精华内容
下载资源
问答
  • 数据结构与算法:为什么要学习数据结构与算法 数据结构与算法到底是什么 数据结构数据结构指的是计算机中数据的组织形式,分为逻辑结构和物理结构两个维度。其中,逻辑结构是对数据组织形式在逻辑上的抽象,物理...

    数据结构与算法:为什么要学习数据结构与算法

    数据结构与算法到底是什么
    数据结构

    ​ 数据结构指的是计算机中数据的组织形式,分为逻辑结构和物理结构两个维度。其中,逻辑结构是对数据组织形式在逻辑上的抽象,物理结构则是基于存储设备对数据真实的组织管理,因此又被成为存储结构。学习和研究数据结构,就是研究数据的逻辑结构、物理结构及二者之间的关系。因此,数据结构中的”结构“二字,可以理解为数据之间存在的关系。

    算法

    ​ 算法在计算机领域指的是对特定问题的解决方案的一系列指令化描述。算法必须是明确且有穷的,即一个算法必须要有明确的定义,一定的输入在有限的步骤内可以获得要求的输出。

    数据结构与算法的关系

    ​ 算法是对一定的数据结构进行的特定操作,数据结构是算法的基础。在解决问题时,没有最好的算法,只有最合适的算法,数据结构也是。

    为什么要学习数据结构与算法

    ​ 知道了什么是数据结构与算法,接下来聊聊为什么要学习它。

    ​ 首先,最现实的问题是无论校招还是社招,技术面试中多多少少都会问到数据结构与算法相关的问题。例如最直接的一种,面试官上来就让手写一个快排的代码,或者给一段代码,要求分析时间复杂度和空间复杂度。

    ​ 其次,日常繁杂的业务工作往往容易让人忽略程序实现细节和原理。就 Java 来说,无论是其自身的基础 API,还是第三方提供的开源框架,都糅合很多优秀的数据结构和算法的设计思想。

    ​ 最后,如果不重视程序的性能好坏,日复一日业务开发显然无法持续提升个人的编程和设计能力。而提升代码质量的第一步,就是建立起时间复杂度、空间复杂度的意识。

    ​ 综上,扎实的数据结构与算法基础,能大大提升面试通过率,大大提升对语言、框架和工具的理解层次,大大提升编程和设计能力。

    展开全文
  • java数据结构算法

    千人学习 2019-11-22 10:12:46
    做一门精致,全面详细的 java数据结构与算法!!! 让天下没有难学的数据结构, 让天下没有难学的算法, 不吹不黑,我们的讲师及其敬业,可以看到课程视频,课件,代码的录制撰写,都是在深夜,如此用心,其心可鉴,他不掉头发,谁...
  • 数据结构学习心得

    千次阅读 多人点赞 2018-12-31 14:09:19
    本文链接:数据结构学习心得 山不在高,有仙则灵;水不在深,有龙则灵;要学好数据结构,有数据结构学习网才行! 首先,恭喜您发现了这个网站:一个神奇的学习数据结构的网站! 其次,感谢您打开这个网页阅读这...

    来源:我是码农,转载请保留出处和链接!

    本文链接:数据结构学习心得

    山不在高,有仙则灵;水不在深,有龙则灵;要学好数据结构,有数据结构学习网才行!

    image.png

    首先,恭喜您发现了这个网站:一个神奇的学习数据结构的网站!

    其次,感谢您打开这个网页阅读这篇文章,实在太感谢啦!

    再次,正在激动中......哽咽了。还是让我先来介绍一下我自己吧:

    我就是江湖上人见人爱、花见花开、车见车载,人称上天入地、无所不能、英俊潇洒、风流倜傥、玉树临风、学富五车、高大威猛、拥有千万粉丝、迷倒万千少女,号称一朵梨花压海棠的玉面小黄驴,帅到掉渣!一个见过我的女孩儿曾对我说:“如果世界只剩下十分钟的话,我会和你一同回忆你帅时的样子;如果世界只剩下三分钟的话,你要再摆一下你最最最帅的造型给我看;如果世界只剩下一分钟的话,我会对你对你说60次—小黄驴,你真帅!”还有一个女孩儿每天早晨都站在教室门口,痴痴地望着我,呆呆状喃道:“世间本无沙漠,只是我每看到一次你帅的样子,天上便会落下一粒沙,从此便有了撒哈拉。”唯心主义说:“我说你帅,你就是帅。”唯物主义说:“因为你帅,所以我说你帅。”总而言之一句话—我,就是帅。一个不帅驴子的标志是他愿意为自己的不帅英勇地死去,一个帅气驴子的标志是他愿意为自己的帅而卑怆地活着,所以,至今我还为自己的帅坚强的活着。

    本人没什么优点,唯一的优点就是没有缺点;本人基本全是缺点,最大的缺点就是只有优点;如果靓仔是一种罪,我已经罪犯滔天;如果有型是一种错,我已经一错再错;如果聪明要受惩罚,我岂不是要千刀万剐;如果谦虚都要受折磨,我又怎能逃得过?

    吹了这么半天驴掰,相信大家一定已经对我有好感了,下面该说点严肃的事情了:

    天将降大任于斯人也:据说,我出生时,天空的北方,出现祥云一片,渐渐由远至近,飘到我家房顶后,幻化成几个大字:“我是码农”。在接下来的若干年中,我一直在驴不停蹄地努力打造这个人类历史上、整个宇宙中最经典、最驴掰的可供大家免费学习数据结构的网站,这个网站的出现,是顺应天意的结果,更是历史的必然!

    那么,上天为什么委托我建造这个前无古人后无来者、举世无双、屌爆了的网站呢?学习数据结构到底有啥用?数据结构到底该咋学?

    数据结构是计算机科学与技术专业、计算机信息管理与应用专业,电子商务等专业的基础课,是十分重要的核心课程。所有的计算机系统软件和应用软件都要用到各种类型的数据结构。因此,要想更好地运用计算机来解决实际问题,仅掌握几种计算机程序设计语言是难以应付当前众多复杂的课题。要想有效地使用计算机、充分发挥计算机的性能,还必须学习和掌握好数据结构的有关知识。打好“数据结构”这门课程的扎实基础,对于学习其他专业课程是十分有益的。

    对于怎么能学好这门课程,我个人觉得基本上就是上课前看看书、上课时认真听课、下课以后复习复习、当然还有做作业时很认真的去做。根本谈不上什么好方法,不过我还是有一些话要送给大家:

    一、打好基本功

    不管学习什么,概念是基础,所有的知识框架都是建立在基础概念之上的。所以,第一遍看课本要将概念熟记于心,然后构建知识框架。比如看了一遍书后你至少应该知道数据结构包括线性结构、树形结构、图状结构或网状结构。线性结构包括线性表、栈、队列、串、数组、广义表等,栈和队列是操作受限的线性表,串的数据对象约束为字符集,数组和广义表是对线性表的扩展:表中的数据元素本身也是一个数据结构。除了线性表以外,栈是重点,因为栈和递归紧密相连,递归是程序设计中很重要的一种工具。树状结构中的重点自然是二叉树和哈弗曼树了。对于二叉树的很多操作都是基于对二叉树的遍历,掌握了如何遍历,很多问题也就迎刃而解了,比如对二叉树结点的查找访问、统计二叉树中叶子结点的数目、求二叉树的深度等。哈弗曼编码也有着很广泛的应用。对于图状结构,主要学习图的存储结构及图的遍历。

    二、不能看不起自己

    “我能行!”

    个人觉得这句话非常重要,不知道大家是怎样看待数据结构这门课的,有多少人觉得数据结构很难呢?我知道还是有一些同学这样觉得的,有时候我跟我的朋友讲要怎样学,讲了一大堆以后,他就向我抱怨:我以前c++都没有学好,数据结构更学不好了,这哪跟哪的话啊,数据结构与c++没有什么关系,我想假如抱有这样的心态,自己就不相信自己,那是不可能学好的,那些觉得数据结构很难的同学,我想他们应该会很看重数据结构的吧,然后他们就一天到晚捧着一本数据结构,这样不会觉得很累吗?而且因为觉得很难,就容易不相信自己,学的效率也不会很好,或许这有点太妄自菲薄了吧。个人认为数据结构很好学,很容易学,因为我觉得很容易,当然就会觉得自己没问题,学得很轻松,效果也还可以。大家都是从高考走过来的,应该知道心态的重要性吧,两种不同的心态,完全就是两种不同的效果。学习数据结构我们到底要学些什么呢?不知道大家有没有想过,那现在我们现在来归纳一下我们学习的内容吧,其实我们也就学了几种普通的数据结构,像二叉树,树,图还有排序的问题,前面的线性表和字符串也就是一些概念,当然还有一个很重要的KMP算法,然后在每种数据结构中我们也就是学到了若干处理的算法,我想真正数起来也就是几十个算法吧。学习数据结构也就是要掌握这几十种算法,多简单!至于如何掌握每个算法呢,我想就是多看看书,重要的是能够理解。个人认为,学习的难易程度很大程度上决定于个人的兴趣。把一件事情当做任务去做会很痛苦,当做兴趣去做会很快乐。如果想让自己在学习数据结构的过程中更轻松一些,就应该先培养对这门学科的兴趣。

    三、坚持独自完成作业的好习惯

    有一些同学总是喜欢先问好别人算法,然后再自己写,虽然这个不算抄袭作业,但自己基本上没有一个思考问题的过程,虽然要理解算法也会要思考很多,但是因为没有自己独立的思考过程,要自己写程序、写算法的时候根本写不出来,所以我想如果真的想学好数据结构的话,最好是能够自己思考问题,不要刚想了一会就觉得做不出来,然后就去问其他人。其实老师给我们的作业大多数还是基于我们的水平的,我绝对相信我们自己能够独自想出算法,虽有可能会比较长时间吧,但是这样肯定会比问其他人学到更多的东西。当然我并不是说不要问同学,有时候就是脑筋转不过来,一问别人就懂了,当然问了别人不能只是我知道了这个算法,还应该去想如何思考才能得到这个算法,这样水平会提高很多。

    对算法的学习是学习数据结构的关键。在看课本的过程中,要注重对算法的掌握。对于一个算法,读一遍可能能读懂,但不可能完全领会其中的思想。掌握一个算法,并不是说将算法背过,而是掌握算法的思想。我们需要的是耐心。每看一遍就会有这一遍的收获。读懂算法之后,自己再默写算法,写到不会的地方,看看课本想想自己为什么没有想到。反复练习,直到能顺利写出算法为止。个人认为,这是行之有效的方法。这样,不仅可以更加深入的领会算法思想,还会逐渐发现算法的巧妙之处,从而对数据结构产生兴趣。

    四、多动手实验

    这个就没有太多理由了,我一直觉得编程是一门熟练科学,多编程,水平肯定会提高,最重要的是能够养成一种感觉,就是对程序对算法的敏感,为什么那些牛人看一个算法一下子就看懂了?而自己要看很久才能弄懂,而且弄懂了过了一阵子又忘记了?其实这个是因为牛人们以前看的程序很多,编得也很多,所以他们有了那种感觉,所以我觉得大家应该多看程序,多写程序,培养自己的感觉。数据结构是实践很强的一门课程,光是“听”和“读”是绝对不够的,必须加强实践。在写算法的过程中,可能会出现很多问题,而不断修改的过程便是学习的过程。在这个过程中,只要全身心的投入了,便会发现很多乐趣。

    五、关于复习和考试的一些技巧

    我想大家应该都有这样的感觉,就是觉得自己什么都掌握了,但是在考试的时候就是会犯晕,有时候一出考场就知道错在哪个了,然后考完以后一对答案,发现其实考得很简单,应该都是自己会做的,这个就是与自己的复习和考试的技巧有关系了。

    首先就是复习,前面已经说过其实我们学的算法也就是几十个,那么我们的任务也就是理解这几十个算法,复习也就是要加深你的理解。如何理解算法,然后理解到什么程度呢?是能默写出整个算法吗?其实不是这样的,数据结构的考试有它的特点,考过期末考试了,大家应该都发现数据结构其实不要求你把整个算法背出来,它注重考察你的理解,那么怎么考察呢?其实也就是两种方式吧,一种就是用实例,就是给你一个例子,要你用某个算法运行出结果,我想这个期末考试的时候仍然会有很多这样的题目,比如排序那块就很好出这样的题目,要复习这种题目我觉得很简单,就是每个算法都自己用例子去实践一下,以不变应万变,我当年期末复习的时候就是这样去做的,而且考试之前我就觉得排序类的题目就很有可能会考,于是就自己编写各类排序算法运行了一遍。另外一种考察方式就是算法填空和算法改错,可能有一些同学觉得这种题目很难,其实我们首先可以确定这两种题目肯定是与书上算法有关系的,只要理解了书上的算法就可以了,有人觉得看完书以后什么都懂了,而且要默写也默写得出来,其实不是这样的,算法改错和填空主要是考察的细微处,虽然你觉得你默写得出来,那是能够默写出算法的主体部分,很多细微的地方你就会很容易忽略。我想大家考过期末考以后应该都有这种感觉吧?那要怎样解决这种问题呢?我觉得有两种方法,一种就是自己去编程实现,这种方法比较有意义,还能够提高编程水平,另外一种就是用实例分析算法的每句话,我认为这种方法是最有效的。

    然后还有一种题目,就是最后的写算法的题目,我觉得这种题目还是很好解决的,只要是能够自己做出作业的,基本上都会很容易做出来,这也是为什么我前面觉得平时做作业应该自己独立思考的原因,同时做这种题目千万要小心,尤其是题目简单的时候,那肯定会有一些小地方要考虑清楚,一不小心就会被扣掉很多分,这样很不值。

    我觉得考试的时候没有太多要讲的,只要复习好了,考试的时候细心一点就可以了,然后就是做一个题目开始就要尽量保证正确,如果觉得留在那里等后面做完了再来检查,这样错误还是很有可能检查不出来,我期末考试的时候就基本上没有检查,因为我做每个题目都是确保正确,用的时间也挺多的,然后也觉得没有检查的必要了。

    五百年回眸才换来今生的擦肩而过,一万年方得今日在此相聚,我希望大家能记住我的名字—小黄驴,因为我将会和大家成为最好的朋友。我希望大家能记住我的网站—数据结构学习网,因为她将会成为一个让大家可以依赖的学习港湾。我们将风雨无阻一起走过一段美好的时光,祝大家学习愉快!学有所得!

    展开全文
  • 学习数据数据结构的意义

    千次阅读 2018-12-31 14:09:05
    什么是数据结构,为什么要学习数据结构数据结构是否是一门纯数学课程?它在专业课程体系中起什么样的作用?我们要怎么才能学好数据结构?… 相信同学们在刚开始《数据结构》这门课的学习时,心里有着类似前面几个...

    来源:我是码农,转载请保留出处和链接!

    本文链接:http://www.54manong.com/?id=18

    什么是数据结构,为什么要学习数据结构?数据结构是否是一门纯数学课程?它在专业课程体系中起什么样的作用?我们要怎么才能学好数据结构?… 相信同学们在刚开始《数据结构》这门课的学习时,心里有着类似前面几个问题的这样那样的疑问。希望下面的内容能帮助大家消除疑惑,下定决心坚持学好这门课:

    1 学习数据数据结构的意义

    数据结构是计算机科学与技术专业、计算机信息管理与应用专业,电子商务等专业的基础课,是十分重要的核心课程。所有的计算机系统软件和应用软件都要用到各种类型的数据结构。因此,要想更好地运用计算机来解决实际问题,仅掌握几种计算机程序设计语言是难以应付当前众多复杂的课题。要想有效地使用计算机、充分发挥计算机的性能,还必须学习和掌握好数据结构的有关知识。打好“数据结构”这门课程的扎实基础,对于学习计算机专业的其他课程,如操作系统、数据库管理系统、软件工程、编译原理、人工智能、图视学等都是十分有益的。

    2 为什么要学习数据结构

    在计算机发展的初期,人们使用计算机的目的主要是处理数值计算问题。当我们使用计算机来解决一个具体问题时,一般需要经过下列几个步骤:首先要从该具体问题抽象出一个适当的数学模型,然后设计或选择一个解此数学模型的算法,最后编出程序进行调试、测试,直至得到最终的解答。例如,求解梁架结构中应力的数学模型的线性方程组,可以使用迭代算法来求解。

    由于当时所涉及的运算对象是简单的整型、实型或布尔类型数据,所以程序设计者的主要精力是集中于程序设计的技巧上,而无须重视数据结构。随着计算机应用领域的扩大和软、硬件的发展,非数值计算问题越来越显得重要。据统计,当今处理非数值计算性问题占用了85%以上的机器时间。这类问题涉及到的数据结构更为复杂,数据元素之间的相互关系一般无法用数学方程式加以描述。因此,解决这类问题的关键不再是数学分析和计算方法,而是要设计出合适的数据结构,才能有效地解决问题。下面所列举的就是属于这一类的具体问题。

    例1:图书馆信息检索系统。当我们根据书名查找某本书有关情况的时候;或者根据作者或某个出版社查找有关书籍的时候,或根据书刊号查找作者和出版社等有关情况的时候,只要我们建立了相关的数据结构,按照某种算法编写了相关程序,就可以实现计算机自动检索。由此,可以在图书馆信息检索系统中建立一张按书刊号顺序排列的图书信息表和分别按作者、书名、出版社顺序排列的索引表,如图1.1所示。由这四张表构成的文件便是图书信息检索的数学模型,计算机的主要操作便是按照某个特定要求(如给定书名)对图书馆藏书信息文件进行查询。

    诸如此类的还有学生信息查询系统、商场商品管理系统、仓库物资管理系统等。在这类文档管理的数学模型中,计算机处理的对象之间通常存在着的是一种简单的线性关系,这类数学模型可称为线性的数据结构。

    image.png

    例2:八皇后问题。在八皇后问题中,处理过程不是根据某种确定的计算法则,而是利用试探和回溯的探索技术求解。为了求得合理布局,在计算机中要存储布局的当前状态。从最初的布局状态开始,一步步地进行试探,每试探一步形成一个新的状态,整个试探过程形成了一棵隐含的状态树。如图1.2所示(为了描述方便,将八皇后问题简化为四皇后问题)。回溯法求解过程实质上就是一个遍历状态树的过程。在这个问题中所出现的树也是一种数据结构,它可以应用在许多非数值计算的问题中。

    image.png

    例3:教学计划编排问题。一个教学计划包含许多课程,在教学计划包含的许多课程之间,有些必须按规定的先后次序进行,有些则没有次序要求。即有些课程之间有先修和后续的关系,有些课程可以任意安排次序。这种各个课程之间的次序关系可用一个称作图的数据结构来表示,如图1.3所示。有向图中的每个顶点表示一门课程,如果从顶点vi到vj之间存在有向边<vi,vj>,则表示课程i必须先于课程j进行。由以上三个例子可见,描述这类非数值计算问题的数学模型不再是数学方程,而是诸如线性表、树、图之类的数据结构。因此,可以说数据结构课程主要是研究非数值计算的程序设计问题中所出现的计算机操作对象以及它们之间的关系和操作的学科。

    学习数据结构的目的是为了了解计算机处理对象的特性,将实际问题中所涉及的处理对象在计算机中表示出来并对它们进行处理。与此同时,通过算法训练来提高学生的思维能力,通过程序设计的技能训练来促进学生的综合应用能力和专业素质的提高。

    3数据结构课程的内容

    数据结构与数学、计算机硬件和软件有十分密切的关系,它是介于数学、计算机硬件和计算机软件之间的一门计算机专业的核心课程,是高级程序设计语言、操作系统、编译原理、数据库、人工智能、图视学等课程的基础。同时,数据结构技术也广泛应用于信息科学、系统工程、应用数学以及各种工程技术领域。

    数据结构课程重在讨论软件开发过程中的方案设计阶段、同时设计编码和分析阶段的若干基本问题。此外,为了构造出好的数据结构及其实现,还需考虑数据结构及其实现的评价与选择。因此,数据结构的内容包括三个层次的五个“要素”,如图1.3所示。

    image.png

    数据结构的核心技术是分解与抽象。通过分解可以划分出数据的三个层次;再通过抽象,舍弃数据元素的具体内容,就得到逻辑结构。类似地,通过分解将处理要求划分成各种功能,再通过抽象舍弃实现细节,就得到运算的定义。上述两个方面的结合使我们将问题变换为数据结构。这是一个从具体(即具体问题)到抽象(即数据结构)的过程。然后,通过增加对实现细节的考虑进一步得到存储结构和实现运算,从而完成设计任务。这是一个从抽象(即数据结构)到具体(即具体实现)的过程。熟练地掌握这两个过程是数据结构课程在专业技能培养方面的基本目标。

    结束语:数据结构作为一门独立的课程在国外是从1968年才开始的,但在此之前其有关内容已散见于编译原理及操作系统之中。20世纪60年代中期,美国的一些大学开始设立有关课程,但当时的课程名称并不叫数据结构。1968年美国唐.欧.克努特教授开创了数据结构的最初体系,他所著的《计算机程序设计技巧》第一卷《基本算法》是第一本较系统地阐述数据的逻辑结构和存储结构及其操作的著作。从20世纪60年代末到70年代初,出现了大型程序,软件也相对独立,结构程序设计成为程序设计方法学的主要内容,人们越来越重视数据结构。从70年代中期到80年代,各种版本的数据结构著作相继出现。目前,数据结构的发展并未终结,一方面,面向各专门领域中特殊问题的数据结构得到研究和发展,如多维图形数据结构等;另一方面,从抽象数据类型和面向对象的观点来讨论数据结构已成为一种新的趋势,越来越被人们所重视。

    数据结构是计算机科学与技术专业、计算机信息管理与应用专业,电子商务等专业的基础课,是十分重要的核心课程。所有的计算机系统软件和应用软件都要用到各种类型的数据结构。因此,要想更好地运用计算机来解决实际问题,仅掌握几种计算机程序设计语言是难以应付当前众多复杂的课题。要想有效地使用计算机、充分发挥计算机的性能,还必须学习和掌握好数据结构的有关知识。打好“数据结构”这门课程的扎实基础,对于学习计算机专业的其他课程,如操作系统、数据库管理系统、软件工程、编译原理、人工智能、图视学等都是十分有益的。

    在计算机发展的初期,人们使用计算机的目的主要是处理数值计算问题。当我们使用计算机来解决一个具体问题时,一般需要经过下列几个步骤:首先要从该具体问题抽象出一个适当的数学模型,然后设计或选择一个解此数学模型的算法,最后编出程序进行调试、测试,直至得到最终的解答。例如,求解梁架结构中应力的数学模型的线性方程组,可以使用迭代算法来求解。

    由于当时所涉及的运算对象是简单的整型、实型或布尔类型数据,所以程序设计者的主要精力是集中于程序设计的技巧上,而无须重视数据结构。随着计算机应用领域的扩大和软、硬件的发展,非数值计算问题越来越显得重要。据统计,当今处理非数值计算性问题占用了85%以上的机器时间。这类问题涉及到的数据结构更为复杂,数据元素之间的相互关系一般无法用数学方程式加以描述。因此,解决这类问题的关键不再是数学分析和计算方法,而是要设计出合适的数据结构,才能有效地解决问题。下面所列举的就是属于这一类的具体问题。

    例1:图书馆信息检索系统。当我们根据书名查找某本书有关情况的时候;或者根据作者或某个出版社查找有关书籍的时候,或根据书刊号查找作者和出版社等有关情况的时候,只要我们建立了相关的数据结构,按照某种算法编写了相关程序,就可以实现计算机自动检索。由此,可以在图书馆信息检索系统中建立一张按书刊号顺序排列的图书信息表和分别按作者、书名、出版社顺序排列的索引表。由这四张表构成的文件便是图书信息检索的数学模型,计算机的主要操作便是按照某个特定要求(如给定书名)对图书馆藏书信息文件进行查询。

    诸如此类的还有学生信息查询系统、商场商品管理系统、仓库物资管理系统等。在这类文档管理的数学模型中,计算机处理的对象之间通常存在着的是一种简单的线性关系,这类数学模型可称为线性的数据结构。

    例2:八皇后问题。在八皇后问题中,处理过程不是根据某种确定的计算法则,而是利用试探和回溯的探索技术求解。为了求得合理布局,在计算机中要存储布局的当前状态。从最初的布局状态开始,一步步地进行试探,每试探一步形成一个新的状态,整个试探过程形成了一棵隐含的状态树。(为了描述方便,将八皇后问题简化为四皇后问题)。回溯法求解过程实质上就是一个遍历状态树的过程。在这个问题中所出现的树也是一种数据结构,它可以应用在许多非数值计算的问题中。

    例3:教学计划编排问题。一个教学计划包含许多课程,在教学计划包含的许多课程之间,有些必须按规定的先后次序进行,有些则没有次序要求。即有些课程之间有先修和后续的关系,有些课程可以任意安排次序。这种各个课程之间的次序关系可用一个称作图的数据结构来表示。有向图中的每个顶点表示一门课程,如果从顶点vi到vj之间存在有向边<vi,vj>,则表示课程i必须先于课程j进行。

    由以上三个例子可见,描述这类非数值计算问题的数学模型不再是数学方程,而是诸如线性表、树、图之类的数据结构。因此,可以说数据结构课程主要是研究非数值计算的程序设计问题中所出现的计算机操作对象以及它们之间的关系和操作的学科。

    学习数据结构的目的是为了了解计算机处理对象的特性,将实际问题中所涉及的处理对象在计算机中表示出来并对它们进行处理。与此同时,通过算法训练来提高学生的思维能力,通过程序设计的技能训练来促进学生的综合应用能力和专业素质的提高。

    image.png

    展开全文
  • 数据结构与算法学习笔记

    万次阅读 多人点赞 2018-09-25 13:55:49
    本文是王争老师的《算法与数据结构之美》的学习笔记,详细内容请看王争的专栏。有不懂的地方指出来,我做修改。 数据结构与算法思维导图 数据结构指的是“一组数据的存储结构”,算法指的是“操作数据的一组...

    本文是王争老师的《算法与数据结构之美》的学习笔记,详细内容请看王争的专栏 。有不懂的地方指出来,我做修改。

     

    数据结构与算法思维导图

    数据结构指的是“一组数据的存储结构”,算法指的是“操作数据的一组方法”。
    数据结构是为算法服务的,算法是要作用再特定的数据结构上的。

    最常用的数据结构预算法:

    • 数据结构:数组、链表、栈、队列、散列表、二叉树、堆、跳表、图、Tire树
    • 算法: 递归、排序、二分查找、搜索、哈希算法、贪心算法、分治算法、回溯算法、动态规划、字符串匹配算法

    1  算法的复杂度

    1.1大O复杂度表示法

     公式:

     

    T(n)表示代码执行的时间; n表示数据规模的大小; f(n) 表示每行代码执行的次数总和。因为这是一个公式, 所以用f(n)来表示。公式中的O,表示代码的执行时间T(n)与f(n)表达式成正比。

          所以,第一个例子中的T(n) = O(2n+2),第二个例子中的T(m) = 0(2n2 +2n+3)。这就是大O时间复杂度表示法。大O时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度。

          当n很大时,你可以把它想象成10000、100000。 而公式中的低阶、常量、系数三部分并不左右增长趋势,所以都可以忽略。我们只需要记录-个最大量级就可以了,如果用大O表示法表示刚讲的那两段代码的时间复杂度,就可以记为: T(n) = O(n); T(n)= 0(n2)。
     

    1.2.复杂度分析法则

    1)单段代码看高频:比如循环。
    2)多段代码取最大:比如一段代码中有单循环和多重循环,那么取多重循环的复杂度。
    3)嵌套代码求乘积:比如递归、多重循环等
    4)多个规模求加法:比如方法有两个参数控制两个循环的次数,那么这时就取二者复杂度相加。

     

    1.3 时间复杂度分析

    • 只关注循环执行次数最多的一段代码
    • 加法法则:总复杂度等于量级最大的那段代码的复杂度
    • 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

    1.4 几种常见时间复杂度实例分析

    多项式阶:随着数据规模的增长,算法的执行时间和空间占用,按照多项式的比例增长。包括,
    O(1)(常数阶)、O(logn)(对数阶)、O(n)(线性阶)、O(nlogn)(线性对数阶)、O(n^2)(平方阶)、O(n^3)(立方阶)
    非多项式阶:随着数据规模的增长,算法的执行时间和空间占用暴增,这类算法性能极差。包括,
    O(2^n)(指数阶)、O(n!)(阶乘阶)

    • O(1) :

    常量级时间复杂度,只要代码的执行时间不随 n 的增大而增长,这样代码的时间复杂度我们都记作 O(1)。

    • O(logn)、O(nlogn)
    i=1;
    while(i<=n) {
        i = i*2;
    }

    x=log2n,所以,这段代码的时间复杂度就是 O(log2n)

    • O(m+n)、O(m*n)

     

       int cal(int m, int n) {
          int sum_1=0;
          int i=1;
          for(;i<m;++i){
             sum_1 = sum_1 + i;
          }
          int sum_2 = 0;
          int j=1;
          for (;j<n;++j){
             sum_2 = sum_2 + j;
          }
          return sum_1 + sum_2;
       }

    从代码中可以看出,m和n是表示两个数据规模。我们无法事先评估m和n谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。所以,上面代码的时间复 杂度就是0(m+n)。

    针对这种情况,原来的加法法则就不正确了,我们需要将加法规则改为: T1(m) + T2(m) = O(f(m) + g(n))。但是乘法法则继续有效: T1(m)*T2(n) = O(f(m) * f(n))。

    1.5 空间复杂度分析

    表示算法的存储空间与数据规模之间的增长关系。

    void print(int n) {
        inti=0;
        int[] a = new int[n];
        for (i; i <n; ++i) {
            a[i] =i* i;
        }
        for(i=n-1;i>=0;--i){
            print out a[i]
        }
    }

    跟时间复杂度分析一样,我们可以看到,第2行代码中,我们申请了一个空间存储变量i,但是它是常最阶的,跟数据规模n没有关系,所以我们可以忽略。第3行申请了一个大小为n的int类型数组,除此之外,剩下的代码都没有占用更多的空间,所以整段代码的空间复杂度就是O(n)。

    我们常见的空间复杂度就是O(1)、O(n)、 O(n2), 像O(logn)、O(nlogn) 这样的对数阶复杂度平时都用不到。而且,空间复杂度分析比时间复杂度分析要简单很多。所以,对于空间复杂度,掌握刚我说的这些内容已经足够了。

    1.6 复杂度增长趋势图:

    最好情况时间复杂度、最坏时间复杂度、平均情況时间复杂度、均摊时间复杂度。

    一、复杂度分析的4个概念
    1.最坏情况时间复杂度:代码在最坏情况下执行的时间复杂度。
    2.最好情况时间复杂度:代码在最理想情况下执行的时间复杂度。
    3.平均时间复杂度:代码在所有情况下执行的次数的加权平均值。
    4.均摊时间复杂度:在代码执行的所有复杂度情况中绝大部分是低级别的复杂度,个别情况是高级别复杂度且发生具有时序关系时,可以将个别高级别复杂度均摊到低级别复杂度上。基本上均摊结果就等于低级别复杂度。

    二、为什么要引入这4个概念?
    1.同一段代码在不同情况下时间复杂度会出现量级差异,为了更全面,更准确的描述代码的时间复杂度,所以引入这4个概念。
    2.代码复杂度在不同情况下出现量级差别时才需要区别这四种复杂度。大多数情况下,是不需要区别分析它们的。

    三、如何分析平均、均摊时间复杂度?
    1.平均时间复杂度
    代码在不同情况下复杂度出现量级差别,则用代码所有可能情况下执行次数的加权平均值表示。
    2.均摊时间复杂度
    两个条件满足时使用:1)代码在绝大多数情况下是低级别复杂度,只有极少数情况是高级别复杂度;2)低级别和高级别复杂度出现具有时序规律。均摊结果一般都等于低级别复杂度。

    1、数组

    线性表:   线性表就是数据排成像一条线一样的结构.每个现行表上的数据最多只有前和后两个方向.常见的线性表结构:数组,链表、队列、栈等。

     

    什么是数组:

    1.  数组(Array)是一种线性表数据结构。它用一组连续的内存空间,来存储一组具有相同类型的数据
    2.  连续的内存空间和相同类型的数据(随机访问的前提)
    3. 优点:两限制使得具有随机访问的特性缺点:删除,插入数据效率低
    • 数组怎么根据下标随机访问的?

    通过寻址公式:a[i]_address = base_address + i * data_type_size
    其中data_type_size表示数组中每个元素的大小,base_address 是首元素地址,i数组下标。

     

    为何数组插入和删除低效:

    插入:
    若有一元素想往int[n]的第k个位置插入数据,需要在k-n的位置往后移。
    最好情况时间复杂度 O(1)

    如果数组中的数据不是有序的,也就是无规律的情况下,可以直接把第k个位置上的数据移到最后,然后将插入的数据直接放在第k个位置上。

    最坏情况复杂度为O(n)


    平均负责度为O(n)

    2. 低效的插入和删除
    1) 插入:从最好O(1) 最坏O(n) 平均O(n)
    2) 插入:数组若无序,插入新的元素时,可以将第K个位置元素移动到数组末尾,把心的元素,插入到第k个位置,此处复杂度为O(1)。
    3) 删除:从最好O(1) 最坏O(n) 平均O(n)
    4) 多次删除集中在一起,提高删除效率
    记录下已经被删除的数据,每次的删除操作并不是搬移数据,只是记录数据已经被删除,当数组没有更多的存储空间时,再触发一次真正的删除操作。即JVM标记清除垃圾回收算法。

     

    2、链表

    • 什么是链表

    1.和数组一样,链表也是一种线性表。
    2.从内存结构来看,链表的内存结构是不连续的内存空间,是将一组零散的内存块串联起来,从而进行数据存储的数据结构。
    3.链表中的每一个内存块被称为节点Node。节点除了存储数据外,还需记录链上下一个节点的地址,即后继指针next。

     

    • 链表的特点

    1.插入、删除数据效率高O(1)级别(只需更改指针指向即可),随机访问效率低O(n)级别(需要从链头至链尾进行遍历)。


    2.和数组相比,内存空间消耗更大,因为每个存储数据的节点都需要额外的空间存储后继指针。

    • 常用链表

    1.单链表


    1)每个节点只包含一个指针,即后继指针。
    2)单链表有两个特殊的节点,即首节点和尾节点。为什么特殊?用首节点地址表示整条链表,尾节点的后继指针指向空地址null。
    3)性能特点:插入和删除节点的时间复杂度为O(1),查找的时间复杂度为O(n)。

     

    2.循环链表


    1)除了尾节点的后继指针指向首节点的地址外均与单链表一致。
    2)适用于存储有循环特点的数据,比如约瑟夫问题。

     

    3.双向链表


    1)节点除了存储数据外,还有两个指针分别指向前一个节点地址(前驱指针prev)和下一个节点地址(后继指针next)。
    2)首节点的前驱指针prev和尾节点的后继指针均指向空地址。
    3)性能特点:
    和单链表相比,存储相同的数据,需要消耗更多的存储空间。
    插入、删除操作比单链表效率更高O(1)级别。以删除操作为例,删除操作分为2种情况:给定数据值删除对应节点和给定节点地址删除节点。对于前一种情况,单链表和双向链表都需要从头到尾进行遍历从而找到对应节点进行删除,时间复杂度为O(n)。对于第二种情况,要进行删除操作必须找到前驱节点,单链表需要从头到尾进行遍历直到p->next = q,时间复杂度为O(n),而双向链表可以直接找到前驱节点,时间复杂度为O(1)。
    对于一个有序链表,双向链表的按值查询效率要比单链表高一些。因为我们可以记录上次查找的位置p,每一次查询时,根据要查找的值与p的大小关系,决定是往前还是往后查找,所以平均只需要查找一半的数据。

    4.双向循环链表:

    首节点的前驱指针指向尾节点,尾节点的后继指针指向首节点。

    • 选择数组还是链表?

    1.插入、删除和随机访问的时间复杂度
    数组:插入、删除的时间复杂度是O(n),随机访问的时间复杂度是O(1)。
    链表:插入、删除的时间复杂度是O(1),随机访问的时间复杂端是O(n)。

    2.数组缺点
    1)若申请内存空间很大,比如100M,但若内存空间没有100M的连续空间时,则会申请失败,尽管内存可用空间超过100M。
    2)大小固定,若存储空间不足,需进行扩容,一旦扩容就要进行数据复制,而这时非常费时的。
    3.链表缺点
    1)内存空间消耗更大,因为需要额外的空间存储指针信息。
    2)对链表进行频繁的插入和删除操作,会导致频繁的内存申请和释放,容易造成内存碎片,如果是Java语言,还可能会造成频繁的GC(自动垃圾回收器)操作。
    4.如何选择?
    数组简单易用,在实现上使用连续的内存空间,可以借助CPU的缓冲机制预读数组中的数据,所以访问效率更高,而链表在内存中并不是连续存储,所以对CPU缓存不友好,没办法预读。
    如果代码对内存的使用非常苛刻,那数组就更适合。

    • 应用

    1.如何分别用链表和数组实现LRU缓冲淘汰策略?
    1)什么是缓存?
    缓存是一种提高数据读取性能的技术,在硬件设计、软件开发中都有着非广泛的应用,比如常见的CPU缓存、数据库缓存、浏览器缓存等等。
    2)为什么使用缓存?即缓存的特点
    缓存的大小是有限的,当缓存被用满时,哪些数据应该被清理出去,哪些数据应该被保留?就需要用到缓存淘汰策略。
    3)什么是缓存淘汰策略?
    指的是当缓存被用满时清理数据的优先顺序。
    4)有哪些缓存淘汰策略?
    常见的3种包括先进先出策略FIFO(First In,First Out)、最少使用策略LFU(Least Frenquently Used)、最近最少使用策略LRU(Least Recently Used)。
    5)链表实现LRU缓存淘汰策略
    当访问的数据没有存储在缓存的链表中时,直接将数据插入链表表头,时间复杂度为O(1);当访问的数据存在于存储的链表中时,将该数据对应的节点,插入到链表表头,时间复杂度为O(n)。如果缓存被占满,则从链表尾部的数据开始清理,时间复杂度为O(1)。
    6)数组实现LRU缓存淘汰策略
    方式一:首位置保存最新访问数据,末尾位置优先清理
    当访问的数据未存在于缓存的数组中时,直接将数据插入数组第一个元素位置,此时数组所有元素需要向后移动1个位置,时间复杂度为O(n);当访问的数据存在于缓存的数组中时,查找到数据并将其插入数组的第一个位置,此时亦需移动数组元素,时间复杂度为O(n)。缓存用满时,则清理掉末尾的数据,时间复杂度为O(1)。
    方式二:首位置优先清理,末尾位置保存最新访问数据
    当访问的数据未存在于缓存的数组中时,直接将数据添加进数组作为当前最有一个元素时间复杂度为O(1);当访问的数据存在于缓存的数组中时,查找到数据并将其插入当前数组最后一个元素的位置,此时亦需移动数组元素,时间复杂度为O(n)。缓存用满时,则清理掉数组首位置的元素,且剩余数组元素需整体前移一位,时间复杂度为O(n)。(优化:清理的时候可以考虑一次性清理一定数量,从而降低清理次数,提高性能。)
    2.如何通过单链表实现“判断某个字符串是否为水仙花字符串”?(比如 上海自来水来自海上)
    1)前提:字符串以单个字符的形式存储在单链表中。
    2)遍历链表,判断字符个数是否为奇数,若为偶数,则不是。
    3)将链表中的字符倒序存储一份在另一个链表中。
    4)同步遍历2个链表,比较对应的字符是否相等,若相等,则是水仙花字串,否则,不是。
    六、设计思想
    时空替换思想:“用空间换时间” 与 “用时间换空间”
    当内存空间充足的时候,如果我们更加追求代码的执行速度,我们就可以选择空间复杂度相对较高,时间复杂度小相对较低的算法和数据结构,缓存就是空间换时间的例子。如果内存比较紧缺,比如代码跑在手机或者单片机上,这时,就要反过来用时间换空间的思路。

     

     

    3、队列

     

    什么是队列:

    队列是一种受限的线性表数据结构,只支持两个操作:入栈push()和出栈pop0,队列跟非常相似,支持的操作也 ,很有限,最基本的操作也是两个:入队enqueue(),放一个数据到队列尾部;出队dequeue0),从队列头部取一个元素。

    特点:

    1 . 队列跟栈一样,也是一种抽象的数据结构。

    2. 具有先进先出的特性,支持在队尾插入元素,在队头删除元素。

     

    实现:

    队列可以用数组来实现,也可以用链表来实现。

    用数组实现的队列叫作顺序队列,用链表实现的队列叫作链式队列。

     

    基于数组的队列:

    实现思路:

    实现队列需要两个指针:一个是head指针,指向队头;一个是tail指针,指向队尾。你可以结合下面这幅图来理解。当a,b,c,d依次入队之后,队列中的head指针指向下标为0的位置, tail指针指向下标为4的位置。

    当我们调用两次出队操作之后,队列中head指针指向下标为2的位置, tail指针仍然指向下标为4的位置.

    随着不停地进行入队、出队操作, head和tail都会持续往后移动。当tail移 . ,动到最右边,即使数组中还有空闲空间,也无法继续往队列中添加数据了。这个问题该如何解决呢?

    在出队时可以不用搬移数据。如果没有空闲空间了,我们只需要在入队时,再集中触 ,发一次数据的搬移操作。

    当队列的tail指针移动到数组的最右边后,如果有新的数据入队,我们可以将 head到tail之间的数据,整体搬移到数组中0到tail-head的位置。

    基于链表的实现: 

    需要两个指针: head指针和tail指针,它们分别指向链表的第一个结,点和最后一个结点。

    如图所示,入队时, tail->next= new node, tail = tail->next:出队时, head = head->next.

     

    循环队列:

    我们刚才用数组来实现队列的时候,在tail==n时,会有数据搬移操作,这样入队操作性能就会受到影响。那有没有办法能够避免数据搬移呢?我们来看看循环队列的解决思路。循环队列,顾名思义,它长得像一个环。原本数组是有头有尾的,是一条直线。现在我们把首尾相,连,板成了一个环。我画了一张图,你可以直观地感受一下。

    我们可以看到,图中这个队列的大小为8,当前head-4, tail-7,当有一个新的元素a入队时, .我们放入下标为7的位置。但这个时候,我们并不把tail更新为8,而是将其在环中后移一位,到下标为0的位置。当再有一个元素b入队时,我们将b放入下标为0的位置,然后tail加1更新为1,所以,在a, b依次入队之后,循环队列中的元素就变成了下面的样子:

    队列为空的判断条件是head == tail,但队列满的判断条件就稍微有点复杂了。我画了一张队列满的图,你可以看一下,试着总结一下规律,

    就像我图中画的队满的情况, tail=3, head-4, n=8,所以总结一下规律就是: (3+1)%8-4,多画几张队满的图,你就会发现,当队满时, (tail+1)%n=head..你有没有发现,当队列满时,图中的tail指向的位置实际上是没有存储数据的。所以,循环队列会浪费一个数组的存储空间。

    解决浪费一个存储空间的思路:定义一个记录队列大小的值size,当这个值与数组大小相等时,表示队列已满,当tail达到最底时,size不等于数组大小时,tail就指向数组第一个位置。当出队时,size—,入队时size++

    阻塞队列和并发队列(应用比较广泛)

    阻塞队列其实就是在队列基础上增加了阻塞操作。

    简单来说,就是在队列为空的时候,从队头取数 , 据会被阻塞。因为此时还没有数据可取,直到队列中有了数据才能返回;如果队列已经满了,那么插入数据的操作就会被阻塞,直到队列中有空闲位置后再插入数据,然后再返回。

    你应该已经发现了,上述的定义就是一个"生产者-消费者模型" !是的,我们可以使用阻塞队列,轻松实现一个"生产者-消费者模型" !这种基干阴寒队列实现的"生产者-消费者模型" ,可以有效地协调生产和消费的速度。当"生产 , 者"生产数据的速度过快, "消费者"来不及消费时,存储数据的队列很快就会满了。这个时候,生产者就阻塞等待,直到"消费者"消费了数据, "生产者"才会被唤醒继续"生产而且不仅如此,基于阻塞队列,我们还可以通过协调"生产者"和"消费者"的个数,来提高数据,的处理效率。比如前面的例子,我们可以多配置几个"消费者" ,来应对一个"生产者"

     

    小结:

    队列最大的特点就是先进先出,主要的两个操作是入队和出队。

    它既可以用数组来实现,也可以用链表来实现。用数组实现的叫顺序队列,用链表实现的叫链式队列。

    长在数组实现队列的时候,会有数据搬移操作,要想解决数据搬移的问题,我们就,需要像环一样的循环队列。要想写出没有bug的循环队列实现代码,关键要确定好队空和队满的,判定条件。

    阻塞队列、并发队列,底层都还是队列这种数据结构,只不过在之上附加了很多其他功能。阻塞队列就是入队、出队操作可以阴寒,并发队列就是队列的操作多线程安全。

     

    4、递归算法

     

    一、什么是递归?

    1.递归是一种非常高效、简洁的编码技巧,一种应用非常广泛的算法,比如DFS深度优先搜索、前中后序二叉树遍历等都是使用递归。
    2.方法或函数调用自身的方式称为递归调用,调用称为递,返回称为归。
    3.基本上,所有的递归问题都可以用递推公式来表示,比如
    f(n) = f(n-1) + 1; 
    f(n) = f(n-1) + f(n-2);
    f(n)=n*f(n-1);

    二、为什么使用递归?递归的优缺点?

    1.优点:代码的表达力很强,写起来简洁。
    2.缺点:空间复杂度高、有堆栈溢出风险、存在重复计算、过多的函数调用会耗时较多等问题。

    三、什么样的问题可以用递归解决呢?

    一个问题只要同时满足以下3个条件,就可以用递归来解决:
    1.问题的解可以分解为几个子问题的解。何为子问题?就是数据规模更小的问题。
    2.问题与子问题,除了数据规模不同,求解思路完全一样
    3.存在递归终止条件

    四、如何实现递归?

    1.递归代码编写
    写递归代码的关键就是找到如何将大问题分解为小问题的规律,并且基于此写出递推公式,然后再推敲终止条件,最后将递推公式和终止条件翻译成代码。
    2.递归代码理解
    对于递归代码,若试图想清楚整个递和归的过程,实际上是进入了一个思维误区。
    那该如何理解递归代码呢?如果一个问题A可以分解为若干个子问题B、C、D,你可以假设子问题B、C、D已经解决。而且,你只需要思考问题A与子问题B、C、D两层之间的关系即可,不需要一层层往下思考子问题与子子问题,子子问题与子子子问题之间的关系。屏蔽掉递归细节,这样子理解起来就简单多了。
    因此,理解递归代码,就把它抽象成一个递推公式,不用想一层层的调用关系,不要试图用人脑去分解递归的每个步骤。

    递归的关键是终止条件
    五、递归常见问题及解决方案

    1.警惕堆栈溢出:可以声明一个全局变量来控制递归的深度,从而避免堆栈溢出。
    2.警惕重复计算:通过某种数据结构来保存已经求解过的值,从而避免重复计算。

    六、如何将递归改写为非递归代码?

    笼统的讲,所有的递归代码都可以改写为迭代循环的非递归写法。如何做?抽象出递推公式、初始值和边界条件,然后用迭代循环实现。

    5、排序



    一、排序方法与复杂度归类
    (1)几种最经典、最常用的排序方法:冒泡排序、插入排序、选择排序、快速排序、归并排序、计数排序、基数排序、桶排序。
    (2)复杂度归类
    冒泡排序、插入排序、选择排序 O(n^2)
    快速排序、归并排序 O(nlogn)
    计数排序、基数排序、桶排序 O(n)

    二、如何分析一个“排序算法”?
    <1>算法的执行效率
    1. 最好、最坏、平均情况时间复杂度。
    2. 时间复杂度的系数、常数和低阶。
    3. 比较次数,交换(或移动)次数。
    <2>排序算法的稳定性
    1. 稳定性概念:如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变。
    2. 稳定性重要性:可针对对象的多种属性进行有优先级的排序。
    3. 举例:给电商交易系统中的“订单”排序,按照金额大小对订单数据排序,对于相同金额的订单以下单时间早晚排序。用稳定排序算法可简洁地解决。先按照下单时间给订单排序,排序完成后用稳定排序算法按照订单金额重新排序。
    <3>排序算法的内存损耗
    原地排序算法:特指空间复杂度是O(1)的排序算法。

    常见的排序算法:

     


    冒泡排序


    冒泡排序只会操作相邻的两个数据。每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求,如果不满足就让它俩互换。

    代码:

      public int[] bubbleSort(int[] a) {
            int n = a.length;
            if (n<=1) {
                return a;
            }
            for (int i = 0; i < n; i++) {
                //提前退出冒泡循环的标志
                boolean flag = false;
                for (int j = 0; j < n-i-1; j++) {
                    if (a[j]>a[j+1]) {//
                        int temp = a[j];
                        a[j] = a[j+1];
                        a[j+1] = temp;
    
                        flag = true;//表示有数据交换
                    }
                    if (!flag) {
                        break; //没有数据交换(说明已排好序无需再进行冒泡),提前退出
                    }
                }
            }
            return a;
        }


    四、插入排序


    插入排序将数组数据分成已排序区间和未排序区间。初始已排序区间只有一个元素,即数组第一个元素。在未排序区间取出一个元素插入到已排序区间的合适位置,直到未排序区间为空。

    代码:

        public int[] insertionSort(int[] a) {
    		int n = a.length;
    		if (n<=1) return a;
    		
    		for (int i = 1; i < n; i++) {
    			int value = a[i];
    			int j = i-1;
    			for (; j >=0; j--) {
    				if (a[j] > value) {
    					a[j+1] = a[j];//移动数据
    				}else {
    					break;
    				}
    			}
    			a[j+1] = value;//插入数据
    		}
    		
    		return a;
    	}


    五、选择排序


    选择排序将数组分成已排序区间和未排序区间。初始已排序区间为空。每次从未排序区间中选出最小的元素插入已排序区间的末尾,直到未排序区间为空。
    代码:

    public int[] selectionSort(int[] a) {
    		int n = a.length;
    		
    		for (int i = 0; i < a.length - 1; i++) {
    			for (int j = i+1; j < a.length; j++) {
    				//交换
    				if (a[i] > a[j]) {
    					int temp = a[i];
    					a[i] = a[j];
    					a[j] = temp;
    				}
    			}
    		}
    		
    		return a;
    	}

    六、归并排序

    如果要排序一个数组,我们先把数组从中间分成前后两部分,然后对前后两部分分别排序,再将排好序的两部分合并在一起,这样整个数组就都有序了。

     实现思路:

    merge-sort(p...r)表示,给下标从p到r之间的数组排序。我们将这个排序问题转化为了两个子问 ,题, merge_sort(p...q)和merge-sort(q+1..r),其中下标q等于p和r的中间位置,也就是, (p+r)/2,当下标从p到q和从q+1到r这两个子数组都排好序之后,我们再将两个有序的子数组合并在一起,这样下标从p到r之间的数据就也排好序了。

    代码:

     // 归并排序算法, a是数组,n表示数组大小
      public static void mergeSort(int[] a, int n) {
        mergeSortInternally(a, 0, n-1);
      }
    
      // 递归调用函数
      private static void mergeSortInternally(int[] a, int p, int r) {
        // 递归终止条件
        if (p >= r) return;
    
        // 取p到r之间的中间位置q
        int q = (p+r)/2;
        // 分治递归
        mergeSortInternally(a, p, q);
        mergeSortInternally(a, q+1, r);
    
        // 将A[p...q]和A[q+1...r]合并为A[p...r]
        merge(a, p, q, r);
      }
    
      private static void merge(int[] a, int p, int q, int r) {
        int i = p;
        int j = q+1;
        int k = 0; // 初始化变量i, j, k
        int[] tmp = new int[r-p+1]; // 申请一个大小跟a[p...r]一样的临时数组
       
        // 1 排序
        while (i<=q && j<=r) {
          if (a[i] <= a[j]) {
            tmp[k++] = a[i++]; // i++等于i:=i+1
          } else {
            tmp[k++] = a[j++];
          }
        }
    
        // 2 判断哪个子数组中有剩余的数据
        int start = i;
        int end = q;
        if (j <= r) {
          start = j;
          end = r;
        }
    
        // 3 将剩余的数据拷贝到临时数组tmp
        while (start <= end) {
          tmp[k++] = a[start++];
        }
    
        // 4 将tmp中的数组拷贝回a[p...r]
        for (i = 0; i <= r-p; ++i) {
          a[p+i] = tmp[i];
        }
      }
    

    merge是这样执行的:

    代码分析:

     

     

     

    七、快速排序

    快排的思想:    如果要排序数组中下标从p到r之间的一组数据,我们选择p到r之间的任意一个数据作为pivot (分区点) 。我们遍历p到r之间的数据,将小于pivot的放到左边,将大于pivot的放到右边,将pivot放到中间。经过这一步骤之后,数组p到r之间的数据就被分成了三个部分,前面p到q-1之间都是小于pivot的,中间是pivot,后面的q+1到r之间是大于pivot的。

    快排利用的分而治之的思想

     

    八、线性排序:

    时间复杂度O(n)

    我们把时间复杂度是线性的排序算法叫作线性排序(Linear sort)常见的线性算法有: 桶排序、计数排序、基数排序

    特点:

    非基于比较的排序算法 

     

    桶排序

     

    桶排序,顾名思义,会用到“桶" ,核心思想是将要排序的数据分到几个有序的桶里,每个桶里的数据再单独进行排序。桶内排完序之后,再把每个桶里的数据按照顺序依次取出,组成的序列就是有序的了。

    对排序的数据要求苛刻:

    1, 要排序的数据需要很容易就能划分成m个桶,并且,桶与桶之间有着天然的大小顺序。

    2 ,数据在各个桶之间的分布是比较均匀的。

    3 ,桶排序比较适合用在外部排序中。所谓的外部排序就是数据存储在外部磁盘中,数据量比较大,内存有限,无法将数据全部加载到内存中。

     

     

    计数排序

    计数排序只能用在数据范围不大的场景中,如果数据范围k比要排序的数据n大很多,就不适合用计数排序了。

    计数排序只能给非负整数排序,如果要排序的数据是其他类型的,要将其在不改变相对大小的情况下,转化为非负整数。

    代码:

     // 计数排序,a是数组,n是数组大小。假设数组中存储的都是非负整数。
      public static void countingSort(int[] a) {
    	int n = a.length;
        if (n <= 1) return;
    
        // 查找数组中数据的范围
        int max = a[0];
        for (int i = 1; i < n; ++i) {
          if (max < a[i]) {
            max = a[i];
          }
        }
    
        // 申请一个计数数组c,下标大小[0,max]
        int[] c = new int[max + 1];
        for (int i = 0; i < max + 1; ++i) {
          c[i] = 0;
        }
    
        // 计算每个元素的个数,放入c中
        for (int i = 0; i < n; ++i) {
          c[a[i]]++;
        }
    
        // 依次累加
        for (int i = 1; i < max + 1; ++i) {
          c[i] = c[i-1] + c[i];
        }
    
        // 临时数组r,存储排序之后的结果
        int[] r = new int[n];
        // 计算排序的关键步骤了,有点难理解
        for (int i = n - 1; i >= 0; --i) {
          int index = c[a[i]]-1;
          r[index] = a[i];
          c[a[i]]--;
        }
    
        // 将结果拷贝会a数组
        for (int i = 0; i < n; ++i) {
          a[i] = r[i];
        }
      }

    散列表

    什么是散列表:

    散列表用的是数组支持按照下标随机访问数据的特性,所以散列表其实就是数组的一种扩展,由数组演化而来。可以说,如果没有数组,就没有散列表。

    原理:

    散列表用的就是数组支持按照下标随机访问的时候,时间复杂度是0(1)的特性。我们通过散列函数把元素的键值映射为下标,然后将数据存储在数组中对应下标的位置。当我们按照键值查询元素时,我们用同样的散列函数,将键值转化数组标标,从对应的数组下标的位置取数据。

    散列函数的设计要求:

    1. 散列函数计算得到的散列值是一个非负整数;.
    2. 如果key1 = key2,那hash(key1) == hash(key2);
    3. 如果key1 != key2,那hash(key1)  !=  hash(key2),

    散列函数的设计不能太复杂,散列函数生成值要尽可能随机并且均匀分布

    如果不符合3 那么就出现了散列冲突,散列冲突是无法避免的

    解决散列冲突的方法有两种: 

    开放寻址法(open addressing)和链表法(chaining)

    开放寻址法:如果出现了散列冲突,我们就重新探测一个空闲位置,将其插入。

    装在因子:  散列表中一定比例的空闲槽位。公式: 散列表的装载因子 = 填入表中的元素个数 / 散列表的长度

    装载因子越大,说明空闲位置越少,冲突越多,散列表的性能会下降。

    链表法:

    链表法是一种更加常用的散列冲突解决办法,相比开放寻址法,它要简单很多。我们来看这个图,在散列表中,每个"桶(bucket) "或者"槽(slot) "会对应一条链表,所有散列值相同的元素我们都放到相同槽位对应的链表中。

     

     

    展开全文
  • 如何正确学习数据结构、算法这门课?

    千次阅读 多人点赞 2019-09-05 09:29:48
    你是否曾跟我一样,因为看不懂数据结构和算法,而一度怀疑是自己太笨?实际上,很多人在第一次接触这门课时,都会有这种感觉,觉得数据结构和算法很抽象,晦涩难懂,宛如天书。正是这个原因,让很多初学者对这门课...
  • 数据结构学习感悟

    千次阅读 多人点赞 2016-10-14 10:29:30
    数据结构渐进式学习  数据结构毫无疑问的是在编程上非常重要的一部分内容,在我的学习过程中,我经历了迷茫,入门,熟悉等阶段,我以个人经历为例子,讲解一下我对数据结构从惧怕到熟悉的过程。  我是一个学习编程...
  • 数据结构学习-知识点总结(持续更新)

    万次阅读 多人点赞 2020-12-25 20:07:16
    数据结构学习记录第一章 绪论1.1 数据结构的基本概念数据结构的三要素:逻辑结构、存储结构(物理结构)、数据的运算。 逻辑结构分为线性结构和非线性结构。
  • 别人总结的学习数据结构的经验

    万次阅读 多人点赞 2017-11-24 17:26:41
    作者:知乎用户 ... 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。...学习方法:我认为任何数据结构都可以从线性表演进而来。以顺序表为例,最简单的顺序表是无序的,那么增加一
  • 数据结构学习心得体会

    万次阅读 2017-12-14 11:26:52
    时间转眼即逝,一转眼一学期的数据结构课就已经快要结束了,我对第一节课的时候老师向我们介绍云班课时的场景还历历在目,老师兴致勃勃的介绍着数据结构课的作用,重要性。老师每节课都充满活力让我们每节课都...
  • 数据结构:八大数据结构分类

    万次阅读 多人点赞 2018-09-05 18:23:28
    数据结构分类 数据结构是指相互之间存在着一种或多种关系的数据元素的集合和该集合中数据元素之间的关系组成 。 常用的数据结构有:数组,栈,链表,队列,树,图,堆,散列表等,如图所示: 每一种数据结构都...
  • 数据结构:是指相互之间存在一种或多种特定关系的数据元素的集合用计算机存储、组织数据的方式。数据结构分别为逻辑结构、(存储)物理结构和数据的运算三个部分。 为什么要学数据结构? 首先,因为数据结构作为...
  • 关于数据结构学习的一些心得体会

    千次阅读 2018-06-11 20:51:56
    在此我只想向大家介绍下,我最近几个月学习数据结构的心得体会,同时也当练练打字和自我巩固复习了吧! 其实我复习的不算特别完善,也只能算一个从小白到菜鸟的一个阶段,所以请大神们不要见笑啦。我接下来说的,...
  • 数据结构与算法】如何高效学习数据结构与算法

    千次阅读 多人点赞 2020-05-23 23:30:44
    这系列的《算法学习笔记》,与大家一起重温或者学习数据结构与算法。 这里也赠送大家一句话: “好记性不如烂笔头,好记性更不如好笔记” 愿大家在技术银河中终身漂泊学习时,习惯编写自己的笔记,以后这些笔记必定...
  • 为什么要学习数据结构

    千次阅读 多人点赞 2019-12-17 16:05:08
    学习数据结构之前,我们当然需要了解一下究竟什么是数据结构,否则你连自己在学什么都不知道, 岂不是一个笑话? 数据结构是一门研究非数值计算的程序设计问题中计算机的操作对象以及它们的关系和操作等...
  • 学习数据结构的意义和作用

    万次阅读 多人点赞 2018-09-03 22:48:45
    什么是数据结构,为什么要学习数据结构数据结构是否是一门纯数学课程?它在专业课程体系中起什么样的作用?我们要怎么才能学好数据结构?… 相信同学们在刚开始《数据结构》这门课的学习时,心里有着类似前面几个...
  • 数据结构与算法】应该是大学计算机专业必修的一门课,为什么这门课会被列入到必修课的行列当中呢?因为对于每一个程序员来说,在以后的工作中不免要面对一些复杂的业务逻辑,同时要写对应的代码来实现这个复杂的...
  • 数据结构中的时间复杂度的计算

    万次阅读 多人点赞 2017-09-07 18:51:32
    时间复杂度或称时间复杂性,又称计算复杂度,她说是算法有效的度量之一,时间复杂度是一个算法运行时间的相对度量,一个算法的运行时间长短,它大致等于执行一种简单操作所(赋值、比较、计算、转向、返回、输入和...
  • Java数据结构与算法之学习路线

    万次阅读 多人点赞 2016-09-28 17:19:21
    2.数据结构与算法学习大纲(粗糙) 3.线性结构分类 4.各个线性类型数据结构的特点以及使用场景 5.数组与队列的区别 1.前言: 昨天去面试了一家我觉得薪资和公司文化都不错的公司,也不知道是天真还是没得自知之明,一...
  • 图解Java数据结构和算法

    万人学习 2019-06-21 10:09:16
    1.算法是程序的灵魂,优秀的程序在对海量数据处理时,依然保持高速计算,就需要高效的数据结构和算法支撑。...学习目标:通过学习,学员能掌握主流数据结构和算法的实现机制,开阔编程思路,提高优化程序的能力。
  • PyTorch从入门到实战一次学会

    千人学习 2019-12-29 13:44:33
    【超实用课程内容】 本课程从pytorch安装开始讲起,从基本计算结构到深度学习各大神经网络,全程案例代码实战,一步步带大家入门如何使用深度学习框架pytorch,玩转pytorch模型训练等所有知识点。最后通过 kaggle ...
  • 如何学习数据结构与算法

    万次阅读 多人点赞 2018-07-13 11:29:23
    经过一段时间数据结构与算法的学习,和学习了前人的经验,为了更好的指导自己(希望也能帮助到别人)之后数据结构与算法的学习,总结一下数据结构与算法学习的方法。 一、记住数据结构,记住算法思想(是什么) ...
  • 为什么要学数据结构

    万次阅读 多人点赞 2019-11-19 09:45:23
    一、前言 在可视化化程序设计的今天,借助于...1) 能够熟练地选择和设计各种数据结构和算法 2) 至少要能够熟练地掌握一门程序设计语言 3) 熟知所涉及的相关应用领域的知识 其中,后两个条件比较容易实现,而第一个...
  • 我是如何学习数据结构与算法的?

    千次阅读 多人点赞 2018-10-24 16:25:02
    今天这篇文章不是来劝你们学习数据结构与算法的,也不是来和你们说数据结构与算法有多重要。 主要是最近几天后台有读者问我是如何学习数据结构与算法的,有没有什么捷径,是要看视频还是看书,去哪刷题等…而且有些...
  • 数据结构学习心得总结

    万次阅读 2016-01-29 21:35:03
    开篇经过近一个月的学习,终于将郝斌老师讲的数据结构视频看完了~学习完成后,受益良多,也非常喜悦,非常开心,好像终于打了一场胜仗一样!我打算将这一个月的学习心得做一个汇总,记录下来。 希望能给初学者带来...
  • 数据结构+算法+c++学习(写在前面)

    千次阅读 热门讨论 2019-03-07 10:09:00
    本篇开始将开始更新算法方面的博客,其实应该是数据结构更多一些,我不知道大家是如何学习算法和数据结构的,就我目前的学习情况,简单的和大家说一下感受。本人研一时学校开设了算法这门课程,当时上这门课时也很...
  • 算法与数据结构学习资源大搜罗——良心推荐

    万次阅读 多人点赞 2016-01-17 12:30:35
    数据结构与算法设计是CS相关专业的必修课,也是IT公司笔试面试的重点。网上这方面的资料多如牛毛,我列出了一些我认为非常值得推荐的资源,供有需求的读者研习之用。首先是一些网络资源,然后是一些书籍点评和推荐。...
  • javaScript学习笔记(一)js基础

    万次阅读 多人点赞 2018-09-21 10:07:18
    ================================= 公众号 关注一波 (一叶知秋博客) 不定期分享视频资料 一、简介 1、概述: ...JavaScript是目前web开发中...诞生于1995年,当时的主要目的是验证表单的数据是否合法。 Java...
  • 2018山西专升本数据结构知识点总结

    万次阅读 多人点赞 2018-06-29 19:41:36
    2018山西专升本数据结构知识点总结
  • 数据结构与算法 - PHP

    千次阅读 2019-12-19 10:04:16
    学习数据结构和算法, 并且结合PHP, 了解PHP背后实现的原理. 2.学习/操作 暂见:https://xueyuanjun.com/books/data-structure-and-algorithms 后续补充 ... 3.问题 TBD ...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 755,578
精华内容 302,231
关键字:

数据结构学习时间

数据结构 订阅