
        }
    }
    

    4.5 泛型通配符

    我们知道Ingeter是Number的一个子类,同时在特性章节中我们也验证过Generic与Generic实际上是相同的一种基本类型。那么问题来了,在使用Generic作为形参的方法中,能否使用Generic的实例传入呢?在逻辑上类似于Generic和Generic是否可以看成具有父子关系的泛型类型呢?

    为了弄清楚这个问题,我们使用Generic这个泛型类继续看下面的例子:

    public void showKeyValue1(Generic<Number> obj){
        Log.d("泛型测试","key value is " + obj.getKey());
    }
    
    Generic<Integer> gInteger = new Generic<Integer>(123);
    Generic<Number> gNumber = new Generic<Number>(456);
    
    showKeyValue(gNumber);
    
    // showKeyValue这个方法编译器会为我们报错:Generic<java.lang.Integer> 
    // cannot be applied to Generic<java.lang.Number>
    // showKeyValue(gInteger);
    

    通过提示信息我们可以看到Generic不能被看作为`Generic的子类。由此可以看出:同一种泛型可以对应多个版本(因为参数类型是不确定的),不同版本的泛型类实例是不兼容的。

    回到上面的例子,如何解决上面的问题?总不能为了定义一个新的方法来处理Generic类型的类,这显然与java中的多台理念相违背。因此我们需要一个在逻辑上可以表示同时是Generic和Generic父类的引用类型。由此类型通配符应运而生。

    我们可以将上面的方法改一下:

    public void showKeyValue1(Generic<?> obj){
        Log.d("泛型测试","key value is " + obj.getKey());
    }
    

    类型通配符一般是使用?代替具体的类型实参,注意了,此处’?’是类型实参,而不是类型形参 。重要说三遍!此处’?’是类型实参,而不是类型形参 ! 此处’?’是类型实参,而不是类型形参 !再直白点的意思就是,此处的?和Number、String、Integer一样都是一种实际的类型,可以把?看成所有类型的父类。是一种真实的类型。

    可以解决当具体类型不确定的时候,这个通配符就是 ? ;当操作类型时,不需要使用类型的具体功能时,只使用Object类中的功能。那么可以用 ? 通配符来表未知类型。

    4.6 泛型方法

    在java中,泛型类的定义非常简单,但是泛型方法就比较复杂了。

    尤其是我们见到的大多数泛型类中的成员方法也都使用了泛型,有的甚至泛型类中也包含着泛型方法,这样在初学者中非常容易将泛型方法理解错了。
    泛型类,是在实例化类的时候指明泛型的具体类型;泛型方法,是在调用方法的时候指明泛型的具体类型 。

    /**
     * 泛型方法的基本介绍
     * @param tClass 传入的泛型实参
     * @return T 返回值为T类型
     * 说明:
     *     1)public 与 返回值中间<T>非常重要,可以理解为声明此方法为泛型方法。
     *     2)只有声明了<T>的方法才是泛型方法,泛型类中的使用了泛型的成员方法并不是泛型方法。
     *     3)<T>表明该方法将使用泛型类型T,此时才可以在方法中使用泛型类型T。
     *     4)与泛型类的定义一样,此处T可以随便写为任意标识,常见的如T、E、K、V等形式的参数常用于表示泛型。
     */
    public <T> T genericMethod(Class<T> tClass)throws InstantiationException ,
      IllegalAccessException{
            T instance = tClass.newInstance();
            return instance;
    }
    
    Object obj = genericMethod(Class.forName("com.test.test"));
    

    4.6.1 泛型方法的基本用法

    光看上面的例子有的同学可能依然会非常迷糊,我们再通过一个例子,把我泛型方法再总结一下。

    public class GenericTest {
       //这个类是个泛型类,在上面已经介绍过
       public class Generic<T>{     
            private T key;
    
            public Generic(T key) {
                this.key = key;
            }
    
            //我想说的其实是这个,虽然在方法中使用了泛型,但是这并不是一个泛型方法。
            //这只是类中一个普通的成员方法,只不过他的返回值是在声明泛型类已经声明过的泛型。
            //所以在这个方法中才可以继续使用 T 这个泛型。
            public T getKey(){
                return key;
            }
    
            /**
             * 这个方法显然是有问题的,在编译器会给我们提示这样的错误信息"cannot reslove symbol E"
             * 因为在类的声明中并未声明泛型E,所以在使用E做形参和返回值类型时,编译器会无法识别。
            public E setKey(E key){
                 this.key = keu
            }
            */
        }
    
        /** 
         * 这才是一个真正的泛型方法。
         * 首先在public与返回值之间的<T>必不可少,这表明这是一个泛型方法,并且声明了一个泛型T
         * 这个T可以出现在这个泛型方法的任意位置.
         * 泛型的数量也可以为任意多个 
         *    如:public <T,K> K showKeyName(Generic<T> container){
         *        ...
         *        }
         */
        public <T> T showKeyName(Generic<T> container){
            System.out.println("container key :" + container.getKey());
            //当然这个例子举的不太合适,只是为了说明泛型方法的特性。
            T test = container.getKey();
            return test;
        }
    
        //这也不是一个泛型方法,这就是一个普通的方法,只是使用了Generic<Number>这个泛型类做形参而已。
        public void showKeyValue1(Generic<Number> obj){
            Log.d("泛型测试","key value is " + obj.getKey());
        }
    
        //这也不是一个泛型方法,这也是一个普通的方法,只不过使用了泛型通配符?
        //同时这也印证了泛型通配符章节所描述的,?是一种类型实参,可以看做为Number等所有类的父类
        public void showKeyValue2(Generic<?> obj){
            Log.d("泛型测试","key value is " + obj.getKey());
        }
    
         /**
         * 这个方法是有问题的,编译器会为我们提示错误信息:"UnKnown class 'E' "
         * 虽然我们声明了<T>,也表明了这是一个可以处理泛型的类型的泛型方法。
         * 但是只声明了泛型类型T,并未声明泛型类型E,因此编译器并不知道该如何处理E这个类型。
        public <T> T showKeyName(Generic<E> container){
            ...
        }  
        */
    
        /**
         * 这个方法也是有问题的,编译器会为我们提示错误信息:"UnKnown class 'T' "
         * 对于编译器来说T这个类型并未项目中声明过,因此编译也不知道该如何编译这个类。
         * 所以这也不是一个正确的泛型方法声明。
        public void showkey(T genericObj){
    
        }
        */
    
        public static void main(String[] args) {
    
    
        }
    }
    

    4.6.2 类中的泛型方法

    当然这并不是泛型方法的全部,泛型方法可以出现杂任何地方和任何场景中使用。但是有一种情况是非常特殊的,当泛型方法出现在泛型类中时,我们再通过一个例子看一下

    public class GenericFruit {
        class Fruit{
            @Override
            public String toString() {
                return "fruit";
            }
        }
    
        class Apple extends Fruit{
            @Override
            public String toString() {
                return "apple";
            }
        }
    
        class Person{
            @Override
            public String toString() {
                return "Person";
            }
        }
    
        class GenerateTest<T>{
            public void show_1(T t){
                System.out.println(t.toString());
            }
    
            //在泛型类中声明了一个泛型方法,使用泛型E,这种泛型E可以为任意类型。可以类型与T相同,也可以不同。
            //由于泛型方法在声明的时候会声明泛型<E>,因此即使在泛型类中并未声明泛型,编译器也能够正确识别泛型方法中识别的泛型。
            public <E> void show_3(E t){
                System.out.println(t.toString());
            }
    
            //在泛型类中声明了一个泛型方法,使用泛型T,注意这个T是一种全新的类型,可以与泛型类中声明的T不是同一种类型。
            public <T> void show_2(T t){
                System.out.println(t.toString());
            }
        }
    
        public static void main(String[] args) {
            Apple apple = new Apple();
            Person person = new Person();
    
            GenerateTest<Fruit> generateTest = new GenerateTest<Fruit>();
            //apple是Fruit的子类,所以这里可以
            generateTest.show_1(apple);
            //编译器会报错,因为泛型类型实参指定的是Fruit,而传入的实参类是Person
            //generateTest.show_1(person);
    
            //使用这两个方法都可以成功
            generateTest.show_2(apple);
            generateTest.show_2(person);
    
            //使用这两个方法也都可以成功
            generateTest.show_3(apple);
            generateTest.show_3(person);
        }
    }
    

    4.6.3 泛型方法与可变参数

    再看一个泛型方法和可变参数的例子:

    public <T> void printMsg( T... args){
        for(T t : args){
            Log.d("泛型测试","t is " + t);
        }
    }
    
    printMsg("111",222,"aaaa","2323.4",55.55);
    

    4.6.4 静态方法与泛型

    静态方法有一种情况需要注意一下,那就是在类中的静态方法使用泛型:静态方法无法访问类上定义的泛型;如果静态方法操作的引用数据类型不确定的时候,必须要将泛型定义在方法上。

    即:如果静态方法要使用泛型的话,必须将静态方法也定义成泛型方法 。

    public class StaticGenerator<T> {
        ....
        ....
        /**
         * 如果在类中定义使用泛型的静态方法,需要添加额外的泛型声明(将这个方法定义成泛型方法)
         * 即使静态方法要使用泛型类中已经声明过的泛型也不可以。
         * 如:public static void show(T t){..},此时编译器会提示错误信息:
              "StaticGenerator cannot be refrenced from static context"
         */
        public static <T> void show(T t){
    
        }
    }
    

    4.6.5 泛型方法总结

    泛型方法能使方法独立于类而产生变化,以下是一个基本的指导原则:

    无论何时,如果你能做到,你就该尽量使用泛型方法。也就是说,如果使用泛型方法将整个类泛型化,那么就应该使用泛型方法。另外对于一个static的方法而已,无法访问泛型类型的参数。所以如果static方法要使用泛型能力,就必须使其成为泛型方法。
    4.6 泛型上下边界

    在使用泛型的时候,我们还可以为传入的泛型类型实参进行上下边界的限制,如:类型实参只准传入某种类型的父类或某种类型的子类。

    为泛型添加上边界,即传入的类型实参必须是指定类型的子类型

    public void showKeyValue1(Generic<? extends Number> obj){
        Log.d("泛型测试","key value is " + obj.getKey());
    }
    
    Generic<String> generic1 = new Generic<String>("11111");
    Generic<Integer> generic2 = new Generic<Integer>(2222);
    Generic<Float> generic3 = new Generic<Float>(2.4f);
    Generic<Double> generic4 = new Generic<Double>(2.56);
    
    //这一行代码编译器会提示错误,因为String类型并不是Number类型的子类
    //showKeyValue1(generic1);
    
    showKeyValue1(generic2);
    showKeyValue1(generic3);
    showKeyValue1(generic4);
    

    如果我们把泛型类的定义也改一下:

    public class Generic<T extends Number>{
        private T key;
    
        public Generic(T key) {
            this.key = key;
        }
    
        public T getKey(){
            return key;
        }
    }
    
    //这一行代码也会报错,因为String不是Number的子类
    Generic<String> generic1 = new Generic<String>("11111");
    

    再来一个泛型方法的例子:

    //在泛型方法中添加上下边界限制的时候,必须在权限声明与返回值之间的<T>上添加上下边界,即在泛型声明的时候添加
    //public <T> T showKeyName(Generic<T extends Number> container),编译器会报错:"Unexpected bound"
    public <T extends Number> T showKeyName(Generic<T> container){
        System.out.println("container key :" + container.getKey());
        T test = container.getKey();
        return test;
    }
    

    通过上面的两个例子可以看出:泛型的上下边界添加,必须与泛型的声明在一起 。

    4.7 关于泛型数组要提一下

    看到了很多文章中都会提起泛型数组,经过查看sun的说明文档,在java中是”不能创建一个确切的泛型类型的数组”的。

    也就是说下面的这个例子是不可以的:

    List<String>[] ls = new ArrayList<String>[10];
    

    而使用通配符创建泛型数组是可以的,如下面这个例子:

    List<?>[] ls = new ArrayList<?>[10];
    

    这样也是可以的:

    List<String>[] ls = new ArrayList[10];
    

    下面使用Sun的一篇文档的一个例子来说明这个问题:

    List<String>[] lsa = new List<String>[10]; // Not really allowed.    
    Object o = lsa;    
    Object[] oa = (Object[]) o;    
    List<Integer> li = new ArrayList<Integer>();    
    li.add(new Integer(3));    
    oa[1] = li; // Unsound, but passes run time store check    
    String s = lsa[1].get(0); // Run-time error: ClassCastException.
    

    这种情况下,由于JVM泛型的擦除机制,在运行时JVM是不知道泛型信息的,所以可以给oa[1]赋上一个ArrayList而不会出现异常,但是在取出数据的时候却要做一次类型转换,所以就会出现ClassCastException,如果可以进行泛型数组的声明,上面说的这种情况在编译期将不会出现任何的警告和错误,只有在运行时才会出错。

    而对泛型数组的声明进行限制,对于这样的情况,可以在编译期提示代码有类型安全问题,比没有任何提示要强很多。
    下面采用通配符的方式是被允许的:数组的类型不可以是类型变量,除非是采用通配符的方式,因为对于通配符的方式,最后取出数据是要做显式的类型转换的。

    List<?>[] lsa = new List<?>[10]; // OK, array of unbounded wildcard type.    
    Object o = lsa;    
    Object[] oa = (Object[]) o;    
    List<Integer> li = new ArrayList<Integer>();    
    li.add(new Integer(3));    
    oa[1] = li; // Correct.    
    Integer i = (Integer) lsa[1].get(0); // OK
    

    5.最后

    本文中的例子主要是为了阐述泛型中的一些思想而简单举出的,并不一定有着实际的可用性。另外,一提到泛型,相信大家用到最多的就是在集合中,其实,在实际的编程过程中,自己可以使用泛型去简化开发,且能很好的保证代码质量。

    转自:http://blog.csdn.net/s10461/article/details/53941091

    展开全文
  • Java知识点详解 4】Java泛型详解

    千次阅读 多人点赞 2020-06-17 16:47:31
    Java泛型是J2 SE1.5中引入的一个新特性,其本质是参数化类型,也就是说所操作的数据类型被指定为一个参数(type parameter)这种参数类型可以用在类、接口和方法的创建中,分别称为泛型类、泛型接口、泛型方法。...
  • java 泛型详解

    2018-11-26 11:19:57
    本文参考java 泛型详解Java中的泛型方法、 java泛型详解 1. 概述 泛型在java中有很重要的地位,在面向对象编程及各种设计模式中有非常广泛的应用。 什么是泛型?为什么要使用泛型? 泛型,即“参数化类型”。...
  • Java 泛型详解

    2018-07-14 16:35:30
    本文参考java 泛型详解Java中的泛型方法、 java泛型详解 1. 概述 泛型在Java中有很重要的地位,在面向对象编程及各种设计模式中有非常广泛的应用。 什么是泛型?为什么要使用泛型? 泛型,即“参数化类型”...
  • Java方法详解

    2021-08-22 14:54:39
    Java方法详解 目录 Java方法详解 什么是方法 方法的定义及调用 方法的定义 方法的调用 方法重载 命令行传参 可变参数 递归 什么是方法 System.out.println(),他是什么? Java方法是语句的集合,...
  • java方法详解

    2021-08-04 10:02:54
    java方法详解 何谓方法 Java方法是语句的集合,它们在一起执行一个功能. 方法是解决一类问题的步骤的有序组合 方法包含于类或对象中 方法在程序中被创建,在其他地方被引用 方法的设计原则:保持方法的原子性,就是一...
  • Java 1:java 泛型详解

    2019-03-01 11:52:10
    文章转自:java 泛型详解-绝对是对泛型方法讲解最详细的,没有之一 https://blog.csdn.net/s10461/article/details/53941091 文章转载为了自我学习与收藏 对java的泛型特性的了解仅限于表面的浅浅一层,直到在...
  • java泛型详解

    2020-01-01 23:58:32
    java泛型详解 泛型: 泛型的本质是类型参数化,解决不确定具体对象类型的问题。在不创建新的类型的情况下,通过泛型指定的不同类型来控制形参具体限制的类型。 在java1.5之前,没有泛型的情况的下,通过对类型...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 7,947
精华内容 3,178
关键字:

java形参详解

java 订阅