精华内容
下载资源
问答
  • 机器视觉处理的常用框架
    2020-07-08 16:32:49

    视觉处理的常用框架:

    采集图像——预处理(通常的算法有中值滤波、均值滤波(mean _image…)、高斯滤波、和一些求动态范围的膨胀腐蚀等)——特征提取处理/形态学处理(形状特征、颜色特征、纹理特征、概率特征、描述算子的特征)——(训练识别)——UI显示

    更多相关内容
  • 流程判断(流程图判断框什么形状)

    千次阅读 2021-04-24 12:40:37
    流程判断(流程图判断框什么形状)2020-05-18 10:59:40共10个回答首先是顺序结构:就是程序从上到下一条一条顺序执行,不用我多说了吧.然后是分支结构:就是程序根据给出的判断条件,自动判断该往哪里去执行程序.如if(){}...

    流程判断(流程图判断框什么形状)

    2020-05-18 10:59:40

    共10个回答

    首先是顺序结构:就是程序从上到下一条一条顺序执行,不用我多说了吧.然后是分支结构:就是程序根据给出的判断条件,自动判断该往哪里去执行程序.如if(){}else{}结构,switch(){case:break;}结构.最后就是循环结构:就是程序根据给出的循环条件,重复执行某段代码.如for(){}结构,while(){}结构.

    3ad33f5e12a302c1129b3ab894dad26f.png

    “是否愿意付费”是从客户、市场的角度看问题.即,他们是否愿意为我们通过我们的流程而提供的产品或服务买单.对于这样的标准,量化的方式还是有的,复杂、学术化一些的是采用建立数学模型的方法;简单、实用的方法之一是换位思考,假如我们是客户,愿意为这样的产品或服务付费吗?若愿意,付多少?然后把意见打分、汇总(可采用加权平均等方法),这样既可量化.祝您的流程改进(“再造”有些剧烈)取得好成效!

    d8b7a4fb6f82a255f41bc5077c4d0301.png

    流程图的条件判断一般不只绘制一个分支,可以绘制多个分支.当条件成立时,进行某种操作,当条件不成立时,什么也不做.这种情况,可以让指向判断后的下一个流程.

    36245a533fdc7c7867522fda8b893bfc.png

    流程图(FlowChart):使用图形表示算法的思路是一种极好的方法,因为千言万语不如一张图.流程图在汇编语言和早期的BASIC语言环境中得到应用.相关的还有一种

    2b2af9c1405f7a18de86835b8c9e7a97.png

    流程管理(processmanagement),是一种以规范化的构造端到端的卓越业务流程为中心,以持续的提高组织业务绩效为目的的系统化方法,常见商业管理教育如EMBA、MBA等均对“流程管理”有所介绍,有时也被称为BPM业务流程管理.它应该是一个操作性的定位描述,指的是流程分析、流程定义与重定义、资源分配、时间安排、流程质量与效率测评、流程优化等.因为流程管理是为了客户需求而设计的,因而这种流程会随着内外环境的变化而需要被优化.

    ab1428b9577154fb0f8e8983b5f3a8b2.png

    #includevoidmain(){inta,b,x;printf("Pleaseinputabxvalues:");scanf("%d%d%d",&a,&b,&x);printf("a=%d,b=%d,x=%d",a,b,x);if(a>1&&b==0){x=x/a;printf("x=%d",x);}else{printf("x=%d",x);if(a==2||x>1){x=x+1;printf("x=%d",x);}else{printf("x=%d",x);}}}流程图菱形表示判断,y表示yes,n表示no具体的变化条件要怎么写楼主自己定了,不清楚留言说明

    a277132ebf66965ebe6d0e367241b33b.png

    我知道数据流图:什么是数据流图?其作用是?其中的基本符号各表示含义数据流图简称DFD,是SA方法中用于表示系统逻辑模型的一种工具.它以图形的方式描述数据在系统中流动和处理的过程,由于它只反映系统必须完成的逻辑功能,所以它是一种功能模型.数据流图有四种基本图形符号:“→”箭头表示数据流;“○”圆或椭圆表述加工;“=”双杠表示数据存储;“”方框表示数据的源点或终点流程图主要是指表述工作流程的框图,它能以图形方式有条理地表达工作流程.流程图里有一些固定格式的框图,如判断框等

    8e2045434d3387e53a434e8fdb90d0c5.png

    如果是GUI的程序,有个很好的方法,用spy++这个微软的小工具来看,从类名前缀就能看出是什么编写的.我简单罗列下:1、afx__开头的:mfc写的;2、t_开头的:一般是delphi,少部分是c++builder;比如主窗体一般是tMainForm;3、thunder_开头的:一般是VB6写的;4、windows__开发头的,一般都是.net写的;5、awt__或者swing__开头的,一般都是java写的;6、其他的直接以win32apigui控件开头的,一般都是c++或者VC++写的.7、其他请补充.

    67001fa687171558e1a486af5bfcf13d.png

    使用程序流程图的图形符号,将编写程序的思路用图形的形式表达出来,是一种图形算法.优点就是比较直观,容易理解,易于表达.例如:将一组源数据块的内容传送给目的数据块,源数据块以%结束.可以将编程的思路用下面的流程图表示.当然流程图的种类有很多如:盒图(也叫N-S图)有点是没有流程线每个模块只有一个入口和一个出口.流程图的基本元素:包括程序起始、终止框、方形的处理框、菱形的判断框、流程线、连接端子.

    03ec84a03849731517d503fbe6832078.png

    看图,第一个是流程,顺序结构就是它;第二个是判断,判断属于分支结果,相当于if或swich等第三个是数据,从各种方式输入/输出数据第四个是开始或终结符,表示程序开始和结束这几个就是最基本的箭头的意思就是流程线,程序按这个顺序执行

    aca478ee8fbdb6ad0a9dfa3307a38de9.png

    展开全文
  • 数字图像处理框架及常用技术

    千次阅读 2017-12-29 14:49:39
    数字图像处理框架大体分为如下8个部分   1. 图像变换 原理:有时候,直接对图像进行处理会遇到一些困难,为了有效和快速地对图像进行处理和分析,需要将原定义在图像空间的图像以某种形式转换到另外的空间,利用...

    数字图像处理之前需要先进行图像数字化:图像数字化图像数字化是计算机处理图像之前的基本步骤,目的是把真实的图像转变成计算机能够接受的存储格式,数字化过程分为采样和量化两个步骤。

    数字图像处理的框架大体分为如下8个部分

     

    1.    图像变换

    有时候,直接对图像进行处理会遇到一些困难,为了有效和快速地对图像进行处理和分析,需要将原定义在图像空间的图像以某种形式转换到另外的空间,利用空间的特有性质方便地进行一定的加工,最后再转换回图像空间以得到所需的效果。经过变换后的图像往往更有利于特征提取、增强、压缩和编码。

     

    常用技术

    1.卷积

    2.梯度和Sobel导数

    3.拉普拉斯变换

    4.Canny算子

    5.霍夫变换

    6.重映射

    7.几何操作:拉伸、收缩、扭曲和旋转

    8.离散傅里叶变换(DFT)

    9.离散余弦变换(DCT)

    10.哈儿变换

    11斜变换

     

    2.    形态学图像处理

    数学形态学是一门20世纪60年代发展起来的理论,用于分析和处理离散图像。它定义了一系列运算,用预先定义的形状元素探测图像,从而实现图像的转换。这个结构元素与像素领域的相交方式决定了运算的结果。

     

    常用技术

    1.平滑处理

    2.膨胀与腐蚀

    3.开启操作与闭合操作

    4.检测边缘和角点

     

    3.    图像边缘检测

    边缘检测的目标是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反应了属性的重要事件和变化,包括:(1)深度上的不连续(2)表面方向的不连续(3)物质属性变化(4)场景照明变化。

     

    常用技术

    1.Sobel算子

    2.Isotropic Sobel算子

    3.Roberts算子

    4.Prewitt算子

    5.Laplacian算子

    6.Canny算子

     

    4.     图像增强和复原

    利用数字图像处理技术可以将图像中感兴趣部分加以强调,对不感兴趣的部分予以抑制,强调后的部分对使用者更为清晰,甚至能给出一定的数量分析或不同颜色的表示。这种技术常称为图像增强。图像复原是通过图像滤波实现的。

     

    常用技术

    4.1空间域法

    4.1.1点运算算法

    4.1.1.1灰度级校正

    4.1.1.2灰度变换(又叫对比度拉伸)

    4.1.1.3直方图修正

     

    4.1.2邻域去噪算法。

    4.1.2.1图像平滑

    4.1.2.1.1均值滤波

    4.1.2.1.2中值滤波

    4.1.2.1.3空域滤波

    4.1.2.2锐化

    4.1.2.2.1梯度算子法、

    4.1.2.2.2二阶导数算子法、

    4.1.2.2.3高通滤波、

    4.1.2.2.4掩模匹配法

     

    4.2频率域法

    4.2.1理想低(高)通滤波器、

    4.2.2巴特沃斯低(高)通滤波器、

    4.2.3高斯低(高)通滤波器、

    4.2.4指数滤波器

     

    5 图像压缩编码

    在满足一定保真度的要求下,对图像数据的进行变换、编码和压缩,去除多余数据减少表示数字图像时需要的数据量,以便于图像的存储和传输。即以较少的数据量有损或无损地表示原来的像素矩阵的技术,也称图像编码。

     

    常用技术

    5.1无损图像压缩方法

    5.1.1行程长度编码

    5.1.2熵编码法

    5.1.3LZW算法

     

    5.2有损压缩方法

    5.2.1将色彩空间化减到图像中常用的颜色。

    5.2.2色度抽样

    5.2.3变换编码

    5.2.4分形压缩

     

    6.     图像分割

    在计算机视觉理论中,图像分割、特征提取与目标识别构成了由低层到高层的三大任务.目标识别与特征提取都以图像分割作为基础 ,图像分割结果的好坏将直接影响到后续的特征提取与目标识别图像分割是将图像中有意义的特征或区域提取出来的过程.这些特征可以是图像的原始特征,如像素的灰度值、物体轮廓、颜色、反射特征和纹理等,也可以是空间频谱等,如直方图特征.图像分割的目的是把图像划分成若干互不相交的区域,使各区域具有一致性,而相邻区域间的属性特征有明显的差别

     

    常用技术

    6.1基于区域的图像分割

    6.2基于边缘的图像分割

    6.3边缘与区域相结合的图像分割

    6.4基于数学形态学的图像分割

    6.5基于模糊理论的图像分割

    6.6基于神经网络的图像分割

    6.7基于支持向量机的图像分割

    6.8基于图论的图像分割

    6.9基于免疫算法的图像分割

    6.10基于粒度计算理论的图像分割

     

    7.     图像特征提取与匹配

    常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征

     

    常用技术

    7.1颜色特征

    7.1.1颜色直方图

    7.1.2颜色集

    7.1.3颜色矩

    7.1.4颜色聚合向量

     

    7.2纹理特征

    7.2.1灰度共生矩阵

    7.2.2几何法

    7.2.3模型法

    7.2.4信号处理法

     

    7.3形状特征

    7.3.1边界特征法

    7.3.2傅里叶形状描述符法

    7.3.3几何参数法

     

    7.4空间关系特征

    7.4.1基于模型的姿态估计方法

    7.4.2基于学习的姿态估计方法

     

    8.     图像分类(识别)

    根据各自在图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法

     

    常用技术

    8.1模版比对:关系结构匹配、特定理论工具的匹配、基于灰度信息匹配、基于亚像元匹配、基于内容特征匹配

     

    8.2统计模式识别方法:判别函数法,k近邻分类法,非线性映射法,特征分析法,主因子分析法

     

    8.3人工神经网络模式识别:人工神经网络区别于其他识别方法的最大特点是它对待识别的对象不要求有太多的分析与了解,具有一定的智能化处理的特点

     

    8.4句法结构模式识别:又称结构方法或语言学方法。其基本思想是把一个模式描述为较简单的子模式的组合,子模式又可描述为更简单的子模式的组合,最终得到一个树形的结构描述,在底层的最简单的子模式称为模式基元

     

    参考

    http://blog.csdn.net/hitwengqi/article/details/8292675

    http://blog.csdn.net/it_job/article/details/78837414

    期刊 数字图像处理技术的研究进展

    图像分割的新理论和新方法

    百度百科

    展开全文
  • 初学者往往不清楚java的异常为什么会设计成这个样子,他们通常会对异常只进行简单的处理
  • 图像处理知识框架

    千次阅读 2018-08-05 13:59:26
    花了点时间整理了一下数字图像处理知识体系,从宏观上把握图像处理,使自己的学习思路就更加清晰。 1.本文大部分内容来自:http://blog.csdn.net/byxdaz/article/details/4375228 2.有些内容待添加,特别是opencv...

    转自https://blog.csdn.net/hitwengqi/article/details/8292675

    花了点时间整理了一下数字图像处理知识体系,从宏观上把握图像处理,使自己的学习思路就更加清晰。
    1.本文大部分内容来自:http://blog.csdn.net/byxdaz/article/details/4375228
    2.有些内容待添加,特别是opencv相关的算法实现。

    目录
    一、数字图像基础… 3
    二、数字图像存储与显示… 3
    三、图像变换… 4
    1.卷积… 4
    2.梯度和Sobel导数… 5
    3.拉普拉斯变换… 5
    4.Canny算子… 5
    5.霍夫变换… 5
    6.重映射… 5
    7.几何操作:拉伸、收缩、扭曲和旋转… 5
    8.离散傅里叶变换(DFT)… 5
    9.离散余弦变换(DCT)… 5
    四、形态学图像处理… 5
    1.平滑处理… 5
    2.膨胀与腐蚀… 5
    3.开操作与闭操作… 5
    4.漫水填充算法… 5
    5.尺寸调整… 5
    6.图像金字塔… 6
    7.阈值化… 6
    五、图像边缘检测… 6
    六、图像增强和复原… 8
    1.图像增强… 8
    (1)空间域增强处理… 8
    (2)频率域增强处理… 9
    2.图像复原… 11
    七、图像压缩… 11
    八、图像分割… 12
    九、图像特征提取与匹配… 13
    十、图像分类(识别)… 15

    数字图像处理[wq1] 是对图像进行分析、加工、和处理,使其满足视觉、心理以及其他要求的技术。图像处理是信号处理在图像域上的一个应用。目前大多数的图像是以数字形式存储,因而图像处理很多情况下指数字图像处理。此外,基于光学理论的处理方法依然占有重要的地位。 数字图像处理是信号处理的子类, 另外与计算机科学、人工智能等领域也有密切的关系。 传统的一维信号处理的方法和概念很多仍然可以直接应用在图像处理上,比如降噪、量化等。然而,图像属于二维信号,和一维信号相比,它有自己特殊的一面,处理的方式和角度也有所不同。大多数用于一维信号处理的概念都有其在二维图像信号领域的延伸,它们中的一部分在二维情形下变得十分复杂。同时图像处理也具有自身一些新的概念,例如,连通性、旋转不变性,等等。这些概念仅对二维或更高维的情况下才有非平凡的意义。图像处理中常用到快速傅立叶变换,因为它可以减小数据处理量和处理时间。
    数字图像处理应用在以下方面 :
    摄影及印刷 (Photography and printing)
    卫星图像处理 (Satellite imageprocessing)
    医学图像处理 (Medical image processing)
    面孔识别, 特征识别 (Face detection,feature detection, face identification)
    显微图像处理 (Microscope imageprocessing)
    汽车障碍识别 (Car barrier detection)
    一、数字图像基础
    图像的基本概念、图像取样和量化、数字图像表示、空间和灰度级分辨率、图像纹理、像素间的一些基本关系(相邻像素、邻接性、连通性、区域和边界、距离度量)[wq2] 、线性和非线性变换操作。[wq3]
    常用色彩空间分类:

    二、数字图像存储与显示
    在计算机中,有两种类型的图:矢量图(vector graphics)和位映象图(bitmappedgraphics)。矢量图是用数学方法描述的一系列点、线、弧和其他几何形状,如图(a)所示。因此存放这种图使用的格式称为矢量图格式,存储的数据主要是绘制图形的数学描述;位映象图(bitmappedgraphics)也称光栅图(raster graphics),这种图就像电视图像一样,由象点组成的,如图(b),因此存放这种图使用的格式称为位映象图格式,经常简称为位图格式,存储的数据是描述像素的数值。

    图像格式目前包括bmp格式、gif格式、jpeg格式、jpeg2000格式、tiff格式、psd格式、Png格式、swf格式、svg格式、pcx格式、dxf格式、wmf格式、emf格式、LIC格式、eps格式、TGA格式等。
    

    目前比较出名的图像处理库有很多,比如LEADTOOLS、OPENCV,LEADTOOLS这个是功能非常强大的图像多媒体库,但是这个是收费注册的。OpenCV 是一个跨平台的中、高层 API 构成,目前包括 300 多个 C 函数。它不依赖与其它的外部库,尽管也可以使用某些外部库。OpenCV 对非商业用途和商业用途都是免费(FREE)的。开源的图像库也有不少,比如:ImageStone、GIMP、CxImage等,虽然它们的功能没有LEADTOOLS强大[wq4] ,但是一般的图像处理是可以应付的。
    三、图像变换
    由于图像阵列很大,直接在空间域[wq5] 中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。
    图像变换,也认为是将一副图像转变成图像数据。
    1. 卷积

    1. 梯度和Sobel导数[wq6]

    2. 拉普拉斯变换[wq7]

    3. Canny算子

    4. 霍夫变换

    5. 重映射

    6. 几何操作:拉伸、收缩、扭曲和旋转[wq8]

    7. 离散傅里叶变换(DFT)

    8. 离散余弦变换(DCT)

    四、形态学图像处理
    1. 平滑处理

    1. 膨胀与腐蚀

    2. 开操作与闭操作

    3. 漫水填充算法

    4. 尺寸调整

    5. 图像金字塔

    6. 阈值化

    五、图像边缘检测
    数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域十分重要的基础,图像理解和分析的第一步往往就是边缘检测,目前它以成为机器视觉研究领域最活跃的课题之一,在工程应用中占有十分重要的地位。所谓边缘就是指图像局部亮度变化最显著的部分,它是检测图像局部变化显著变化的最基本的运算。边缘的记录有链码表和线段表2种,链码表适合计算周长,线段表容易计算面积以及相关的,他们之间可以相互的转换。
    迄今为止,已经出现了许多成熟的算法。例如微分算法,掩模算法等。在微分算法中,常使用N*N的像素块,例如3*3或者4*4。3*3的像素块如下,
    f(i-1,j-1) f(i-1,j) f(i-1,j+1)
    f(i,j-1) f(i,j) f(i,j+1)
    f(i+1,j-1) f(i+1,j) f(i+1,j+1)
    我们不妨设f(i,j)为待处理的像素,而g(i, j)为处理后的像素。
    常见的边缘检测算法:
    A. Roberts边缘算子
    g(i, j) = sqrt( (f(i, j) - f(i + 1, j))^2 + (f(i + 1, j) - f(i, j +1))^2 )
    或者
    g(i, j) = |f(i,j) - f(i + 1,j)| + |f(i+1,j) - f(i,j+1)|
    B. Sobel边缘算子
    对数字图像的每一个像素f(i,j),考察它的上、下、左、右邻域灰度的加权值,把各方向上(0度、45度、90度、135度)的灰度值加权之和作为输出,可以达到提取图像边缘的效果。
    即 g(i,j) = fxr + fyr, 其中
    fxr = f(i-1,j-1)+2*f(i-1,j)+f(i-1,j+1)-f(i+1,j-1)-2*f(i+1,j)-f(i+1,j+1)
    fyr = f(i-1,j-1)+2*f(i,j-1)+f(i+1,j-1)-f(i-1,j+1)-2*f(i,j+1)-f(i+1,j+1)
    C. Laplace算子
    Laplace算子是一种二阶微分算子。它有两种形式:4邻域微分算子和8邻域微分算子。
    ⊙ 4邻域微分
    g(i,j)=|4*f(i,j)-f(i,j-1)-f(i-1,j)-f(i+1,j)-f(i,j+1)|
    ⊙ 8邻域微分
    g(i,j)=|8*f(i,j)-f(i,j-1)-f(i-1,j)-f(i+1,j)-f(i,j+1)-f(i-1,j-1)-f(i-1,j+1)-f(i+1,j-1)-f(i+1,j+1)|
    D. Prewitt边缘算子
    prewitt算子是一个边缘模板算子,由八个方向的样板组成,能够在0度,45度,90度,135度,180度,225度角
    等八个方向检测边缘。8个3*3边缘模板及方向如下:
    90度角: 45度角:
    1 1 1 -1 -1 -1
    1 -2 1 1 -2 1
    -1 -1 -1 1 1 1
    0度角: 315度角:
    -1 1 1 1 1 -1
    -1 -2 1 1 -2 -1
    -1 1 1 1 1 -1
    270度角: 225度角:
    1 1 1 -1 -1 1
    -1 -2 1 -1 -2 1
    -1 -1 1 1 1 1
    180度角: 135度角:
    1 1 1 1 -1 -1
    1 -2 -1 1 -2 -1
    1 -1 -1 1 1 1
    3*3时表达式如下:
    A1*f(i-1,j-1) A8*f(i,j-1) A7*f(i+1,j-1)
    A2*f(i-1,j) -2*f(i,j) A6*f(i+1, j)
    A3*f(i-1,j+1) A4*f(i,j+1) A5*f(i+1,j+1)
    g(i,j)=|-2*f(i,j)+A8*f(i,j-1)+A1*f(i-1,j-1)+A2*f(i-1,j)+A3*f(i-1,j+1)+A4*f(i,j+1)+A5*f(i+1,j+1)+A6*f(i+1,j)+A7*f(i+1,j-1)|
    在程序设计中,依次用样板去检测图像,与被检测区域最为相似的样板给出最大值,用该最大值作为算子的输出值。
    E.Kirsch边缘算子
    Kirsch算子是一个模板算子,由八个方向的边缘样板组成,能够在0度,45度,90度,135度,180度,225度角
    等八个方向检测边缘。8个3*3边缘模板及方向如下:
    90度角: 45度角:
    5 5 5 -3 5 5
    -3 0 -3 -3 0 5
    -3 -3 -3 -3 -3 -3
    0度角: 315度角:
    -3 -3 5 -3 -3 -3
    -3 0 5 -3 0 5
    -3 -3 5 -3 5 5
    270度角: 225度角:
    5 5 -3 -3 -3 -3
    5 0 -3 5 0 -3
    -3 -3 -3 5 5 -3
    180度角: 135度角:
    5 -3 -3 5 5 -3
    5 0 -3 5 0 -3
    5 -3 -3 -3 -3 3
    使用方法与prewitt算子一样。
    F.CANNY边缘检测
    六、图像增强和复原
    图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。
    1. 图像增强
    图像增强的目的在于改善图像的显示质量,以利于信息的提取和识别。从方法上说,则是设法摒弃一些认为不必要或干扰的信息,而将所需要的信息得以突出出来,以利于分析判读或作进一步的处理。
    (1) 空间域增强处理
    空间域是指图像平面所在的二维空间,空间域图像增强是指在图像平面上应用某种数学模型,通过改变图像像元灰度值达到增强效果,这种增强并不改变像元的位置。空域增强包括空域变换增强与空域滤波增强两种。空域变换增强是基于点处理的增强方法、空域滤波增强是基于邻域处理的增强方法。
    1) 空域变换增强
    常用的空域变换增强方法包括:对比度增强、直方图增强和图像算术运算等。
    A.对比度增强
    对比度增强是一种通过改变图像像元的亮度分布态势,扩展灰度分布区间来改变图像像元对比度,从而改善图像质量的图像处理方法。因为亮度值是辐射强度的反映,所以也称为辐射增强。常用的方法有对比度线性变换和非线性变换。其关键是寻找到一个函数,以此函数对图像中每一个像元进行变换,使像元得到统一的重新分配,构成得到反差增强的图像。
    B.直方图增强
    直方图均衡化:
    直方图均衡化基本做法是将每个灰度区间等概率分布代替了原来的随机分布,即增强后的图象中每一灰度级的像元数目大致相同。直方图均衡化可使得面积最大的地物细节得以增强,而面积小的地物与其灰度接近的地物进行合并,形成综合地物。减少灰度等级换取对比度的增大。
    直方图归一化:
    直方图归一化是把原图像的直方图变换为某种指定形态的直方图或某一参考图像的直方图,然后按着已知的指定形态的直方图调整原图像各像元的灰级,最后得到一个直方图匹配的图像。这种方法主要应用在有一幅很好的图像作为标准的情况下,对另一幅不满意的图像用标准图像的直方图进行匹配处理,以改善被处理图像的质量。如在数字镶嵌时,重叠区影像色调由于时相等原因差异往往很大,利用直方图匹配这一方法后可以改善重叠区影像色调过度,如果镶嵌图像时相相差不大,完全可以作到无缝镶嵌。
    C.数字图像的算术运算
    两幅或多幅单波段影像,完成空间配准后,通过一系列运算,可以实现图像增强,达到提取某些信息或去掉某些不必要信息的目的。
    2) 空域滤波增强
    空域变换增强是按像元逐点运算的,从整体上改善图像的质量,并不考虑周围像元影响。空间滤波增强则是以重点突出图像上的某些特征为目的的(如突出边缘或纹理等),通过像元与周围相邻像元的关系,采取空间域中的邻域处理方法进行图像增强。邻域法处理用于去噪声、图像平滑、锐化和相关运算。
    图像卷积运算是在空间域上对图像作局部检测的运算,以实现平滑和锐化的目的。具体作法是选定一卷积函数,又称为“M×N窗口”或“模板”,如3×3或5×5等。然后从图像左上角开始开一与模板同样大小的活动窗口,图像窗口与模板像元的亮度值对应相乘再相加。将计算结果赋予中心像元作为其灰度值,然后待移动后重新计算,将计算结果赋予另一个中心像元,以此类推直到全幅图像扫描一遍结束生成新的图像。
    平滑是指图像中出现某些亮度变化过大的区域,或出现不该有的亮点(“噪声”)时,采用平滑方法可以减小变化,使亮度平缓或去掉不必要“噪声”点。它实际上是使图像中高频成分消退,即平滑图像的细节,降低其反差,保存低频成分,在频域中称为低通滤波。具体方法有:均值平滑、中值滤波、锐化。
    锐化的作用在于提高边缘灰度值的变化率,使界线更加清晰。它是增强图像中的高频成分,在频域处理中称为高通滤波,也就是使图像细节的反差提高,也称边缘增强。要突出图像的边缘、线状目标或亮度变化率大的部分常采用锐化方法。一般有三种实现方法:
    A.梯度法
    梯度反映了相邻像元的亮度变化率,即图像中如果存在边缘,如湖泊、河流的边界,山脉和道路等,则边缘处有较大的梯度值。对于亮度值较平滑的部分,亮度梯度值较小。因此,找到梯度较大的位置,也就找到边缘,然后再用不同的梯度计算值代替边缘处像元的值,也就突出了边缘,实现了图像的锐化。通常有罗伯特梯度和索伯尔梯度方法。
    B.拉普拉斯算法
    拉普拉斯算法的意义与梯度法不同,它不检测均匀的亮度变化,而是检测变化率的变化率,相当于二阶微分。计算出的图像更加突出亮度值突变的位置。
    C.定向检测
    当有目的地检测某一方向的边、线或纹理特征时,可选择特定的模板卷积运算作定向检测。可以检测垂直边界、水平边界和对角线边界等,各使用的模板不同。
    (2) 频率域增强处理
    频域增强指在图像的频率域内,对图像的变换系数(频率成分)直接进行运算,然后通过Fourier逆变换以获得图像的增强效果。一般来说,图像的边缘和噪声对应Fourier变换中的高频部分,所以低通滤波能够平滑图像、去除噪声。图像灰度发生聚变的部分与频谱的高频分量对应,所以采用高频滤波器衰减或抑制低频分量,能够对图像进行锐化处理。频域,就是由图像f(x,y)的二维傅立叶变换和相应的频率变量(u,v)的值所组成的空间。在空间域图像强度的变化模式(或规律)可以直接在该空间得到反应。F(0,0)是频域中的原点,反应图像的平均灰度级,即图像中的直流成分;低频反映图像灰度发生缓慢变化的部分;而高频对应图像中灰度发生更快速变化的部分,如边缘、噪声等。但频域不能反应图像的空间信息。

    空域和频域滤波间的对应关系,卷积定理是空域和频域滤波的最基本联系纽带。二维卷积定理:

    基本计算过程:
    取函数h(m,n)关于原点的镜像,得到h(-m,-n)
    对某个(x,y),使h(-m,-n)移动相应的距离,得到h(x-m,y-n)
    对积函数f(m,n)h(x-m,y-n)在(m,n)的取值范围内求和
    位移是整数增量,对所有的(x,y)重复上面的过程,直到两个函数:f(m,n)和h(x-m,y-n)不再有重叠的部分。
    傅立叶变换是空域和频域的桥梁,关于两个域滤波的傅立叶变换对:

    频域与空域滤波的比较:
    1. 对具有同样大小的空域和频率滤波器:h(x,y), H(u,v),频域计算(由于FFT)往往更有效(尤其是图像尺寸比较大时)。但对在空域中用尺寸较小的模板就能解决的问题,则往往在空域中直接操作。
    2. 频域滤波虽然更直接,但如果可以使用较小的滤波器,还是在空域计算为好。 因为省去了计算傅立叶变换及反变换等步骤。
    3. 由于更多的直观性,频率滤波器设计往往作为空域滤波器设计的向导。
    平滑的频率域滤波器类型:
    1 、理想低通滤波器
    2 、巴特沃思低通滤波器
    3 、高斯低通滤波器
    频率域锐化滤波器类型:
    1 理想高通滤波器
    2 巴特沃思高通滤波器
    3 高斯型高通滤波器
    4 频率域的拉普拉斯算子
    5 钝化模板、高频提升滤波和高频加强滤波
    频率域图像增强处理的过程:

    1. 图像复原
      试图利用退化过程的先验知识,去恢复已被退化图像的本来面目。图像复原[wq9] 的基本思路:先建立退化的数学模型,然后根据该模型对退化图像进行拟合。
      图像复原模型可以用连续数学和离散数学处理,处理项的实现可在空间域卷积,或在频域相乘。
      七、图像压缩
      图像压缩是数据压缩技术在数字图像上的应用,它的目的是减少图像数据中的冗余信息从而用更加高效的格式存储和传输数据。图像压缩可以是有损数据压缩也可以是无损数据压缩。对于如绘制的技术图、图表或者漫画优先使用无损压缩,这是因为有损压缩方法,尤其是在低的位速条件下将会带来压缩失真。如医疗图像或者用于存档的扫描图像等这些有价值的内容的压缩也尽量选择无损压缩方法。有损方法非常适合于自然的图像,例如一些应用中图像的微小损失是可以接受的(有时是无法感知的),这样就可以大幅度地减小位速。编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
    2. 无损图像压缩方法
      A.行程长度编码
      B.熵编码法
      C.LZW算法
    3. 有损压缩方法
      A.将色彩空间化减到图像中常用的颜色。所选择的颜色定义在压缩图像头的调色板中,图像中的每个像素都用调色板中颜色索引表示。这种方法可以与 抖动(en:dithering)一起使用以模糊颜色边界。
      B.色度抽样,这利用了人眼对于亮度变化的敏感性远大于颜色变化,这样就可以将图像中的颜色信息减少一半甚至更多。
      C.变换编码,这是最常用的方法。首先使用如离散余弦变换(DCT)或者小波变换这样的傅立叶相关变换,然后进行量化和用熵编码法压缩。
      D.分形压缩(en:Fractal compression)。
      八、图像分割
      图像分割是数字图像处理中的关键技术之一。图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。
      通常图像分割的实现方法是,将图像分为“黑”、“白”两类,这两类分别代表了两个不同的对象。
      图像分割方法:阈值分割、区域分割、数学形态学、模式识别方法
      A.阈值分割包括以下几种:
      (1)由直方图灰度分布选择阈值
      (2)双峰法选择阈值
      (3)迭代法选取阈值
      原理如下,很好理解。
      迭代法是基于逼近的思想,其步骤如下:
      1.求出图像的最大灰度值和最小灰度值,分别记为ZMAX和ZMIN,令初始阈值T0=(ZMAX+ZMIN)/2;
      2.根据阈值TK将图象分割为前景和背景,分别求出两者的平均灰度值ZO和ZB;
      3.求出新阈值TK+1=(ZO+ZB)/2;
      4.若TK=TK+1,则所得即为阈值;否则转2,迭代计算。
      (4)大津法选择阈值[wq10]
      大津法是属于最大类间方差法,它是自适应计算单阈值的简单高效方法,或者叫(Otsu)。大津法由大津于1979年提出,对图像Image,记t为前景与背景的分割阈值,前景点数占图像比例为w0,平均灰度为u0;背景点数占图像比例为w1,平均灰度为u1。图像的总平均灰度为:u=w0*u0+w1*u1。从最小灰度值到最大灰度值遍历t,当t使得值g=w0*(u0-u)2+w1*(u1-u)2最大时t即为分割的最佳阈值。对大津法可作如下理解:该式实际上就是类间方差值,阈值t分割出的前景和背景两部分构成了整幅图像,而前景取值u0,概率为 w0,背景取值u1,概率为w1,总均值为u,根据方差的定义即得该式。因方差是灰度分布均匀性的一种度量,方差值越大,说明构成图像的两部分差别越大, 当部分目标错分为背景或部分背景错分为目标都会导致两部分差别变小,因此使类间方差最大的分割意味着错分概率最小。直接应用大津法计算量较大,因此一般采用了等价的公式g=w0*w1*(u0-u1)2。
      (5)由灰度拉伸选择阈值
      大津法是较通用的方法,但是它对两群物体在灰度不明显的情况下会丢失一些整体信息。因此为了解决这种现象采用灰度拉伸的增强大津法。在大津法的思想上增加灰度的级数来增强前两群物体的灰度差。对于原来的灰度级乘上同一个系数,从而扩大了图像灰度的级数。试验结果表明不同的拉伸系数,分割效果差别比较大。
      B.区域的分割
      区域生长、区域分离与合并
      区域生长算法
      C.基于形态学分水岭的分割
      分水岭分割算法
      九、图像特征提取与匹配[wq11]
      常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。
      A.颜色特征
      特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。
      常用的特征提取与匹配方法:
      颜色直方图
      其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。
      颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。
      B.纹理特征
      纹理特征的提取方法比较简单,它是用一个活动的窗口在图像上连续滑动,分别计算出窗口中的方差、均值、最大值、最小值及二者之差和信息熵等,形成相应的纹理图像,当目标的光谱特性比较接近时,纹理特征对于区分目标可以起到积极的作用。选取适当的数据动态变化范围,进行纹理特征提取后,使影像的纹理特征得到突出,有利于提取构造信息。
      特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局部的偏差而无法匹配成功。作为一种统计特征,纹理特征常具有旋转不变性,并且对于噪声有较强的抵抗能力。但是,纹理特征也有其缺点,一个很明显的缺点是当图像的分辨率变化的时候,所计算出来的纹理可能会有较大偏差。另外,由于有可能受到光照、反射情况的影响,从2-D图像中反映出来的纹理不一定是3-D物体表面真实的纹理。
      常用的特征提取与匹配方法:
      纹理特征描述方法分类
      (1)统计方法统计方法的典型代表是一种称为灰度共生矩阵的纹理特征分析方法Gotlieb 和 Kreyszig 等人在研究共生矩阵中各种统计特征基础上,通过实验,得出灰度共生矩阵的四个关键特征:能量、惯量、熵和相关性。统计方法中另一种典型方法,则是从图像的自相关函数(即图像的能量谱函数)提取纹理特征,即通过对图像的能量谱函数的计算,提取纹理的粗细度及方向性等特征参数
      (2)几何法
      所谓几何法,是建立在纹理基元(基本的纹理元素)理论基础上的一种纹理特征分析方法。纹理基元理论认为,复杂的纹理可以由若干简单的纹理基元以一定的有规律的形式重复排列构成。在几何法中,比较有影响的算法有两种:Voronio 棋盘格特征法和结构法。
      (3)模型法
      模型法以图像的构造模型为基础,采用模型的参数作为纹理特征。典型的方法是随机场模型法,如马尔可夫(Markov)随机场(MRF)模型法和 Gibbs 随机场模型法
      (4)信号处理法
      纹理特征的提取与匹配主要有:灰度共生矩阵、Tamura 纹理特征、自回归纹理模型、小波变换等。灰度共生矩阵特征提取与匹配主要依赖于能量、惯量、熵和相关性四个参数。Tamura 纹理特征基于人类对纹理的视觉感知心理学研究,提出6种属性,即:粗糙度、对比度、方向度、线像度、规整度和粗略度。自回归纹理模型(simultaneousauto-regressive, SAR)是马尔可夫随机场(MRF)模型的一种应用实例。
      C.形状特征
      特点:各种基于形状特征的检索方法都可以比较有效地利用图像中感兴趣的目标来进行检索,但它们也有一些共同的问题。
      常用的特征提取与匹配方法:
      通常情况下,形状特征有两类表示方法,一类是轮廓特征,另一类是区域特征。图像的轮廓特征主要针对物体的外边界,而图像的区域特征则关系到整个形状区域。
      几种典型的形状特征描述方法:
      (1) 边界特征法
      该方法通过对边界特征的描述来获取图像的形状参数。其中Hough 变换检测平行直线方法和边界方向直方图方法是经典方法。Hough 变换是利用图像全局特性而将边缘像素连接起来组成区域封闭边界的一种方法,其基本思想是点—线的对偶性;边界方向直方图法首先微分图像求得图像边缘,然后,做出关于边缘大小和方向的直方图,通常的方法是构造图像灰度梯度方向矩阵。
      (2)傅里叶形状描述符法
      傅里叶形状描述符(Fourier shapedescriptors)基本思想是用物体边界的傅里叶变换作为形状描述,利用区域边界的封闭性和周期性,将二维问题转化为一维问题。由边界点导出三种形状表达,分别是曲率函数、质心距离、复坐标函数。
      (3)几何参数法
      形状的表达和匹配采用更为简单的区域特征描述方法,例如采用有关形状定量测度(如矩、面积、周长等)的形状参数法(shape factor)。在 QBIC 系统中,便是利用圆度、偏心率、主轴方向和代数不变矩等几何参数,进行基于形状特征的图像检索。
      D.空间关系特征
      特点:所谓空间关系,是指图像中分割出来的多个目标之间的相互的空间位置或相对方向关系,这些关系也可分为连接/邻接关系、交叠/重叠关系和包含/包容关系等。通常空间位置信息可以分为两类:相对空间位置信息和绝对空间位置信息。前一种关系强调的是目标之间的相对情况,如上下左右关系等,后一种关系强调的是目标之间的距离大小以及方位。显而易见,由绝对空间位置可推出相对空间位置,但表达相对空间位置信息常比较简单。
      空间关系特征的使用可加强对图像内容的描述区分能力,但空间关系特征常对图像或目标的旋转、反转、尺度变化等比较敏感。另外,实际应用中,仅仅利用空间信息往往是不够的,不能有效准确地表达场景信息。为了检索,除使用空间关系特征外,还需要其它特征来配合。
      常用的特征提取与匹配方法:
      提取图像空间关系特征可以有两种方法:一种方法是首先对图像进行自动分割,划分出图像中所包含的对象或颜色区域,然后根据这些区域提取图像特征,并建立索引;另一种方法则简单地将图像均匀地划分为若干规则子块,然后对每个图像子块提取特征,并建立索引。
      十、图像分类(识别)
      图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。
      模式识别是一种从大量信息和数据出发,在专家经验和已有认识的基础上,利用计算机和数学推理的方法对形状、模式、曲线、数字、字符格式和图形自动完成识别的过程。模式识别包括相互关联的两个阶段,即学习阶段和实现阶段,前者是对样本进行特征选择,寻找分类的规律,后者是根据分类规律对未知样本集进行分类和识别。广义的模式识别属计算机科学中智能模拟的研究范畴,内容非常广泛,包括声音和语言识别、文字识别、指纹识别、声纳信号和地震信号分析、照片图片分析、化学模式识别等等。计算机模式识别实现了部分脑力劳动自动化。
      模式识别--对表征事物或现象的各种形式的(数值的,文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。
      模式还可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、文字、符号、三位物体和景物以及各种可以用物理的、化学的、生物的传感器对对象进行测量的具体模式进行分类和辨识。
      模式识别问题指的是对一系列过程或事件的分类与描述,具有某些相类似的性质的过程或事件就分为一类。模式识别问题一般可以应用以下4种方法进行分析处理。
      模版比对:
      统计模式识别方法:统计模式识别方法是受数学中的决策理论的启发而产生的一种识别方法,它一般假定被识别的对象或经过特征提取向量是符合一定分布规律的随机变量。其基本思想是将特征提取阶段得到的特征向量定义在一个特征空间中,这个空间包含了所有的特征向量,不同的特征向量,或者说不同类别的对象都对应于空间中的一点。在分类阶段,则利用统计决策的原理对特征空间进行划分,从而达到识别不同特征的对象的目的。统计模式识别中个应用的统计决策分类理论相对比较成熟,研究的重点是特征提取。统计模式识别的基本原理是:有相似性的样本在模式空间中互相接近,并形成“集团”,即“物以类聚”。其分析方法是根据模式所测得的特征向量Xi=(xi1,xi2,…,xid)T(i=1,2,…,N),将一个给定的模式归入C个类ω1,ω2,…,ωc中,然后根据模式之间的距离函数来判别分类。其中,T表示转置;N为样本点数;d为样本特征数。
      统计模式识别的主要方法有:判别函数法,k近邻分类法,非线性映射法,特征分析法,主因子分析法等。
      在统计模式识别中,贝叶斯决策规则从理论上解决了最优分类器的设计问题,但其实施却必须首先解决更困难的概率密度估计问题。BP神经网络直接从观测数据(训练样本)学习,是更简便有效的方法,因而获得了广泛的应用,但它是一种启发式技术,缺乏指定工程实践的坚实理论基础。统计推断理论研究所取得的突破性成果导致现代统计学习理论——VC理论的建立,该理论不仅在严格的数学基础上圆满地回答了人工神经网络中出现的理论问题,而且导出了一种新的学习方法——支撑向量机。
      人工神经网络模式识别:人工神经网络的研究起源于对生物神经系统的研究。人工神经网络区别于其他识别方法的最大特点是它对待识别的对象不要求有太多的分析与了解,具有一定的智能化处理的特点。
      句法结构模式识别:又称结构方法或语言学方法。其基本思想是把一个模式描述为较简单的子模式的组合,子模式又可描述为更简单的子模式的组合,最终得到一个树形的结构描述,在底层的最简单的子模式称为模式基元。在句法方法中选取基元的问题相当于在决策理论方法中选取特征的问题。通常要求所选的基元能对模式提供一个紧凑的反映其结构关系的描述,又要易于用非句法方法加以抽取。显然,基元本身不应该含有重要的结构信息。模式以一组基元和它们的组合关系来描述,称为模式描述语句,这相当于在语言中,句子和短语用词组合,词用字符组合一样。基元组合成模式的规则,由所谓语法来指定。一旦基元被鉴别,识别过程可通过句法分析进行,即分析给定的模式语句是否符合指定的语法,满足某类语法的即被分入该类。
      在几种算法中,统计模式识别是最经典的分类识别方法,在图像模式识别中有着非常广泛的应用。

      [wq1]
      本文参考《数字图像处理》(第二版)
      作者:冈萨雷斯
      [wq2]
      参考第二章,掌握概念?
      [wq3]
      线性变换:如果变换函数是线性的或是分段线性,这种变换就是线性变换。以线性函数加大图像的对比度的效果是使整幅图像的质量改善。以分段线性函数加大图像中某个(或某几个)亮度区间的对比度的效果是使局部亮度区间的质量得到改善。
      非线性变换:当变换函数是非线性时,即为非线性变换。常用的有指数变换和对数变换。

      [wq4]
      参考《几种图像处理库的研究》:http://blog.csdn.net/byxdaz/article/details/3972293
      [wq5]
      以时间作为变量所进行的研究就是时域
      以频率作为变量所进行的研究就是频域
      以空间坐标作为变量进行的研究就是空间域
      以波数作为变量所进行的研究称为波数域
      [wq6]
      一阶微分
      [wq7]
      二次导数,其离散实现类似于二阶Sobel导数
      [wq8]
      1) 仿射变换
      2) 透视变换
      [wq9]
      参考
      http://download.csdn.net/source/1513324
      [wq10]
      OTSU
      [wq11]
      SIFT特征怎么用?

    展开全文
  • 1、矩形:一般用作要执行的处理(process),在程序流程图中做执行。2、圆角矩形或者扁圆:表示程序的开始或者结束,在程序流程图中用作为起始或者结束。3、斜角矩形:斜角矩形平时几乎不使用,可以视情况自行...
  • MATLAB血氧处理代码贝叶斯换粗体 本实验将重点开发功能性磁共振成像(fMRI)数据中与血氧水平相关(BOLD)信号的仿真,这些信号可作为计算参数映射(CPM)的基础,这是基于模型的fMRI实验的贝叶斯方法。 背景 功能性...
  • 图片处理框架

    2017-05-24 20:06:58
    图片形状处理框架transformation githup地址:点击打开链接 图片美化(过滤)的处理框架android版的GPUImage: githup地址:点击打开链接
  • 本文实例讲述了Android编程处理窗口控件大小,形状,像素等UI元素工具类。分享给大家供大家参考,具体如下: /** * 处理窗口控件大小,形状,像素等工具类 * * @author chen.lin * */ public class UITools { /** ...
  • Plater 可以轻松处理在平板中进行的实验数据。 它面向处理微量滴定板仪器的科学家和分析师。 安装 Plater 可通过 CRAN 获得。 赶紧跑: install.packages( " plater " ) 获取您的数据 许多科学仪器(如酶标仪和 ...
  • 该系列文章主要讲解Python OpenCV图像处理和图像识别知识,第一篇文章作为整个系列的引子,将介绍什么是图像处理,图像处理的基础知识,Python语言的优势和OpenCV基础概述。希望文章对您有所帮助,如果有不足之处,...
  • YOLO回归处理

    2022-02-11 18:16:05
    以YOLOv1为例,共产生98个候选处理第一步置信度过滤: 共有7x7x2=98 bboxes,假设一个类别为dog,将所有置信度小于0.2阈值(自设置)的概率全部抹0;上图中的每一列是置信度(存在目标的概率P(obj))与类别概率...
  • 为了解决这个问题,我们在有信心的尺度空间的背景下引入了对流行的蛇模型的形状表示增强,从而有望实现更高水平的解释。 我们提出的系统由一个分层的分析框架组成,该框架包括反馈回路,自适应和需求调整。 结合了...
  • 一、课程背景数字图像处理技术的发展涉及信息科学、计算机科学、数学、物理学以及生物学等学科,因此数理及相关的边缘学科对图像处理科学的发展有越来越大的影响。近年来,数字图像处理技术日趋成熟,它广泛应用于...
  • MVC框架详解,框架到底是什么

    千次阅读 2014-10-10 10:19:45
    现在许许多多的初学者和程序员,都在... 然而,如果在面试的时候问这些程序员,你们为什么要学习这些框架?这些框架的本质到底是什么?似乎很少很少有人能够给我非常满意的答复。因为他们都在为了学习而学习,为了工作
  • HALCON学习之图像处理基本流程框架

    千次阅读 2019-09-10 09:53:11
    图像处理的基本思路如下: 采集 预处理 滤波 形态学分析 特征提取 形状 颜色 纹理 概率 算子 识别 显示 VS(C#、QT)
  • Linux C高阶(7)异步处理框架C实现

    千次阅读 2019-12-13 17:24:48
    微信公众号:二进制人生 专注于嵌入式linux开发。... 更新:2019/12/13 ...在开发中,我们可能经常会遇到一些执行时间需要很长的任务,如果让程序处理完任务再继续往下走,可能会耽误到程序的主体业...
  • 就是一个剖面,可以完整的表达一个平面内的梁柱构件,主要在图上表达框架梁柱的形状、配筋、钢筋的布置和搭接锚固情况等等。榀 是单位,就好比 “个”“匹”“栋”等。建筑中,将一个平面上的一片连续框架叫做“一榀...
  • 它是什么? Reladomo是用于Java的对象关系映射(ORM)框架,具有以下企业功能: 强类型的编译时检查查询语言 双时态链 透明的多模式支持 完全支持可单元测试的代码 有关更多详细信息,请参见。 我该怎么办? 将...
  • 众所周知,超导体的临界电流密度取决于其尺寸,形状,掺杂的性质和制备方式。... 作为该框架的一种应用,我们针对文献中已报道的Bi-2212的临界电流密度(对于温度和施加磁场的非零值)的不同值进行了处理
  • 言归正传,什么是REST呢?嗯,我当然没耐心跟你讲啦,给你链接,自己看去: rest_百度百科 这方面在php里面实践的比较少,我把我Rails里面的路由表放在这里你结合REST的知识看看大概就能懂了: 前缀 请求方法...
  • Meshroom 一个基于AliceVision框架的免费开源3D重建软件 Meshroom 是一款基于 AliceVision 摄影测量计算机视觉框架的免费开源 3D 重建软件。 在 AliceVision 网站上了解有关管道的更多详细信息。 在 Sketchfab 上...
  • CreateShapesSwingAPI 简单的Java Swing应用程序可处理形状 必备:Java JDK 8 部署方式 'javac * .java' 'java框架'
  • java的流程框架

    千次阅读 2018-03-23 15:24:53
    //形状接口定义 public interface IShape {//功能 boolean input(); //输入方法 float getArea(); //求面积方法 }//流程处理类 public class ShapeProcess { private IShape shape; public ShapeProcess(IShape ...
  • Netty框架使用

    千次阅读 2019-02-15 14:24:54
    首先在使用Netty框架的时候需要了解Netty是一个什么东西。 Netty是由JBOSS提供的一个java开源框架。Netty提供异步的、事件驱动的网络应用程序框架和工具,用以快速开发高性能、高可靠性的网络服务器和客户端程序。...
  • Android常见的图片处理的开源框架

    千次阅读 2017-08-03 22:57:57
    注意:第三方图片处理框架内部都已经封装了LruCatch,用来处理大图的加载,避免了OOM异常,使用了线程池来管理线程,避免了开启多个线程造成的资源的浪费,对于更新UI,内部也已经封装了Handler来进行线程间通信,将...
  • 简介 Blade 是 Laravel 所提供的一个简单且强大的模板引擎。...这代表 Blade 基本不会对你的应用程序生成负担。 ... 为什么要使用blade模板 容易理解,思路清晰 ... 对后台数据的处理方便,blade模板和框架之间的参数传递实
  • 这个本身没有问题,但是呢,在实际的应用中总有点不方便,为什么呢,因为传到后面处理的时候,不仅要验证图片的上传还要验证form表单的某些字段. 一般我们会这样写 复制代码 代码如下: $post = new Validation($_POST); $...
  • Android常用框架

    万次阅读 多人点赞 2019-05-06 17:10:14
    1.缓存框架     1.1DiskLruCache:Java实现基于LRU的磁盘缓存,DiskLruCache不是google官方所写,但是得到了官方推荐,DiskLruCache没有编写到SDK中去,如需使用可直接copy这个类到项目中去。...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 167,641
精华内容 67,056
关键字:

处理框是什么形状