精华内容
下载资源
问答
  • 《模式识别与智能计算》MATLAB技术实现杨淑莹 光盘文件:安装说明+软件+聚类分析+手写数字分类+测试数据集
  • matlab人脸识别论文

    万次阅读 多人点赞 2019-10-11 17:41:51
    本文设计了一种基于BP神经网络的人脸识别系统,并对其进行了性能分析。该系统首先利用离散小波变换获取包含人脸图像大部分原始信息的低频分量,对图像数据进行降维;再由PCA算法对人脸图像进行主成分特征提取,进--步...

    摘 要

     本文设计了一种基于BP神经网络的人脸识别系统,并对其进行了性能分析。该系统首先利用离散小波变换获取包含人脸图像大部分原始信息的低频分量,对图像数据进行降维;再由PCA算法对人脸图像进行主成分特征提取,进--步降低图像数据的处理量;最后使用经过训练后的BP神经网络对待测人脸进行分类识别。详细介绍了离散小波变换PCA特征提取以及BP神经网络分类设计。通过系统仿真实验与分析发现:人脸特征的提取是该系统的关键;同时,由于人脸灰度信息的统计特征与有监督训练BP神经网络分类器,使该系统只在固定类别,并且光照均匀的人脸识别应用场景中具有较高的识别准确率。因此,很难在复杂环境中应用。
    

    关键词:人脸识别;人工神经网络;离散小波变换; PCA; BP神经网络
    Abstract
    In this paper, a face recognition system based on BP neural network is designed and its performance is analyzed. The system first uses discrete wavelet transform to obtain the low-frequency components which contain most of the original information of the face image, and then uses PCA algorithm to extract the principal component features of the face image, progressively reducing the processing capacity of the image data. Finally, the trained BP neural network is used to classify and recognize the tested face. Discrete wavelet transform PCA feature extraction and BP neural network classification design are introduced in detail. Through the system simulation experiment and analysis, it is found that the extraction of facial features is the key of the system. At the same time, because of the statistical features of gray information and the supervised training of BP neural network classifier, the system only has a high recognition accuracy in fixed categories and uniform illumination of face recognition application scenarios. Therefore, it is difficult to apply in complex environment.

    Key words: face recognition; artificial neural network; discrete wavelet transform; PCA; BP neural network
    1绪论

      人脸识别是模式识别研究的一个热点,它在身份鉴别、信用卡识别,护照的核对及监控系统等方面有着I泛的应用。人脸图像由于受光照、表情以及姿态等因索的影响,使得同一个人的脸像矩阵差异也比较大。因此,进行人脸识别时,所选取的特征必须对上述因素具备-一定的稳定性和不变性。主元分析(PCA)方法是一种有效的特征提取方法,将人脸图像表示成一一个列向量,经过PCA变换后,不仅可以有效地降低其维数,同时又能保留所需要的识别信息,这些信息对光照、表情以及姿态具有一定的不敏感性。 在获得有效的特征向量后,关键问题是设计具有良好分类能力和鲁棒性的分类器、支持向量机(SVI )模式识别方法,兼顾调练误差和泛化能力,在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势。
    

    1.1人脸识别技术的细节

    一般来说,人脸识别系统包括图像提取、人脸定位、图形预处理、以及人脸识别(身份确认或者身份查找)。系统输入一般是一张或者一系列含有未确定身份的人脸图像,以及人脸数据库中的若干已知身份的人脸图像或者相应的编码,而其输出则是一系列相似度得分,表明待识别的人脸的身份。
    1.2人脸识别技术的广泛应用

    一项技术的问世和发展与人类的迫切需求是密切相关的,快速发展的社会经济和科学技术使得人类对安全(包括人身安全、隐私保护等)得认识越来越重视。人脸识别得一个重要应用就是人类的身份识别。一-般来说, 人类得身份识别方式分为三类:
    1.特征物品,包括各种证件和凭证,如身份证、驾驶证、房门钥匙、印章等;
    2.特殊知识,包括各种密码、口令和暗号等;

    3.人类生物特征,包括各种人类得生理和行为特征,如人脸、指纹、手形、掌纹、虹膜. DNA、签名、语音等。前两类识别方式属于传统的身份识别技术,其特点是方便、快捷,但致命的缺点是安全性差、易伪造、易窃取。特殊物品可能会丢失、偷盗和复制,特殊知识可以被遗忘、混淆和泄漏。相比较而言,由于生物特征使人的内在属性,具有很强的自身稳定性和个体差异性,因此生物特征是身份识别的最理想依据。基于以上相对独特的生物特征,结合计算机技术,发展了众多的基于人类生物特征的身份识别技术,如DNA识别技术、指纹识别技术、虹膜识别技术、语音识别技术和人脸识别技术等。生物识别技术在上个世纪已经有了- -定得发展,其中指纹识别技术已经趋近成熟,但人脸识别技术的研究还处于起步阶段。指纹、虹膜、掌纹等识别技术都需要被识别者的配合,有的识别技术还需要添置复杂昂贵的设备。人脸识别可以利用已有的照片或是摄像头远距离捕捉图像,无需特殊的采集设备,系统的成本低。并且自动人脸识别可以在当事人毫无觉察的情况下完成身份确认识别工作,这对反恐怖活动有非常重要的意义。基于人脸识别技术具有如此多的优势,因此它的应用前最非常广阔,已成为最具潜力的生物特征识别技术之一
    1.3人脸识别技术的难点

      虽然人类可以毫不困难地根据人脸来辨别一个人,但是利用计算机进行完全自动的人脸识别仍然有许多困难。人脸模式差异性使得人脸识别成为-个非常困难的问题,表现在以下方面:
    
      1.人脸表情复杂,人脸具有多样的变化能力,人的脸上分布着Ii十多块面部肌肉,这些肌肉的运动导致不同面部表情的出现,会造成人脸特征的显著改变。
    
      2.随着年龄而改变,随着年龄的增长,皱纹的出现和面部肌肉的松驰使得人脸的结构和纹理都将发生改变。
    
      3.人脸有易变化的附加物,例如改变发型,留胡须,戴帽子或眼镜等饰物。4.人脸特征遮掩,人脸全部、部分遮掩将会造成错误识别。
    
      5.人脸图像的畸变,由于光照、视角、摄取角度不同,可能造成图像的灰度。
    

    1.4国内外研究状况

    人脸识别是人类视觉最杰出的能力之-。 它的研究涉及模式识别、图像处理、生物学、心理学、认知科学,与基于其它生物特征的身份鉴别方法以及计算机人机感知交互领域都有密切联系。人脸识别早在六七十年代就引起了研究者的强烈兴趣。20世纪60年代,Bledsoe 提出了人脸识别的半自动系统模式与特征提取方法。70年代,美、英等发达国家开始重视人脸识别的研究工作并取得进展。1972 年,Harmon 用交互人脸识别方法在理论上与实践上进行了详细的论述。同年,Sakai 设计了人脸图像自动识别系统。80年代初
    T. Minami 研究出了优于Sakai的人脸图像自动识别系统。但早期的人脸识别一般都需要人的某些先验知识,无法摆脱人的干预。进入九十年代,由于各方面对人脸识别系统的迫切需求,人臉识别的研究变的非常热门。人脸识别的方法有了重大突破,进入了真正的机器自动识别阶段,如Kartbunen-Loeve变换等或新的神经网络技术。人脸识别研究

    得到了前所未有的重视,国际上发表有关人脸识别等方面的论文数量大幅度增加,仅从1990年到2000年之间,sCl 及EI可检索到的相关文献多达数千篇,这期间关于人脸识别的综述也屡屡可见。国外有许多学校在研究人脸识别技术,研究涉及的领域很广。这些研究受到军方、警方及大公司的高度重视和资助,国内的一些知名院校也开始从事人脸识别的研究。

      人脸识别是当前模式识别领域的一个前沿课题,但目前人脸识别尚处于研究课题阶段,尚不是实用化领域的活跃课题。虽然人类可以毫不困难地由人脸辨别一个人,但利用计算机进行完全自动的人脸识别存在许多困难,其表现在:人脸是非刚体,存在表情变化:人脸随年龄增长面变化:发型、眼镜等装饰对人脸造成遮挡:人脸所成图像受光照、成像角度、成像距离等影响。人脸识别的困难还在于图像包括大量的数据,输入的像素可能成百上千,每个像素都含有各自不同的灰度级,由此带来的计算的复杂度将会增加。现有的识别方法中,通过从人脸图像中提取出特征信息,来对数据库进行检索的方法速度快,而利用拓扑属性图匹配来确定匹配度的方法则相对较快。
    

    1.5人脸识别的研究内容

    人脸识别技术(AFR)就是利用计算机技术,根据数据库的人脸图像,分析提取出有效的识别信息,用来“辨认”身份的技术。人脸识别技术的研究始于六十年代末七十年代初,其研究领城涉及图像处理、计算机视觉、模式识别、计算机智能等领城,是伴随着现代化计算机技术、数据库技术发展起来的综合交叉学科。
    1.5.1人脸识别研究内容

      人脸识别的研究范围广义上来讲大致包括以下hi个方面的内容。
    
      1.人脸定位和检测(Face Detection) :即从动态的场景与复杂的背景中检测出人臉的存在并且确定其位置,最后分离出来。这一任务主要受到光照、噪声、面部倾斜以及各种各样遮挡的影响。
    
      2.人脸表征(Face Representation) (也称人脸特征提取) :即采用某种表示方法来表示检测出人脸与数据库中的已知人脸。通常的表示方法包括几何特征(如欧氏距离、曲率、角度)、代数特征(如矩阵特征向量)、固定特征模板等。
    
      3.人脸识别(Face Recogni tion) :即将待识别的人脸与数据库中已知人脸比较,得出相关信息。这一过程的核心是选择适当的人脸表征方法与匹配策略。
    
      4.表情姿态分析(Expression/Gesture Analysis) :即对待识别人脸的表情或姿态信息进行分析,并对其加以归类。
    
    
      5.生理分类(Physical Classi fication) :即对待识别人脸的生理特征进行分析,得出其年龄、性别等相关信息,或者从几幅相关的图像推导出希望得到的人脸图像,如从父母图像推导出孩子脸部图像和基于年龄增长的人脸图像估算等。
    
      人臉识别的研究内容,从生物特征技术的应用前景来分类,包括以下两个方面:人脸验证与人脸识别。
    
      1.人脸验证((Face Veri ficat ion/Authenticat ion):即是回答“是不是某人?"的问题.它是给定一幅待识别人脸图像,判断它是否是某人的问题,属于一对一的两类模式分类问题,主要用于安全系统的身份验证。
    
      2.人脸识别(Face 。Recognition) :即是回答“是谁”的问题。它是给定-幅待识别人脸图像,再已有的人脸数据库中,判断它的身份的问题。它是个“-对多”的多类模式分类问题,通常所说的人脸识别即指此类问题,这也是本文的主要研究内容。
    

    1.5.2人脸识别系统的组成

      在人脸识别技术发展的几十年中,研究者们提出了多种多样的人脸识别方法,但大部分的人脸识别系统主要由三部分组成:图像预处理、特征提取和人脸的分类识别。一个完整的自动人脸识别系统还包括人脸检测定位和数据库的组织等模块,如图1.1.其中人脸检测和人脸识别是整个自动人脸识别系统中非常重要的两个环节,并且相对独立。下面分别介绍这两个环节。
    

    人脸检测与定位,检测图像中是否由人脸,若有,将其从背景中分割出来,并确定其在图
    像中的位置。在某些可以控制拍摄条件的场合,如警察拍罪犯照片时将人脸限定在标尺内,此时人脸的定位很简单。证件照背景简单,定位比较容易。在另一些情况下,人脸在图像
    中的位置预先是未知的,比如在复杂背景下拍摄的照片,这时人脸的检测与定位将受以下因素的影响: :

      1.人脸在图像中的位置、角度、不固定尺寸以及光照的影响:
    
      2.发型、眼睛、胡须以及人脸的表情变化等,3.图像中的噪声等。
    
      特征提取与人脸识别,特征提取之前一般都要敌几何归一化和灰度归一化的工作。前者指根据人脸定位结果将图像中的人脸变化到同一位置和大小:后者是指对图像进行光照补偿等处理,以克服光照变化的影响,光照补偿能够一定程度的克服光照变化的影响而提高识别率。提取出待识别的人脸特征之后,即进行特征匹配。这个过程是一对多或者一对一的匹配过程,前者是确定输入图像为图象库中的哪一个人(即人脸识别),后者是验证输入图像的人的身份是否属实(人脸验证).  
    

    以上两个环节的独立性很强。在许多特定场合下人脸的检测与定位相对比较容易,因此“特征提取与人脸识别环节”得到了更广泛和深入的研究。近几年随着人们越来越关心各种复杂的情形下的人臉自动识别系统以及多功能感知研究的兴起,人脸检测与定位才作为一个独立的模式识别问题得到了较多的重视。本文主要研究人脸的特征提取与分类识别的问题。

    2基于bp神经网络的人脸识别算法

      虽然人脸识别方法的分类标准可能有所不同,但是8前的研究主要有两个方向,一类是从人脸图像整体(Holistic Approaches)出发,基于图像的总体信息进行分类识别,他重点考虑了模式的整体属性,其中较为著名的方法有:人工神经网络的方法、统计模式的方法等。另一类是基于提取人脸图像的几何特征参数(Feature-Based Approaches), 例如眼、嘴和鼻子的特征,再按照某种距离准则进行分类识别。这种方法非常有效,因为人脸不是刚体,有着复杂的表情,对其严格进行特征匹配会出现困难。面分别介绍- -些常 用的方法,前两种方法属于从图像的整体方面进行研究,后三种方法主要从提取图像的局部特征讲行研究。
    
    
      2.1基于特征脸的方法
    

    特征脸方法(cigenface)是从生元分析方法PCA c Principal ComponentAnalysis 导出的一种人脸分析识别方法,它根据一-组人脸图像构造主元子空间,由于主元具有人脸的形状也称作特征脸。识别时将测试图像投影到主元子空间上得到了-组投影系数,然后和各个已知人的人脸图像进行比较识别,取得了很好的识别效果。在此基础上出现了很多特征脸的改进算法。

      特征脸方法原理简单、易于实现,它把人脸作为一个整体来处理,大大降低了识别复杂度。但是特征脸方法忽视了人脸的个性差异,存在着一定的理论缺陷。研究表明:特征脸方法随光线角度及人脸尺寸的影响,识别率会有所下降。
    

    2.2基于bp神经网络的方法

    一、实验要求采用三层前馈BP神经网络实现标准人脸YALE数据库的识别,编程语言为C系列语言。
    二、BP神经网络的结构和学习算法实验中建议采用如下最简单的三层BP神经网络,输入层为,有n个神经元节点,输出层具有m个神经元,网络输出为,隐含层具有k个神经元,采用BP学习算法训练神经网络。BP神经网络的结构BP网络在本质上是一种输入到输出的映射,它能够学习大量的输入与输出之间的映射关系,而不需要任何输入和输出之间的精确的数学表达式,只要用已知的模式对BP网络加以训练,网络就具有输入输出对之间的映射能力。BP网络执行的是有教师训练,其样本集是由形如(输入向量,期望输出向量)的向量对构成的。在开始训练前,所有的权值和阈值都应该用一些不同的小随机数进行初始化。BP算法主要包括两个阶段:

    2.2.1向前传播阶段

    ①从样本集中取一个样本(Xp,Yp),将Xp输入网络,其中Xp为输入向量,Yp为期望输出向量。
    ②计算相应的实际输出Op。在此阶段,信息从输入层经过逐级的变换,传送到输出层。这个过程也是网络在完成训练后正常运行时执行的过程。在此过程中,网络执行的是下列运算:

    (2) 向后传播阶段
    ①计算实际输出Op与相应的理想输出Yp的差;
    ②按极小化误差的方法调整权矩阵。这两个阶段的工作一般应受到精度要求的控制

    (1)作为网络关于第p个样本的误差测度(误差函数)。

    (2)如前所述,之所以将此阶段称为向后传播阶段,是对应于输入信号的正常传播而言的,也称之为误差传播阶段。为了更清楚地说明本文所使用的BP网络的训练过程,首先假设输入层、中间层和输出层的单元数分别是N、L和M。X=(x0,x1,…,xN-1)是加到网络的输入矢量,H=(h0,h1,…,hL-1)是中间层输出矢量,Y=(y0,y1,…,yM-1)是网络的实际输出矢量,并且用D=(d0,d1,…,dM-1)来表示训练组中各模式的目标输出矢量。输出单元i到隐单元j的权值是Vij,而隐单元j到输出单元k的权值是Wjk。另外用θk和Φj来分别表示输出单元和隐单元的阈值。于是,中间层各单元的输出为:

    (3)而输出层各单元的输出是:

    其中f(*)是激励函数,采用S型函数:

    2.2.2在上述条件下,网络的训练过程如下:

    (1) 选定训练集。由相应的训练策略选择样本图像作为训练集。
    (2) 初始化各权值Vij,Wjk和阈值Φj,θk,将其设置为接近于0的随机值,并初始化精度控制参数ε和学习率α。
    (3) 从训练集中取一个输入向量X加到网络,并给定它的目标输出向量D。
    (4) 利用式(3)计算出一个中间层输出H,再用式(4)计算出网络的实际输出Y。
    (5) 将输出矢量中的元素yk与目标矢量中的元素dk进行比较,计算出M个输出

    误差项:

    对中间层的隐单元也计算出L个误差项:

    (6) 依次计算出各权值和阈值的调整量:

    (8) 当k每经历1至M后,判断指标是否满足精度要求:E≤ε,其中E是总误差函数。

    如果不满足,就返回(3),继续迭代。如果满足,就进入下一步。
    (9) 训练结束,将权值和阈值保存在文件中。这时可以认为各个权值已经达到稳定,分类器形成。再一次进行训练时,直接从文件导出权值和阈值进行训练,不需要进行初始化。

    YALE数据库是由耶鲁大学计算视觉与扼制中心创立,包括15位志愿者,每个人有11张不同姿势、光照和表情的图片,共计165张图片,图片均为80*100像素的BMP格式图像。我们将整个数据库分为两个部分,每个人的前5幅图片作为网络的训练使用,后6副图片作为测试使用。测试样例:

    输入输出:

      神经网络在人脸识别应用中有很长的历史。早期用于人脸识别的神经网络主要是Kohonen自联想映射神经网络,用于人脸的“回忆”。所谓“回忆”是指当输入图像上的人脸受噪声污染严重或部分缺损时,能用Kohonen网络恢复出原来完整的人脸。Intrator 等人用一个无监督/监督混合神经网络进行人脸识别。其输入是原始图像的梯度图像,以此可以去除光照的变化。监督学习目的是寻找类的特征,有监督学习的目的是减少训练样本被错分的比例。这种网络提取的特征明显,识别率高,如果用几个网络同时运算,求其平均,识别效果还会提高。
    
      与其他类型的方法相比,神经网络方法在人脸识别上有其独到的优势,它避免了复:杂的特征提取工作,可以通过学习的过程获得其他方法难以实现的关于人脸识别的规律和规则的隐性表达。此外,神经网络以时示方式处理信息,如果能用硬件实现,就能显著提高速度。神经网络方法除了用于人脸识别外,还适用于性别识别、种族识别等。
    

    2.3弹性图匹配法

    弹性图匹配方法是-种基于动态链接结构DLA C Dynamic Link Architecture的方法。它将人脸用格状的稀疏图表示,图中的节点用图像位置的Gabor小波分解得到的特征向量标记,图的边用连接节点的距离向量标记。匹配时,首先J找与输入图像最相似的模型图,再对图中的每个节点位置进行最佳匹配,这样产生-一个变形图,其节点逼近模型图的对应点的位置。弹性图匹配方法对光照、位移、旋转及尺度变化都敏感。此方法的主要缺点是对每个存储的人臉需计算其模型图,计算量大,存储量大。为此,Wiskott 在原有方法的基础上提出聚東图匹配,部分克服了这些缺点。在聚束图中,所有节点都已经定位在相应目标上。对于大量数据库,这样可以大大减少识别时间。另外,利用聚束图还能够匹配小同人的最相似特征,因此可以获得关于未知人的性别、胡须和眼镜等相关信息。
    2.4基于模板匹配的方法
    模板匹配法是一-种经典的模式识别方法,这种方法大多是用归一一化和互相关,直接计算两副图像之间的匹配程度。由于这种方法要求两副图像上的目标要有相同的尺度、取向和光照条件,所以预处理要做尺度归一化和灰度归一化的工作。最简单的人脸模板是将人脸看成-一个椭圆,检测人臉也就是检测图像中的椭圆。另一种方法是将人脸用一-组独立的小模板表示,如眼睛模板、嘴巴模板、鼻子模板、眉毛模板和下巴模板等。但这些模板的获得必须利用各个特征的轮廓,而传统的基于边缘提取的方法很难获得较高的连续边缘。即使获得了可靠度高的边缘,也很难从中自动提取所需的特征量。模板匹配方法在尺度、光照、旋转角度等各种条件稳定的状态下,它的识别的效果优于其它方法,但它对光照、旋转和表情变化比较敏感,影响了它的直接使用。2.5基于人脸特征的方法人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以作为人脸识别的重要特征。几何特征最早是用于人脸检测轮廓的描述与识别,首先根据检测轮廓曲线确定若干显著点,并由这些显著点导出- -组用于识别的特征度量如距离、角度等。采用儿何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征。
    定位眼睛往往是提取人脸几何特征的第-步。由于眼睛的对称性以及眼珠呈现为低灰度值的圆形,因此在人脸图像清晰瑞正的时候,眼睛的提取是比较容易的。但是如果人脸图像模糊,或者噪声很多,则往往需要利用更多的信息(如眼睛和眉毛、鼻子的相对位置等),而且.这将使得眼睛的定位变得很复杂。而且实际图像中,部件未必轮廓分明,有时人用眼看也只是个大概,计算机提取就更成问题,因而导致描述同-一个人的不同人脸时,其模型参数可能相差很大,面失去识别意义。尽管如此,在正确提取部件以及表情变化微小的前提下,该方法依然奏效,因此在许多方面仍可应用,如对标准身份证照片的应用。

    2.5九个人脸库介绍

    1. FERET人脸数据库
      http://www.nist.gov/itl/iad/ig/colorferet.cfm
      由FERET项目创建,此图像集包含大量的人脸图像,并且每幅图中均只有一个人脸。该集中,同一个人的照片有不同表情、光照、姿态和年龄的变化。包含1万多张多姿态和光照的人脸图像,是人脸识别领域应用最广泛的人脸数据库之一。其中的多数人是西方人,每个人所包含的人脸图像的变化比较单一。

    2. CMU Multi-PIE人脸数据库
      http://www.flintbox.com/public/project/4742/
      由美国卡耐基梅隆大学建立。所谓“PIE”就是姿态(Pose),光照(Illumination)和表情(Expression)的缩写。CMU Multi-PIE人脸数据库是在CMU-PIE人脸数据库的基础上发展起来的。包含337位志愿者的75000多张多姿态,光照和表情的面部图像。其中的姿态和光照变化图像也是在严格控制的条件下采集的,目前已经逐渐成为人脸识别领域的一个重要的测试集合。

    3. YALE人脸数据库(美国,耶鲁大学)
      http://cvc.cs.yale.edu/cvc/projects/yalefaces/yalefaces.html
      由耶鲁大学计算视觉与控制中心创建,包含15位志愿者的165张图片,包含光照、表情和姿态的变化。
      Yale人脸数据库中一个采集志愿者的10张样本,相比较ORL人脸数据库Yale库中每个对象采集的样本包含更明显的光照、表情和姿态以及遮挡变化。

    4. YALE人脸数据库B
      https://computervisiononline.com/dataset/1105138686
      包含了10个人的5850幅在9种姿态,64种光照条件下的图像。其中的姿态和光照变化的图像都是在严格控制的条件下采集的,主要用于光照和姿态问题的建模与分析。由于采集人数较少,该数据库的进一步应用受到了比较大的限制。

    5. MIT人脸数据库
      由麻省理工大学媒体实验室创建,包含16位志愿者的2592张不同姿态(每人27张照片),光照和大小的面部图像。

    6. ORL人脸数据库
      https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
      由英国剑桥大学AT&T实验室创建,包含40人共400张面部图像,部分志愿者的图像包括了姿态,表情和面部饰物的变化。该人脸库在人脸识别研究的早期经常被人们采用,但由于变化模式较少,多数系统的识别率均可以达到90%以上,因此进一步利用的价值已经不大。
      ORL人脸数据库中一个采集对象的全部样本库中每个采集对象包含10幅经过归一化处理的灰度图像,图像尺寸均为92×112,图像背景为黑色。其中采集对象的面部表情和细节均有变化,例如笑与不笑、眼睛睁着或闭着以及戴或不戴眼镜等,不同人脸样本的姿态也有变化,其深度旋转和平面旋转可达20度。

    7. BioID人脸数据库
      https://www.bioid.com/facedb/
      包含在各种光照和复杂背景下的1521张灰度面部图像,眼睛位置已经被手工标注。

    8. UMIST图像集
      由英国曼彻斯特大学建立。包括20个人共564幅图像,每个人具有不同角度、不同姿态的多幅图像。

    9. 年龄识别数据集IMDB-WIKI
      https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/
      包含524230张从IMDB和Wikipedia爬取的名人数据图片。应用了一个新颖的化回归为分类的年龄算法。本质就是在0-100之间的101类分类后,对于得到的分数和0-100相乘,并将最终结果求和,得到最终识别的年龄

    3matlab分析人脸方法介绍
    人脸识别之一:查找图片中的人脸并用方框圈出
    这种类似于智能手机拍照时,屏幕里那个框任务头部的红框。大致步骤为:获取RGB图片—>转换为灰度图像—>图像处理—>人脸识别。代码如下:clear all
    clc

    %获取原始图片
    i=imread(‘face.jpg’);
    I=rgb2gray(i);
    BW=im2bw(I); %利用阈值值变换法将灰度图像转换成二进制图像
    figure(1);
    imshow(BW);
    %最小化背景
    [n1 n2]=size(BW);
    r=floor(n1/10);
    c=floor(n2/10);
    x1=1;x2=r;
    s=r*c;

    for i=1:10
    y1=1;y2=c;
    for j=1:10
    if(y2<=c || y2>=9c) || (x11 || x2r10)
    loc=find(BW(x1:x2,y1:y2)==0);
    [o p]=size(loc);
    pr=o*100/s;
    if pr<=100
    BW(x1:x2,y1:y2)=0;
    r1=x1;r2=x2;s1=y1;s2=y2;
    pr1=0;
    end
    imshow(BW);
    end
    y1=y1+c;
    y2=y2+c;
    end
    x1=x1+r;
    x2=x2+c;
    end
    figure(2)
    subplot(1,2,1);
    imshow(BW)
    title(‘图像处理’);
    %人脸识别
    L=bwlabel(BW,8);
    BB=regionprops(L,‘BoundingBox’);
    BB1=struct2cell(BB);
    BB2=cell2mat(BB1);

    [s1 s2]=size(BB2);
    mx=0;
    for k=3:4:s2-1
    p=BB2(1,k)*BB2(1,k+1);
    if p>mx && (BB2(1,k)/BB2(1,k+1))<1.8
    mx=p;
    j=k;
    end
    end
    subplot(1,2,2);
    title(‘人脸识别’);
    imshow(I);
    hold on;
    rectangle(‘Position’,[BB2(1,j-2),BB2(1,j-1),BB2(1,j),BB2(1,j)],‘EdgeColor’,‘r’)实验效果图:

             从实验效果图中,可以看出红框框出了人脸部分。
    

    人脸识别之二:由输入的人像识别出数据库中人像
    这种情况类似于手机人脸解锁,通过当前的人脸去和保存的人脸做比对来实现解锁等功能;从网上看了好多资料,由于个人能力有限大多都没仿真出来,最后通过学习PCA算法,了解到可通过PCA算法对输入矩阵降维,提取特征值和特征向量的方式来做人脸比对。具体的PCA的东西在这里不作介绍,主要介绍一下如何实现人脸比对。
    大致步骤:制作人脸数据样本—>PCA提取样本数据特征值—>人脸比对1.人脸样本
    从网上搜集了10张人脸图片,来制作成样本。

                         %读取转换10张图片,生成数据矩阵function ImgData = imgdata()  
    

    %导入图片
    picture1 = rgb2gray(imread(‘1.jpg’));
    picture2 = rgb2gray(imread(‘2.jpg’));
    picture3 = rgb2gray(imread(‘3.jpg’));
    picture4 = rgb2gray(imread(‘4.jpg’));
    picture5 = rgb2gray(imread(‘5.jpg’));
    picture6 = rgb2gray(imread(‘6.jpg’));
    picture7 = rgb2gray(imread(‘7.jpg’));
    picture8 = rgb2gray(imread(‘8.jpg’));
    picture9 = rgb2gray(imread(‘9.jpg’));
    picture10 = rgb2gray(imread(‘10.jpg’));
    [m,n] = size(picture1);
    picture_ten = {picture1,picture2,picture3,picture4,picture5,picture6,picture7,picture8,picture9,picture10};
    for i=1:10
    %把mn的矩阵变换成1(mn)的矩阵
    ImgData(i,:) = reshape(picture_ten{i},1,m
    n);
    end
    %数据范围缩小到0到1之间
    ImgData = double(ImgData)/255;

    PCA分析function Cell_ten = PCA(imgdata,k)
    [m,n] = size(imgdata);
    img_mean = mean(imgdata); %计算每列平均值
    img_mean_ten = repmat(img_mean,m,1); %复制m行平均值至矩阵img_mean_ten
    Z = imgdata - img_mean_ten;
    T = Z’Z;%协方差矩阵
    [V,D] = eigs(T,k); %计算T中最大的前k个特征值与特征向量
    img_new = imgdata
    V*D; %低维度下的各个人脸的数据
    Cell_ten = {img_new,V,D};3.通过输入测试人脸从数据库中找到相对应人脸function face= facefind(Cell_ten,testdata)%此函数代码借鉴于他人,还未征求其同意,这里就暂时略过这里testdata是测试图片的数据4.主程序调用img=imgdata(); %图片矩阵数据
    Cell_ten=PCA(img,2);% PCA
    face1=facefind(Cell_ten,imread(‘test.jpg’));%识别
    subplot(1,2,1)
    imshow(‘test.jpg’)
    title(‘测试图像’)
    subplot(1,2,2)
    imshow(strcat(num2str(face1),’.jpg’))
    title(‘数据库图像’)测试效果: 使用这个方式可以实现简单的人脸识别,但精确度不高;

    4 分析算法
    在人脸识别系统中有许多关键环节,其中最重要的莫过于特征提取。利用主成分分析法(PCA)进行特征提取是目前应用最多的提取方法。作为一种科学的统计方法,它在模式识别、信号处理、数字图像处理等等领域都有广泛涉猎。基于PCA中空间原始数据主要特征提取,减少数据冗余的思想,一些在低维特征空间的数据被处理,并合理保留了原始数据中有用的信息,数据空间中维数过高的问题也得以解决。
    4.1  主成分分析的基本原理

    实际上主成分分析就是一种数学降维演算方法,用若干个综合变量来代替原本更多的变量,让这些综合变量尽可能的实现对原有变量信息的取代,并保持彼此之间不存在关联。这种多变量化为少数相互无关的变量且信息量不变的统计分析方法就叫做主成分分析法。
      假设F1表示原变量的首个线性组合所组成的主要成分指标,就有F1=a11X1+a21X2+…ap1Xp。根据这个数学式可知,如果在每一个主成分中提取一个信息量,即可用方差(F1)进行度量,随着方差F1的增大,F1所包含的信息也就越多,同时它的线性组合选取也可表示为X1、X2…XP,它们都被称为方差F1中的第一主成分。如果第一主成分不足以代表原有的P个变量信息时,就可以考虑选取F2,即第二个线性组合,借由它来反映原本的有效信息。在F2中可以不显示第一主成分中已有的信息,以数学语言来表达要求的话即Cov(F1,F2)=0,其中F2为第二主成分。所以按照实际原变量的变化需求,就可以构造出多个主成分指标。
      4.2人脸识别的技术特点

    人脸识别是模式识别中的重要分支,它是指通过计算机系统来分析人脸图像,从中获取有价值的识别信息,从而辨识身份。所以说从技术特点上来看,人脸识别具有以下几个关键特色。
     1、PCA算法
    算法大致步骤:
    设有m条n维数据。
    1)将原始数据按列组成n行m列矩阵X;
    2)将X的每一行(这里是图片也就是一张图片变换到一行)进行零均值化,即减去这一行的均值(样本中心化和标准化);将所有的样本融合到一个矩阵里面特征向量就是变换空间的基向量U=[u1,u2,u3,u4,…],脑袋里面要想到一个样本投影变换就是该空间的一个点,然后对于许多点可以用KNN等不同的方法进行分类。
    3)求出协方差矩阵C=1mXXTC=1mXXT C=\frac {1 }{m } XX^TC=m1XXT;
    4)求出协方差矩阵的特征值及对应的特征向量;
    5)将特征向量按对应特征值大小从上到下按行排列成矩阵,取前k行组成矩阵P;
    6)Y=PXY=PX Y=PXY=PX即为降维到kk kk维后的数据。
      对数据进行中心化预处理,这样做的目的是要增加基向量的正交性,便于高维度向低纬度的投影,即便于更好的描述数据。
      对数据标准化的目的是消除特征之间的差异性,当原始数据不同维度上的特征的尺度不一致时,需要标准化步骤对数据进行预处理,使得在训练神经网络的过程中,能够加速权重参数的收敛。
      过中心化和标准化,最后得到均值为0,标准差为1的服从标准正态分布的数据。
      求协方差矩阵的目的是为了计算各维度之间的相关性,而协方差矩阵的特征值大小就反映了变换后在特征向量方向上变换的幅度,幅度越大,说明这个方向上的元素差异也越大(越有投影的必要,矩阵相乘的过程就是投影),故而选取合适的前k个能以及小的损失来大量的减少元数据的维度。

    2、PCA原理推导
    基于K-L展开的PCA特征提取:

    5.算法优化方法
    我用了三种方法对其进行优化
    1.采用动量梯度下降算法训练 BP 网络。
    训练样本定义如下:
    输入矢量为
    p =[-1 -2 3 1
    -1 1 5 -3]
    目标矢量为 t = [-1 -1 1 1]
    2. 采用贝叶斯正则化算法提高 BP 网络的推广能力。在本例中,我们采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。其中,样本数据可以采用如下MATLAB 语句生成:
    输入矢量:P = [-1:0.05:1];
    目标矢量:randn(’seed’,78341223);
    T = sin(2piP)+0.1randn(size§);
    3. 采用“提前停止”方法提高 BP 网络的推广能力。对于和例 2相同的问题,在本例中我们将采用训练函数 traingdx 和“提前停止”相结合的方法来训练 BP 网络,以提高 BP 网络的推广能力。在利用“提前停止”方法时,首先应分别定义训练样本、验证样本或测试样本,其中,验证样本是必不可少的。在本例中,我们只定义并使用验证样本,即有
    验证样本输入矢量:val.P = [-0.975:.05:0.975]
    验证样本目标矢量:val.T = sin(2
    pival.P)+0.1randn(size(val.P))
    值得注意的是,尽管“提前停止”方法可以和任何一种 BP 网络训练函数一起使用,但是不适合同训练速度过快的算法联合使用,比如 trainlm 函数,所以本例中我们采用训练速度相对较慢的变学习速率算法 traingdx 函数作为训练函数。
    参考文献

    [1] HongZiquan.AlgbricFeatureExcaciofmftfoReonino[JPatteo Recognition. 1991. 22 (1) :43~44.
    [2] Yuille A L Detcction Templates for Face Recognitio[JCognitive Neuroscience , 1991. 191-200
    [3]卢春雨张长水局城区城特征的快速人脸检测法[D北京:清华大学学报.1999.96 (1) ;4-6.
    [4]陈刚,减飞虎实用人脸识别系统的本征脸法实现[D]2001年5月230():45-46.
    [
    5]杜平,徐大为,刘重庆,基F整体特征的人脸识别方法的研究[12003年6月49 (3) ;382-383.
    [6] Chow G, Li X. Towards A System for Automatic Facial Feature Detctio[U] 1993. 2903)2-3.
    [7]杨变若,王煎法,杨未来人脸全局特iE识别研究[Z]1997年11月3(5):; 871-875.
    [8]边肇棋,张学工阎平凡等模式识别D]北京:清华大学出版社2000 302)16-17.

    致 谢

      从毕业设计的选题到论文的指导到最后定稿,期间遇到了无数的困难和阻碍,也曾想过对自己降低要求,也曾想过放弃最初想要坚持的设计,但是最后在孙老师和同学的鼓励和陪伴下,努力克服了所有的困难,独立完成了毕业设计和论文的书写。尤其是要感射我的论文指导老师孙老师,不厌其烦的对我的设计进行指导修改,耐心的帮助我改进设计帮助我搜集相关的资料,感谢孙老师如母亲--般的关怀,在孙老师身上不仅学习到了对学术严谨的态度,更被孙老师亲切无私的个人魅力所感染。
    
      还要感谢我的同学和其他所有的老师,他们严谨的学术态度,宽容待人严于律己的处世风范都使我受益良多。
    
    展开全文
  • 树莓派人脸识别实际应用:人脸识别门禁

    千次阅读 多人点赞 2020-02-27 16:07:59
    在上一篇文章树莓派调用百度人脸识别API实现人脸识别,我们完成了树莓派人脸识别的基础环境配置,人脸识别功能也测试成功了,现在我们做一个小小的案例来实际应用一下,我们想树莓派人脸识别成功后,发送蓝牙串口...

    2020-3-16 之前舵机开门关门逻辑有点混乱,不合乎常理,现对树莓派人脸识别代码进行修改,以及Arduino控制代码有所调整;


    在上一篇文章树莓派调用百度人脸识别API实现人脸识别,我们完成了树莓派人脸识别的基础环境配置,人脸识别功能也测试成功了,现在我们做一个小小的案例来实际应用一下,我们想树莓派人脸识别成功后,发送蓝牙串口数据给Arduino的HC-05模块,让Arduino控制舵机开门。
    ###准备
    #####设备材料

    • 树莓派3b
    • Arduino UNO R3
    • HC-05
    • 舵机SG90(或者MG995)
    • 杜邦线若干
      #####连接图
      连接图.png

    ###一、树莓派端配置
    树莓派自带蓝牙功能,我们可以调用系统指令发送蓝牙信号,

    1.1安装树莓派蓝牙模块pybluez

    安装完成后再继续下一步操作;
    若想让树莓派使用bluetooth,必须给树莓派安装pybluez模块

    sudo apt-get install libbluetooth-dev  //安装蓝牙开发库
    python3 -m pip install pybluez    //安装pybluez
    
    1.2 将树莓派手动连接至HC-05

    打开树莓派桌面端,点击蓝牙图标后点击add device
    图片.png
    选择HC-05模块,配对密码是1234;
    图片.png

    配对成功后,后面程序就可以直接运行了

    1.3 定义树莓派蓝牙控制功能

    创建一个bluetooth_test.py文件,分别定义初始化指令、开门指令、关门指令,分别发送字符串’1‘,’2’,‘3’;

    import bluetooth
     
    def servo_init():#初始化指令
    	bd_addr = "20:16:08:08:39:75" #arduino连接的蓝牙模块的地址
    	port = 1
    	 
    	sock=bluetooth.BluetoothSocket( bluetooth.RFCOMM )
    	sock.connect((bd_addr, port)) #创建连接
    	 
    	sock.send("1") #发送数据
    	sock.close()  #关闭连接
    	
    def bt_open():#开门指令
    	bd_addr = "20:16:08:08:39:75" 
    	port = 1
    	 
    	sock=bluetooth.BluetoothSocket( bluetooth.RFCOMM )
    	sock.connect((bd_addr, port)) 
    	 
    	sock.send("2") 
    	sock.close()  
    
    def bt_close():#关门指令
    	bd_addr = "20:16:08:08:39:75" 
    	port = 1
    	 
    	sock=bluetooth.BluetoothSocket( bluetooth.RFCOMM )
    	sock.connect((bd_addr, port)) 
    	 
    	sock.send("3") 
    	sock.close()  	
    

    ###二、Arduino连接方式
    #####2.1 Arduino与HC-05蓝牙模块的连接
    由于我们用的是Arduino UNO R3没有蓝牙模块,要接收蓝牙数据,可以通过外接HC-05蓝牙模块解决。


    HC-05===Arduino

    • RXD<==>TX
    • TXD<==>RX
    • VCC<==>5v
    • GND<==>GND

    注意:HC-05的vcc一定要接5v,如果接3.3v,虽然可以亮灯工作,但是接收一次数据后会自动断开连接,刚开始我找半天没找到原因,原来是电压给低了,这是一个小细节要注意一下。
    #####2.2 Arduino与舵机模块的连接
    SG90 舵机导线三种颜色,含义分别是:
    棕色:GND
    红色:VCC
    黄色:DATA

    舵机SG90===Arduino

    • DATA<==>D9
    • VCC<==>5v
    • GND<==>GND

    ###三、Arduino控制代码
    创建工程烧录到Arduino开发板中即可

    #include <Servo.h>
    Servo myservo;  
    
    void setup() {
      mySerial.begin(9600); //监听软串口
      myservo.attach(9); //舵机控制
      myservo.write(0);
    //  delay(10000); 
    }
    
    void loop() {
      while(Serial.available())
      {
        char c;
        c = Serial.read();  //读取串口数据
        Serial.println(c);
        switch(c)
        {
          case '1':servo_init();
          break;
          case '2':open_the_door();
          break;
          case '3':close_the_door();
        }
      }
    
    }
    
    
    void open_the_door()  //舵机开门
    {
      myservo.write(170);
    }
    void close_the_door()  //舵机关门
    {
      myservo.write(0);
    }
    void servo_init()  //舵机初始化
    {
      myservo.write(10);
    }
    

    ###四、树莓派控制代码
    按照上一篇文章,我们的树莓派已经准备妥当了,在test.py的基础上,我们再修改一下:

    # 2020-3-16修正版本
    from aip import AipFace
    from picamera import PiCamera
    import urllib.request
    import RPi.GPIO as GPIO
    import base64
    import time
    import bluetooth
    
    from bluetooth_test import bt_open,servo_init,bt_close
    
    
    #百度人脸识别API账号信息
    APP_ID = '18332624'
    API_KEY = '2QoqxCzAsZGT9k5CMeaIlPBs'
    SECRET_KEY ='9wOlqd4sPvLc7ZKtLxMlBVkcikXHZ4rz'
    client = AipFace(APP_ID, API_KEY, SECRET_KEY)#创建一个客户端用以访问百度云
    #图像编码方式
    IMAGE_TYPE='BASE64'
    camera = PiCamera()#定义一个摄像头对象
    #用户组
    GROUP = 'yusheng01'
     
    #照相函数
    def getimage():
        camera.resolution = (1024,768)#摄像界面为1024*768
        camera.start_preview()#开始摄像
        time.sleep(2)
        camera.capture('faceimage.jpg')#拍照并保存
        time.sleep(2)
    #对图片的格式进行转换
    def transimage():
        f = open('faceimage.jpg','rb')
        img = base64.b64encode(f.read())
        return img
    #上传到百度api进行人脸检测
    def go_api(image):
        result = client.search(str(image, 'utf-8'), IMAGE_TYPE, GROUP);#在百度云人脸库中寻找有没有匹配的人脸
        if result['error_msg'] == 'SUCCESS':#如果成功了
            name = result['result']['user_list'][0]['user_id']#获取名字
            score = result['result']['user_list'][0]['score']#获取相似度
            if score > 80:#如果相似度大于80
                if name == 'yin_danli':
                    print("欢迎%s !" % name)
                    time.sleep(1)
                if name == 'danli':
                    print("欢迎%s !" % name)
                    time.sleep(3)
                if name == "yusheng_02":
                    print("欢迎%s !" % name)
                    time.sleep(3)
         
            else:
                print("对不起,我不认识你!")
                name = 'Unknow'
                return 0
            curren_time = time.asctime(time.localtime(time.time()))#获取当前时间
     
            #将人员出入的记录保存到Log.txt中
            f = open('Log.txt','a')
            f.write("Person: " + name + "     " + "Time:" + str(curren_time)+'\n')
            f.close()
            return 1
        if result['error_msg'] == 'pic not has face':
            print('检测不到人脸')
            time.sleep(3)
            return -1
        else:
            print(result['error_code']+' ' + result['error_code'])
            return 0
    #主函数
    if __name__ == '__main__':
        servo_init()    #舵机复位,初始化一次就够了
        while True:
            
            print('准备开始,请面向摄像头 ^_^')
    
            if True:
                getimage()#拍照
                img = transimage()  #转换照片格式
                res = go_api(img)   #将转换了格式的图片上传到百度云
                if(res == 1):   #是人脸库中的人
                    bt_open()
                    print("欢迎回家,门已打开")
                elif(res == -1):
                    print("我没有看见你,我要关门了")
                    time.sleep(3)
                    bt_close()    
                else:
                    print("关门")
                    bt_close()
                time.sleep(3)
                print('好了')
                time.sleep(5)
    
    
    注意:

    运行程序后,如果报错

    bluetooth.btcommon.BluetoothError: [Errno 112] Host is down 
    

    你则需要回到桌面端,将树莓派与HC-05重新配对一下,再运行一下就好了。
    ###最后
    至此,当我们运行该代码,把脸凑到摄像头前,舵机自动开门,把脸移开则舵机自动关门,智能门禁系统就做好啦!


    我还拍了一个演示效果的视频
    效果

    视频演示效果传送门
    视频教程传送门
    源码GitHub地址
    更多内容欢迎关注我的gongzhong号:xiaoxiaoyu1926


    展开全文
  • 基于树莓派的人脸识别门禁系统

    万次阅读 多人点赞 2019-05-05 09:38:44
    这是近期以来完成的第二个项目,第一个项目是基于STM...播放音乐我用的pygame的播放音乐模块,MP3文件是我自己录的音,推送微信用的是一个很好的工具server酱( http://sc.ftqq.com/3.version ) 树莓派无线连接: ...

    这是近期以来完成的第二个项目,第一个项目是基于STM32的智能窗帘控制系统(语音控制、温湿度控制、蓝牙APP控制、光敏控制)第一个项目也会在后续进行一个赘述。

    1. 前期准备:

    某宝准备一块相对性能好的树莓派,我自己用的是树莓派3B+。

    购置一个配套电源

    购置一个SD卡,因为你需要安装系统、配置环境。这里特别强调配置环境是一个让人特别头大的事情。如果你想无压力的话你可以购买64G,如果性价比的话你可以购置32G内存卡,因为树莓派是真的好玩,你完成这个项目后还可以继续玩其他的。

     

    2. 安装系统

    系统我安装的是Linux系统,这里我就不赘述了,因为网上教程一大堆。也简单

     

    3. 安装环境

    这里的话如果不是调用百度API接口实现人脸识别的话,这部分可以省略。如果是用OpenCV自己去做的话我建议你还是看看。因为就仅仅这一步安装环境我头痛了一个礼拜才安装完毕。具体安装细节请看这篇博客

    https://blog.csdn.net/qq_36588941/article/details/89839527

     

    4. 注册百度云

    由于树莓派的性能限制,我也考虑过尝试过做树莓派的视频流检测人脸,但是最终结果太不理想。最终考虑还是用树莓派摄像头拍摄一张照片然后进行人脸识别。用拍照进行识别也可以用OpenCV去做,但是我最终还是考虑用开源的人脸识别SDK来进行人脸的识别和检测,对比了国内几家的SDK(阿里云、腾讯云、Face++等等),同样注册了阿里云的应用,直接收费,Face++给了限定的测试次数,所以选择了百度AI,个人觉得百度人脸识别的效果要好一点,特别是并发数要比其他的好很多。下面介绍下百度云注册和SDK的使用方法:

    1、注册百度云(http://ai.baidu.com/

     

    创建应用

     

    获取密钥,AppID、API Key和Secret key,这三个后面的程序需要用到。

     

     

    查看相应语言的开发文档,我用的是Python语言。

     

     

    5. 上传人脸库

     

    6. 人脸识别程序

    百度云注册完成、下载完成SDK后我们就开始写程序,程序的思路很简单,通过树莓派按键中断拍摄一张照片,然后通过SDK来检测照片里面的人是谁,如果这个人在人脸库里面,打开继电器进行开门,如果不在人脸库就关门。同时我还添加了语音播报的功能,而且还能将开门信息推送到微信上,这样就可以试试的看到有谁来开门了。

    '''
    通过摄像头拍一张照片,然后识别出人是谁,进而控制门禁系统
    @author: 蓝色鲜橙多
    @date:2019年4月22日
    '''
    
    from aip import AipFace
    from picamera import PiCamera
    import urllib.request
    import RPi.GPIO as GPIO
    import base64
    import time
    import pyttsx3
    import pygame
    import cv2
    
    #百度人脸识别API账号信息
    APP_ID = '14940942'
    API_KEY = 'oj0h7ccivwL4GDbm2S5PjDV8'
    SECRET_KEY = 'flj13WxsEO4RplskdMqM3gFNTMNQeed4 '
    client = AipFace(APP_ID, API_KEY, SECRET_KEY)
    #图像编码方式
    IMAGE_TYPE='BASE64'
    #用户组信息
    GROUP = 'hua'
    camera = PiCamera()
    pygame.mixer.init()
    
    GPIO.setwarnings(False)
    
    GPIO_IN_PIN22  = 22    # 按键控制
    GPIO_OUT_PIN17 = 17    # 识别不通过 亮红灯
    GPIO_OUT_PIN4  = 4     # 识别通过   打开继电器
    GPIO_OUT_PIN24 = 24    # 识别通过   亮绿灯
    GPIO_OUT_PIN18 = 18    # 工作指示灯灯
    
    ledStatus = True
    
    GPIO.setmode(GPIO.BCM)
    GPIO.setup(GPIO_IN_PIN22,GPIO.IN,pull_up_down=GPIO.PUD_UP)
    GPIO.setup(GPIO_OUT_PIN17,GPIO.OUT)
    GPIO.setup(GPIO_OUT_PIN4,GPIO.OUT)
    GPIO.setup(GPIO_OUT_PIN18,GPIO.OUT)
    GPIO.setup(GPIO_OUT_PIN24,GPIO.OUT)
    
    #定义一个摄像头对象
    def getimage():
        camera.resolution = (1024,768)
        camera.start_preview()
        time.sleep(2)
        camera.capture('faceimage.jpg')
        '''pygame.mixer.music.load('./voice/start.mp3')
        pygame.mixer.music.play()
        time.sleep(2)'''
    
    #对图片的格式进行转换
    def transimage():
        f = open('faceimage.jpg','rb')
        img = base64.b64encode(f.read())
        return img
    
    #播放声音
    def playvioce(name):
        pygame.mixer.music.load('./voice/' +name)
        pygame.mixer.music.play()
        
    
    #发送信息到微信上  
    def sendmsg(name,main):
        url = "https://sc.ftqq.com/SCU36412T61050df84b51badbd34dd7abb92d19af5bfb6b6fef05b.send?"
        urllib.request.urlopen(url + "text="+name+"&desp="+main)
    #上传到百度api进行人脸检测
    def go_api(image):
        result = client.search(str(image, 'utf-8'), IMAGE_TYPE, GROUP)
        if result['error_msg'] == 'SUCCESS':
            name = result['result']['user_list'][0]['user_id']
            score = result['result']['user_list'][0]['score']
            if score > 95:
                print("Welcome %s !" % name)
                if name == 'hua_1':
                    sendmsg("hua_1",name)
                    playvioce('zouminghua.mp3')
                    #time.sleep(4)
                '''if name == 'hua':
                    sendmsg("hua",name)'''
                if name == 'an_cheng':
                    sendmsg("an_cheng",name)
                    playvioce('xianancheng.mp3')
                    #time.sleep(4)
            else:
                print("Sorry...I don't know you !")
                name = 'Unknow'
                sendmsg("BadGay",name)
                playvioce('cuowushibie.mp3')
                #time.sleep(4)
                return 0
            curren_time = time.asctime(time.localtime(time.time()))
            f = open('Log.txt','a')
            f.write("Person: " + name + "     " + "Time:" + str(curren_time)+'\n')
            f.close()
            return 1
        if result['error_msg'] == 'pic not has face':
            print('There is no face in image!')
            playvioce('noface.mp3')
            #time.sleep(4)
            return 0
        else:
            print(result['error_code']+' ' + result['error_code'])
            return 0
        
    # 识别处理函数
    def manage():
        getimage()
        img = transimage()
        res = go_api(img)
        if(res == 1):
            GPIO.output(GPIO_OUT_PIN24,GPIO.HIGH)
            time.sleep(1)
            GPIO.output(GPIO_OUT_PIN24,GPIO.LOW)
            
            GPIO.output(GPIO_OUT_PIN4,GPIO.HIGH)
            time.sleep(2)
            GPIO.output(GPIO_OUT_PIN4,GPIO.LOW)
                            
        else:
            GPIO.output(GPIO_OUT_PIN17,GPIO.HIGH)
            time.sleep(1)
            GPIO.output(GPIO_OUT_PIN17,GPIO.LOW)
            print('waite 3 seconds to do next')
           
    # 按键中断函数
    def my_callback(channel):
        global ledStatus
        ledStatus = not ledStatus
        if ledStatus:
            #while True:
            manage()
                #if ledStatus == 0:
                    #break          
        else:
            pass
        pass
    
    
    # 给22引脚添加一个事件函数,触发条件是:捕获到GPIO.FALLING(下降沿)
    GPIO.add_event_detect(GPIO_IN_PIN22,GPIO.FALLING, callback = my_callback,
                          bouncetime = 150)
    
    if __name__ == '__main__':
        while True:
            try:
                GPIO.output(GPIO_OUT_PIN18,GPIO.HIGH)
                print("I'm working...")
                time.sleep(5)
                pass
            except: 
                GPIO.output(GPIO_OUT_PIN18,GPIO.LOW)
                GPIO.output(GPIO_OUT_PIN4,GPIO.LOW)
                break
                pass
            pass
        '''KeyboardInterrupt'''
    
                
                    
                    
                    
                    
                    

    7. 下面是实物照片

    这是测试时候的照片

    这是封装后的照片

    这里拍照用的picamera,是专门为树莓派定制的摄像头,淘宝可以买到。播放音乐我用的pygame的播放音乐模块,MP3文件是我自己录的音,推送微信用的是一个很好的工具server酱(http://sc.ftqq.com/3.version

    树莓派无线连接:https://blog.csdn.net/qq_36588941/article/details/89792201

    查看连接手机热点的树莓派IP地址:https://blog.csdn.net/qq_36588941/article/details/89611625

    树莓派调节音量:https://blog.csdn.net/qq_36588941/article/details/89608587

    树莓派3B+开机自启动Python程序:https://blog.csdn.net/qq_36588941/article/details/89604748

    参考:https://www.cnblogs.com/zutterhao/p/9075513.html

     

    展开全文
  • 图像识别技术现状和发展趋势

    热门讨论 2011-07-08 10:44:37
    该文描述了图像识别技术的国内外研究现状,介绍了图像识别过程的相关基本工作,并探讨了图像识别的关键步骤,包括图象分 割、图像特征提取和分类和图像的匹配,分析和比较了各种算法的优缺点,并讨论了其中的关键...
  • 基于卷积神经网络的人脸识别

    万次阅读 多人点赞 2020-07-06 16:59:22
    基于卷积神经网络的人脸识别的实现 利用opencv获取人脸,...随着社会的不断进步以及各方面对于快速有效的自动身份验证的迫切要求,生物特征识别技术在近几十年得到了飞速的发展。作为人的一种内在属性,并且具有...

    基于卷积神经网络的人脸识别的实现

    利用opencv获取人脸,采集人脸数据,将收集到的人脸数据加载到内存,搭建属于自己的卷积神经网络,并用人脸数据训练自己的网络,将训练好的网络保存成模型,最后再用opencv获取实时人脸用先前训练好的模型来识别人脸。

    1.前言

    随着社会的不断进步以及各方面对于快速有效的自动身份验证的迫切要求,生物特征识别技术在近几十年得到了飞速的发展。作为人的一种内在属性,并且具有很强的自身稳定性及个体差异性,生物特征成为了自动身份验证的最理想依据。当前的生物特征识别技术主要包括有:指纹识别,视网膜识别,虹膜识别,步态识别,静脉识别,人脸识别等。与其他识别方法相比,人脸识别由于具有直接,友好,方便的特点,使用者无任何心理障碍,易于为用户所接受,从而得到了广泛的研究与应用。

    2.系统设计

    2.1 系统开发环境
    硬件:
    CUP: INTEL CORE I7-6500U
    GPU: NVIDIA GeForce 940M
    内存:8G
    硬盘:PCIE SSD 256G
    软件:
    Python 3.5

    2.2 系统使用工具
    集成开发环境:
    IDLE(是安装好python之后,自动安装好的一个python自带的集成开发环境)
    插件:
    opencv3.4.3、numpy1.14.6、keras2.2.4、tensorflow cpu1.11.0和sklearn0.20.0。
    这些插件的具体安装步骤,网上都可以找到具体的教程,这里便不再赘述。

    2.3 系统功能需求
    通过电脑本地的摄像头,拍摄实时人脸照片,与训练好的卷积神经网络模型中存放的人脸信息进行比对,同时在桌面上显示识别出的人脸标签值。

    3.关键步骤
    3.1 人脸数据的获取
    利用opencv来调用摄像头,获取实时视频流,通过opencv自带的人脸分类器haar来识别并标注出人脸区域,将当前帧保存为图片存到指定的文件夹下面。
    代码如下:

    #catchpicture.py
    import cv2  
    cap = cv2.VideoCapture(0)
    num = 0    
    while cap.isOpened():
        ret, frame = cap.read() #读取一帧数据
        gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)#将图片转化成灰度
        face_cascade = cv2.CascadeClassifier("haarcascade_frontalface_alt2.xml")
        face_cascade.load('F:\python35\haarcascade_frontalface_alt2.xml')#一定要告诉编译器文件所在的具体位置
        '''此文件是opencv的haar人脸特征分类器'''
        faces = face_cascade.detectMultiScale(gray, 1.3, 5)
        if len(faces) > 0:
            for (x,y,w,h) in faces:
             #将当前帧保存为图片
             img_name = '%s/%d.jpg'%("F:\data\me", num)                
             image = frame[y - 10: y + h + 10, x - 10: x + w + 10]
             cv2.imwrite(img_name, image)                                                     
             num += 1                
             if num > 1000:   #如果超过指定最大保存数量退出循环
               break
             cv2.rectangle(frame,(x,y),(x+w,y+h),(0,0,255),2)
             #显示当前捕捉到了多少人脸图片
             font = cv2.FONT_HERSHEY_SIMPLEX
             cv2.putText(frame,'num:%d'%(num),(x + 30,y + 30),font,1,(255,0,255),4)
        #超过指定最大保存数量结束程序
        if num > 1000 :break             
        #显示图像并等待10毫秒按键输入,输入‘q’退出程序
        cv2.imshow("capture", frame)
        if cv2.waitKey(10) & 0xFF == ord('q'):
          break   
        #释放摄像头并销毁所有窗口
    cap.release()
    cv2.destroyAllWindows() 
    
    

    3.2 图片预处理
    第一步获取到的人脸图片集中的每一张图片大小都不一样,为了后续操作的方便需要将,捕获到的人脸照片压缩为像素值为6464的并灰度化处理。所以图片预处理一共分为两部先是压缩成比例6464的,第一一步定义了一个resize_image()函数作用是先将图片补成正方形之后压缩成像素值为64*64,第二步利用opencv自带的cvtColor()函数将图片灰度化。
    代码如下:

    #picturepraction.py
    import os
    import cv2
    IMAGE_SIZE = 64
    def resize_image(image, height=IMAGE_SIZE, width=IMAGE_SIZE):
        top, bottom, left, right = (0, 0, 0, 0)
        h, w, _ = image.shape
        longest_edge = max(h, w)
        if h < longest_edge:
            dh = longest_edge - h
            top = dh // 2
            bottom = dh - top
        elif w < longest_edge:
            dw = longest_edge - w
            left = dw // 2
            righ = dw - left
        else:
            pass
        BLACK = [0, 0, 0]
        constant = cv2.copyMakeBorder(image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=BLACK)
        return cv2.resize(constant, (height, width))
    if __name__ == '__main__':
        path_name = "F:\data\me"
        i = 0
        for dir_item in os.listdir(path_name):
            full_path = os.path.abspath(os.path.join(path_name, dir_item))
            i += 1
            image = cv2.imread(full_path)       #读取出照片
            image = resize_image(image)         #将图片大小转为64*64
            image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)     #将图片转为灰度图
            cv2.imwrite(full_path,image)
    

    3.3 图片加载到内存
    将图片预处理之后的图片集,以多维数组的形式,加载到内存,并且要为每一类样本数据标注标签值。
    代码如下:

    #loaddata.py
    import os
    import sys
    import numpy as np
    import cv2
    #读取图片数据并与标签绑定
    def read_path(images, labels, path_name, label):
        for dir_item in os.listdir(path_name):
    
            full_path = os.path.abspath(os.path.join(path_name, dir_item))
            image = cv2.imread(full_path)
            images.append(image)
            labels.append(label)
    def loaddata(parent_dir):
        images = []
        labels = []
        read_path(images, labels, parent_dir+"me", 0)
        read_path(images, labels, parent_dir+"chen", 1)
        read_path(images, labels, parent_dir+"jia", 2)
        read_path(images, labels, parent_dir+"other", 3)
        images = np.array(images)
        labels = np.array(labels)
        return images,labels
    if __name__ == '__main__':
            images, labels = loaddata("F:/example/")
    

    3.4 搭建卷积神经网络
    搭建卷积神经网络前,需要先完成六个步骤:第一步需要先把数据加载到内存即将图片预处理之后的图片集,以多维数组的形式,加载到内存,并且要为每一类样本数据标注标签值;第二步划分数据集即按照交叉验证的原则划分数据集、验证集、训练集。交叉验证是机器学习中的一种常用来精度测试的方法,要先拿出大部分数据用来模型训练,少部分数据用来模型验证,验证结果与真实值计算出差平方和,以上工作重复进行,直至差平方和为0,模型训练完毕,可以交付使用。而在我自己的模型中,导入了sklearn库的交叉验证模块,利用函数train_test_split()函数来划分训练集、验证集和测试集。train_test_split()函数中的test_size参数用来指定划分的比例,另一个参数random_state是用来指定一个随机数种子,从全部数据中随机选取数据建立自己的数据集、验证集和训练集;第三步要改变图片的维度即我们小组用到了keras库,这个库是建立在tensorflow或者theano基础上的,所以keras库的后端系统可以是tensorflow也可以是theano。但是tensorflow和theano定义的图像数据输入到CNN网络的维度顺序是不一样的,tensorflow的维度顺序为行数(rows)、列数(cols)、通道数(颜色通道,channels);theano则是通道数、行数、列数。所以需要调用函数image_dim_ordering()来确定后端系统的类型(我们用‘th’来代表theano用‘tf’来代表tensorflow),最后用numpy库提供的reshape()函数来调整维度;第四步采用one-hot编码即因为我的卷积神经网络采用了categorical_crossentropy作为我们的损失函数,而这个函数要求标签集必须采用one-hot编码。所谓的one-hot编码,我理解就是状态位编码,one-hot采用状态寄存器编码,每一个状态值对应一个寄存器,且任意时刻,只有一位是有效的。假设,我们类别有两种分别为0和1,0代表我,1代表others,如果标签为0,编码为[1 0]表示的是第一位有效,如果标签为1,编码为[0 1]表示的是第二位有效。这样做的原因是为了方便CNN操作;第五步归一化图像数据即数据集先让它浮点化之后又归一化的目的是提升网络收敛速度,减少模型的训练实践,同时适应值域在(0,1)之间的激活函数,增大区分度。归一化有一个特别重要的原因是确保特征值权重一致;第六步确定优化器即最开始使用的是SGD优化器,SGD优化器随机梯度下降算法参数更新针对每一个样本集x(i) 和y(i) 。批量梯度下降算法在大数据量时会产生大量的冗余计算,比如:每次针对相似样本都会重新计算。这种情况时,SGD算法每次则只更新一次。因此SGD算法通过更快,并且适合online。但是SGD以高方差进行快速更新,这会导致目标函数出现严重抖动的情况。一方面,正是因为计算的抖动可以让梯度计算跳出局部最优,最终到达一个更好的最优点;另一方面,SGD算法也会因此产生过调。之后改进使用了Adam,Adam算法是另一种自适应参数更新算法。和Adadelta、RMSProp算法一样,对历史平方梯度v(t)乘上一个衰减因子,adam算法还存储了一个历史梯度m(t)。mt和vt分别是梯度一阶矩(均值)和二阶矩(方差)。当mt和vt初始化为0向量时,adam的作者发现他们都偏向于0,尤其是在初始化的时候和衰减率很小的时候(例如,beta1和beta2趋近于1时)。通过计算偏差校正的一阶矩和二阶矩估计来抵消偏差。
    之后我构建了一个卷积神经网络,这个卷积神经网络一共16层:3层卷积层、2层池化层、3层Dropout层、1层flatten层、2层全连接层和1层分类层。结构如下图:
    在这里插入图片描述代码如下:

    #face_CNN_keras.py
    import random
    
    import numpy as np
    from sklearn.model_selection import train_test_split
    from keras.preprocessing.image import ImageDataGenerator
    from keras.models import Sequential
    from keras.layers import Dense, Dropout, Activation, Flatten
    from keras.layers import Convolution2D, MaxPooling2D
    from keras.optimizers import SGD
    from keras.utils import np_utils
    from keras.models import load_model
    from keras import backend as K
    #ADAM优化器
    from keras.optimizers import Adam
    
    from loaddata import loaddata
    from picturepraction import resize_image, IMAGE_SIZE
    
    class Dataset:
        def __int__(self):
    
            # 训练数据
            self.train_images = None
            self.train_labels = None
    
            # 验证数据
            self.valid_images = None
            self.valid_labels = None
    
            # 测试数据
            self.test_images = None
            self.test_labels = None
    
            # 当前库采用的维度顺序
            self.input_shape = None
    
        # 加载数据并预处理
        def load(self, img_rows=IMAGE_SIZE, img_cols=IMAGE_SIZE, img_channels=3, nb_classes=4):
            images, labels = loaddata("F:/example/")
    
            # 随机划分训练集、验证集(利用交叉验证原则)
            train_images, valid_images, train_labels, valid_labels = train_test_split(images, labels, test_size=0.3,random_state=random.randint(0, 100))
            # 划分测试集
            _, test_images, _, test_labels = train_test_split(images, labels, test_size=0.5,
                                                              random_state=random.randint(0, 100))
    
            # 判断后端系统类型来调整数组维度
            if (K.image_dim_ordering() == 'th'):#如果后端系统是theano,维度顺序为通道数、行、列
                train_images = train_images.reshape(train_images.shape[0], img_channels, img_rows, img_cols)
                valid_images = valid_images.reshape(valid_images.shape[0], img_channels, img_rows, img_cols)
                test_images = test_images.reshape(test_images.shape[0], img_channels, img_rows, img_cols)
                self.input_shape = (img_channels, img_rows, img_cols)
            else:                              #如果后端系统是tensorflow,维度顺序为行、列、通道数
                train_images = train_images.reshape(train_images.shape[0], img_rows, img_cols, img_channels)
                valid_images = valid_images.reshape(valid_images.shape[0], img_rows, img_cols, img_channels)
                test_images = test_images.reshape(test_images.shape[0], img_rows, img_cols, img_channels)
                self.input_shape = (img_rows, img_cols, img_channels)
    
            # 输出训练集、验证集、测试集的数量
            print(train_images.shape[0], 'train samples')
            print(valid_images.shape[0], 'valid_samples')
            print(test_images.shape[0], 'test_samples')
    
            #模型使用categorical_crossentropy作为损失函数
            #因此需要根据图像集数量将图像集标签进行one-hot编码使其向量化
            train_labels = np_utils.to_categorical(train_labels, nb_classes)
            valid_labels = np_utils.to_categorical(valid_labels, nb_classes)
            test_labels = np_utils.to_categorical(test_labels, nb_classes)
    
            #像素数据浮点化和归一化
            train_images = train_images.astype('float32')
            valid_images = valid_images.astype('float32')
            test_images = test_images.astype('float32')
            train_images /= 255
            valid_images /= 255
            test_images /= 255
    
            self.train_images = train_images
            self.valid_images = valid_images
            self.test_images = test_images
            self.train_labels = train_labels
            self.valid_labels = valid_labels
            self.test_labels = test_labels
    
    
    
    
    class Model:
        def __init__(self):
            self.model = None
    
        def build_model(self, dataset, nb_classes=4):
            self.model = Sequential()
    
            #第一层卷积
            #保留边界像素
            self.model.add(Convolution2D(32, 3, 3, border_mode='same', input_shape=dataset.input_shape, activation='relu'))#卷积层和激活函数
            ##输出(32, 64, 64)
    
            self.model.add(MaxPooling2D(pool_size=(2, 2)))                                                       #池化层
            #输出(32, 32, 32)
    
            self.model.add(Dropout(0.5))
    
            #第二层卷积
            #保留边界像素
            self.model.add(Convolution2D(32, 3, 3, border_mode='same', activation='relu'))#卷积层和激活函数
            ##输出(32, 32, 32)
    
          
            self.model.add(Dropout(0.5))
    
            
            #第三层卷积
            self.model.add(Convolution2D(64, 3, 3, border_mode='same', activation='relu'))
            #输出(64, 32, 32)
    
            self.model.add(MaxPooling2D(pool_size=(2, 2)))
            #输出(64, 16, 16)
    
            self.model.add(Dropout(0.5))
    
            self.model.add(Flatten())   #数据从二维转为一维
            #输出64*16*16 =  16384
    
            #二层全连接神经网络 512*人的个数
            self.model.add(Dense(512))
            self.model.add(Activation('relu'))
            self.model.add(Dropout(0.5))
            self.model.add(Dense(nb_classes))
    
            self.model.add(Activation('softmax'))
            self.model.summary()
    
        def train(self, dataset, batch_size=20, nb_epoch=10, data_augmentation=True):
            #sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
            
            #self.model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
            #Adam优化器
            adam = Adam(lr=0.001,beta_1=0.9,beta_2=0.999,epsilon=1e-8)
            self.model.compile(loss='categorical_crossentropy',optimizer=adam,metrics=['accuracy'])
            
            self.model.fit(dataset.train_images, dataset.train_labels, batch_size=batch_size, nb_epoch=nb_epoch
                           , validation_data=(dataset.valid_images, dataset.valid_labels), shuffle=True)
    
        MODEL_PATH = 'F:/example/number3.h5'
    
    
        def save_model(self, file_path=MODEL_PATH):
            self.model.save(file_path)
    
        def load_model(self, file_path=MODEL_PATH):
            self.model = load_model(file_path)
    
        def evaluate(self, dataset):
            score = self.model.evaluate(dataset.test_images, dataset.test_labels, verbose=1)
            print("%s: %.2f%%" % (self.model.metrics_names[1], score[1] * 100))
    
        def face_predict(self, image):
            if K.image_dim_ordering() == 'th' and image.shape != (1, 3, IMAGE_SIZE, IMAGE_SIZE):
                image = resize_image(image)
                image = image.reshape((1, 3, IMAGE_SIZE, IMAGE_SIZE))
            elif K.image_dim_ordering() == 'tf' and image.shape != (1, IMAGE_SIZE, IMAGE_SIZE, 3):
                image = resize_image(image)
                image = image.reshape((1, IMAGE_SIZE, IMAGE_SIZE, 3))
    
            image = image.astype('float32')
            image /= 255
    
            result = self.model.predict_proba(image)
    
            result = self.model.predict_classes(image)
    
            return result[0]
    
    if __name__ == '__main__':
        dataset = Dataset()
        dataset.load()
        model = Model()
        model.build_model(dataset)
        model.train(dataset)
        model.save_model(file_path="F:/example/number3.h5")
    

    3.5 识别人脸
    利用opencv获取实时人脸数据,调用训练好的卷积神经网络模型,来识别人脸。
    代码如下:

    #faceclassify.py
    import cv2
    import sys
    import gc
    from face_CNN_keras import Model
    import tensorflow as tf
    if __name__ == '__main__':
        model = Model()#加载模型
        model.load_model(file_path = 'F:/example/number1.h5')             
        color = (0, 255, 255)#框住人脸的矩形边框颜色 
        cap = cv2.VideoCapture(0)#捕获指定摄像头的实时视频流
        cascade_path = "F:\python35\haarcascade_frontalface_alt2.xml"#人脸识别分类器本地存储路径    
        #循环检测识别人脸
        while cap.isOpened():
            ret, frame = cap.read()   #读取一帧视频
            gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)#图像灰化,降低计算复杂度
            cascade = cv2.CascadeClassifier(cascade_path)#使用人脸识别分类器,读入分类器                
            faceRects = cascade.detectMultiScale(gray, scaleFactor = 1.2, minNeighbors = 3, minSize = (16, 16))#利用分类器识别出哪个区域为人脸        
            if len(faceRects) > 0:                 
                for faceRect in faceRects: 
                    x, y, w, h = faceRect
                    #截取脸部图像提交给模型识别这是谁
                    image = frame[y - 10: y + h + 10, x - 10: x + w + 10]
                    cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, thickness = 2)
                    faceID = model.face_predict(image)   
                    #如果是“我”
                    if faceID == 0:                                                        
                        cv2.putText(frame, "zhuang", (x+30, y+30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 255), 2)#在显示界面输出
                        print("zhuang")#在控制台输出
                    elif faceID == 1:
                        cv2.putText(frame, "chen", (x+30, y+30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 255), 2)#在显示界面输出
                        print("chen")#在控制台输出
                    elif faceID == 2:
                        cv2.putText(frame, "jia", (x+30, y+30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 255), 2)#在显示界面输出
                        print("jia")#在控制台输出
                    else:
                        cv2.putText(frame, "unknown",(x+30, y+30),cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 255), 2)#在显示界面输出
                        print("unknown")#在控制台输出                           
            cv2.imshow("classify me", frame)
            k = cv2.waitKey(10)#等待10毫秒看是否有按键输入
            if k & 0xFF == ord('q'):#按q退出
                break
        #释放摄像头并销毁所有窗口
        cap.release()
        cv2.destroyAllWindows()
    

    完成上述步骤就可以实现对人脸的识别,完整代码见如下链接:
    https://download.csdn.net/download/weixin_43545546/10867729

    展开全文
  • 当然本篇教程为(上)部分,讲一下利用python+opencv来实现人脸识别与追踪,明后天出(下)部分,用python来通过指纹对比实现人脸验证、人脸解锁。 Python黑科技:50行代码运用Python+OpenCV...
  • 指静脉识别技术特点及应用前景

    千次阅读 2019-02-15 15:22:35
    **指静脉识别技术特点及应用前景** 指静脉识别技术利用手指静脉血管的纹理进行身份验证,对人体无害,具有不易被盗取、伪造等特点。该识别技术可广泛应用于银行金融、政府国安、教育社保等领域的门禁系统,是比...
  • 基于python opencv人脸识别的员工考勤系统

    万次阅读 多人点赞 2018-09-22 17:16:10
    #@[TOC](基于python opencv人脸识别的员工考勤系统) WorkAttendanceSystem 一个基于opencv人脸识别的员工考勤系统 ##工程简介 写于2018/09/,python课设期间; ##项目结构 mainui.py是主界面,调用face_img_...
  • MATLAB--基于BP神经网络的手写数字识别

    千次阅读 多人点赞 2020-03-06 21:12:13
    手写数字识别技术作为图像处理和模式识别中的研究热点,在大规模数据统计(如行业年检、人口普查等)、票据识别、财务报表、邮件分拣等方面有着广泛的应用。目前手写数字识别技术也有很多种实现方法,这里介绍与本章...
  • 图像识别技术

    万次阅读 2018-11-10 10:26:01
    图像识别技术
  • 人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。通常采用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸。 自20世纪下半叶,计算机视觉技术逐渐地发展壮大。同时,...
  • 人脸识别技术及实现思路

    千次阅读 2019-04-29 13:51:11
    人脸识别技术概念和应用已经切入到大家的实际生活中,比如某些商店买东西可以刷脸支付了,某些会议可以刷脸入场了等等。 本文结合tracking.js和百度人脸识别api给大家介绍人脸识别技术的落地,那么普通的软件公司也...
  • 语音情感识别技术

    千次阅读 2020-09-28 15:40:24
    所有录制的语音样本均使用标准的麦克风,采用了8000Hz,8bit的单声道音频格式录制成标准PCM编码格式的WAV文件。 当然,对于我们来说建立由数千句语音样本组成的数据库是不现实的。因此,我们对每个情感语句都按三种...
  • OCR光学字符识别技术及其应用场景

    千次阅读 2018-07-02 13:47:31
    最方便的就是依靠目前比较火的图像识别技术OCR了,如果没有这个技术,我们只有老老实实一字一字地打印到word文档中去,这样就太繁琐了,而且直接变成打字员了,太浪费时间和精力了。本文以百度百科为基准进行了解:...
  • 发票OCR扫描识别技术

    千次阅读 2019-02-05 20:15:34
    通过利用发票OCR扫描识别技术,批量采集增值税发票等票据上的信息,并输出结构化的数据,与传统的人工录入数据相比,大大的减少了财务人员的工作量,提升了其工作效率。 发票自动识别/发票拍照识别/发票OCR自动...
  • OCR识别PDF文件

    千次阅读 2020-03-11 19:41:09
    1现有解析pdf的方法 使用org.apache.pdfbox读取pdf,只能读取pdf中的...pdf需要转换为图片,进行识别识别率高。 2.1 调用百度接口 优点:识别率高,识别速度快 缺点:按次收费 2.2 使用开源工具读取pdf文档 2.2.1...
  • 车牌识别技术及难点

    千次阅读 2018-03-20 19:15:37
    本文翻译wiki中Automatic number-plate recognition中车牌识别的步骤及难点。 车牌识别中主要涉及7个基础算法:车牌定位——负责发现和隔离图像中的车牌;车牌方向和大小——补偿车牌倾斜和调整至需要的分辨率;...
  • 射频识别(RFID)技术与ETC技术简介

    千次阅读 2019-09-02 14:50:39
    射频识别RFID技术 射频识别(RFID,Radio Frequency Identification)技术是指通过无线射频方式进行非接触双向数据通信,利用无线射频方式对记录媒体(电子标签或射频卡)进行读写,从而达到识别目标和数据交换的...
  • 在深度学习出现后,人脸识别技术才真正有了可用性。这是因为之前的机器学习技术中,难以从图片中取出合适的特征值。轮廓?颜色?眼睛?如此多的面孔,且随着年纪、光线、拍摄角度、气色、表情、化妆、佩饰挂件等等的...
  • OCR(光学字符识别技术,是通过图像处理技术手段,将图像(影像)上的文字、表格、图像转化为电子版的数据,通过计算机程序,快速实现数据信息的采集。个人征信报告中,存在大量的数据需要手工录入,使用OCR技术将...
  • 纯Python的代码资源,能够实现人脸采集、建库和识别 包括详细的运行步骤解说文档
  • [模式识别与智能计算:MATLAB技术实现(第2版)].杨淑莹 原书自带的文件为p文件,附件代码是.m文件的。
  • 经典的《Visual C++数字图像模式识别技术详解》,包含清晰完整的PDF电子书和随书光盘(内含详细源代码),由于文件太大,分三部分上传
  • OCR (Optical ...即,针对印刷体字符,采用光学的方式将纸质文档中的文字转换成为黑白点阵的图像文件,并通过识别软件将图像中的文字转换成文本格式,供文字处理软件进一步编辑加工的技术。如何除错或利用辅...
  • 常见的网络流量识别技术

    千次阅读 2019-11-21 23:43:33
    缺点:而随着网络技术的不断发展,这一方法的局限性也越来越明显。首先,IANA 并没有为所有的应用尤其是一些后来的新应用都定义通信端口号,这样网络端口号与应用之间不可能总是一一对应的[9];其次,某些常用协议在...
  • 语音识别行业技术和市场横向对比

    千次阅读 2019-03-28 10:45:53
    语音识别行业技术和市场横向对比 本内容全原创,因作者才疏学浅,偶有纰漏,望不吝指出。本内容由灵声讯音频-语音算法实验室整理创作,转载和使用请与“灵声讯”联系,联系方式:音频/识别/合成算法QQ群...
  • 基于OPENCV的手势识别技术

    万次阅读 多人点赞 2020-12-11 13:44:04
    基于OPENCV的手势识别技术   本篇博客主要介绍基于OPENCV的手势识别程序,代码为C++,OPENCV版本为OPENCV3会有较为详细的实现流程和源码,并且做到源码尽量简单,注释也自认为较为清晰,希望能帮助到大家。
  • 数据科学家分享:人工智能在图像识别技术上应用

    万次阅读 多人点赞 2018-12-03 09:28:59
    图像识别的过程总结如下: 信息的获取:是通过传感器,将光或声音等信息转化为电信息。信息可以是二维的图象如文字,图象等;可以是一维的波形如声波,心电图,脑电图;也可以是物理量与逻辑值。 预处理:包括A\D,...
  • 本篇文章中,旨在解决如何用Matlab编程实现QR二维码的生成与识别。编程环境是Matlab2012a,所用的开源库是ZXing,ZXing是一个开源Java类库用于解析多种格式的1D/2D条形码。目标是能够对QR编码、Data Matrix、UPC的1D...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 305,314
精华内容 122,125
关键字:

文件识别技术