精华内容
下载资源
问答
  • @Sklearn 数据集划分为训练集测试集方法,python实现 K折交叉验证:KFold ,GroupKFold,StratifiedKFold 1:将全部训练集S分成k个不相交子集,如S中训练样本个数为m,则每个子集含有m/k个训练样例,对应子集为{s1,s2,...

    @Sklearn 数据集划分为训练集测试集方法,python实现

    K折交叉验证:KFold ,GroupKFold,StratifiedKFold
    1:将全部训练集S分成k个不相交子集,如S中训练样本个数为m,则每个子集含有m/k个训练样例,对应的子集为{s1,s2,…,sk}
    2:每次从分好的子集里面,拿出一个作为测试集,其他k-1个作为训练集
    3:在k-1个训练集上得出训练的学习器模型
    4:把测试集运用到训练出的学习器模型,得出分类率
    5:计算k次求得的分类率平均值,作为该模型的真实分类率
    KFold

    from sklearn.model_selection import KFold
    x=np.array([[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]])
    y=np.array([1,2,3,4,5,6])
    kf=KFold(n_splits=2) #kf的分类类型:n_splits=2,random_state=None,shuffle=False,顺序未打乱,分成两个类别 Train_index:[3 4 5],Test_index:[0 1 2];与 Train_index:[0 1 2],Test_index[3 4 5]
    for train_index,test_index in kf.split(x):
        print("Train_index:",train_index,",Test_index:",test_index)
        x_train,x_test=x[train_index],x[test_index]
        y_train,y_test=y[train_index],y[test_index]
        print(x_train,x_test,y_train,y_test)
    

    GroupKFold

    from sklearn.model_selection import GroupKFold
    x=np.array([[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]])
    y=np.array([1,2,3,4,5,6])
    groups=np.array([1,2,3,4,5,6])
    group_kfold=GroupKFold(n_splits=2)
    group_kfold.get_n_splits(x,y,groups)
    print(group_kfold)
    for train_index,test_index in group_kfold.split(x,y,groups):
        print("Train_index:",train_index,",Test_index:",test_index)
        x_train,x_test=x[train_index],x[test_index]
        y_train,y_test=y[train_index],y[test_index]
        print(x_train,x_test,y_train,y_test)
    
    

    留一法:Leave One Group Out,LeavePGroupsOut, LeaveOneOut,LeavePOut
    留一法验证: 假设有N个样本,将每一个样本都作为测试集,其他N-1个样本作为训练样本,循环N次,得到N个分类器,N个测试结果,用这N个结果的平均值来衡量模型的性能。N样本数量不是很大,能快速出结果;KFold 中 k<<N .

    from sklearn.model_selection import LeaveOneOut
    x=np.array([[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]])
    y=np.array([1,2,3,4,5,6])
    loo=LeaveOneOut()
    loo.get_n_splits(x)
    print(loo)
    for train_index,test_index in loo.split(x):
    """ Train_index:[1 2 3 4 5],Test_index:[0] 依次循环取6次"""
        print("Train_index:",train_index,",Test_index:",test_index)
        x_train,x_test=x[train_index],x[test_index]
        y_train,y_test=y[train_index],y[test_index]
        print(x_train,x_test,y_train,y_test)
     
    

    留P法验证 (Leave-p-out):
    有N个样本,每次留p个作为测试集,用N-p样本作为训练集,共有C(p,N)种情况,p>1时,测试集会发生重叠

    from sklearn.model_selection import LeavePOut
    x=np.array([[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]])
    y=np.array([1,2,3,4,5,6])
    lpo=LeavePOut(p=3)#任留3个,C(3,6)=A(3,6)/A(3,3)=6*5*4/3*2*1=20
    print(lpo) 
    for train_index,test_index in lpo.split(x,y):
        print("Train_index:",train_index,",Test_index:",test_index)#
        x_train,x_test=x[train_index],x[test_index]
        y_train,y_test=y[train_index],y[test_index]
        print(x_train,x_test,y_train,y_test)
        #LeavePOut(p=2)  Train_index: [2 3 4 5] ,Test_index: [0 1]
        # Train_index: [1 3 4 5] ,Test_index: [0 2]  Test_index [0]重叠
    

    随机划分法:
    ShuffleSplit,StratifiedShuffleSplit
    ShuffleSplit 迭代器会产生指定数量的独立 train/test数据集划分,首先对样本全体随机打乱,然后再划分出train/test 对,使用随机数种子 random_state 来控制随机数序列发生器使得运算结果可重现。ShuffleSplit是KFold交叉验证的替代,可以更好的控制迭代次数和 train/test样本比例
    StratifiedShuffleSplit是ShuffleSplit 的一个变体,返回分层划分,在创建划分时必须保证每个划分中类的样本比例与整体数据集中的原始比例保持一致。
    ShuffleSplit

    from sklearn.model_selection import ShuffleSplit
    x=np.array([[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]])
    y=np.array([1,2,3,4,5,6])
    ss=ShuffleSplit(n_splits=3,test_size=1,random_state=0)#test_size 可以是个数,可以是比例
    ss.get_n_splits(x)
    for train_index,test_index in ss.split(x):
        print("Train_index:",train_index,",Test_index:",test_index)
        x_train,x_test=x[train_index],x[test_index]
        y_train,y_test=y[train_index],y[test_index]
        print(x_train,x_test,y_train,y_test)
    
    

    StratifiedShuffleSplit

    #StratifiedShuffleSplit把数据集打乱,分测试集、训练集、 保证训练集中各类类别所占比例一样,
    from sklearn.model_selection import  StratifiedShuffleSplit
    x=np.array([[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]])
    y=np.array([1,2,3,1,3,2])
    """y此处类别:多单一类别 报错ValueError: The least populated class in y has only 1 member, which is too few. The minimum number of groups for any class cannot be less than 2.
    """
    sss=StratifiedShuffleSplit(n_splits=3,test_size=0.5,random_state=0)
    sss.get_n_splits(x,y)
    print(sss)
    for train_index,test_index in sss.split(x,y):
        print("Train_index:",train_index,",Test_index:",test_index)
        x_train,x_test=x[train_index],x[test_index]
        y_train,y_test=y[train_index],y[test_index]
        print(x_train,x_test,y_train,y_test)
    
    展开全文
  • “哈哈,我们在训练我们模型并且希望得到更加准确结果,但基于实际情况(比如算力、时间),往往会按照一定策略来选择。本文介绍了几种常见的数据集划分与交叉验证的方法策略以及它们优缺点,...

    哈哈,我们在训练我们的模型并且希望得到更加准确的结果,但基于实际的情况(比如算力、时间),往往会按照一定策略来选择。本文介绍了几种常见的数据集划分与交叉验证的方法策略以及它们的优缺点,主要包括了Train-test-split、k-fold cross-validation、Leave One Out Cross-validation等,包括了代码层的实现与效果的比较,比较适合综合阅读一次。

    What is Model evaluation?

    Model evaluation is a set of procedures allowing you to pick the best possible stable model. It is an essential part of the model development process. It reveals the model’s behavior and its predictive power — indicates the balance between bias and variance on unseen data. As a starting point, split the given dataset into a train and test set. The model will learn to predict using the train set; in comparison, we will utilize the test set to assess the model’s performance.

    1. Train-test split

    2. k-fold cross-validation, K-Fold

    3. Leave One Out Cross-validation, LOOCV

    Methods used for splitting

    There are different strategies to split the data and make sure that it is done fairly taking into consideration the special characteristics the attributes could have. For example, you could have biased predictions if the original data has an imbalance between features, so for each case, a specific method might be recommended.

    The main methods that would be covered in this article are as the following:

    1. Train-test split

    2. k-fold cross-validation, K-Fold

    3. Leave One Out Cross-validation, LOOCV

    Train test split

    regular train-test split using sklearn — image by the author

    It is a way to split the dataset into two halves with a specific percentage. It is easy and quick. It might be appropriate to use when comparing different algorithms to decide which one you might consider.

    The train_test_split method within the sklearn. model_selection module is widely utilized to split the original dataset. A common split ratio is 80/20 or 70/30.

    You can split the training set into train and validation set with the same split ratio above — Stackoverflow discussion

    I did use stratify here because the original dataset has an imbalance in the target class — 500/268.

    # set the seed to keep code reducibility
    seed = 7# Apply the splitting
    x_train, x_test, y_train, y_test = train_test_split(
                  X, y, 
                  test_size = 0.33,     
                  stratify = y, #to keep class balance during splitting
                  random_state = seed 
    )
    model = LogisticRegression(max_iter=1000)
    model.fit(x_train, y_train)
    result = model.score(x_test, y_test)
    print(f'accuracy is: {result*100.0: 0.3f}')
    

    The resulted accuracy is: 76.378

    Pros:

    • Easy to implement

    • Quick execution, less computation time

    Cons:

    • Inaccurate accuracy if the split is not random

    • Might be a cause for underfitting if the original dataset has limited data points.

    K-fold cross-validation

    k-fold split procedure — image by the author

    To enhance the model accuracy and avoid the regular split of the data disadvantages, we need to add more generalization to the split process. In this strategy, we are repeating the train_test_split multiple times randomly. For each split or fold, the accuracy is calculated then the algorithm aggregate the accuracies calculated from each split and averages them. That way, all the dataset points are involving in measuring the model accuracy, which is better.

    For this example, we will use the RepeatedStratifiedKFold() within the sklearn library to assess the model since it repeats stratified folds n-times with a different random scheme in each iteration.

    from sklearn.model_selection import RepeatedStratifiedKFold
    from scipy.stats import sem
    import numpy as np
    import matplotlib.pyplot as pltcv_repeated = RepeatedStratifiedKFold(
        n_splits = 10,
        n_repeats = 16,
        random_state = seed
    )scores_r = cross_val_score(
         model,
         X, y,
         scoring = 'accuracy',
         cv = cv_repeated,
         n_jobs = -1
    )print('Accuracy: %.3f (%.3f)' % (scores_r.mean(), scores_r.std())))
    

    The resulted accuracy is: 0.775 (0.042)

    Accessing the model accuracies across each fold

    It is a good idea to investigate more on the distribution of the estimates for better judgments.

    # evaluate a model with a given number of repeats
    def asses_model(X, y, repeats):
      # define the cv folds 
      cv = RepeatedStratifiedKFold(
                 n_splits=10, 
                 n_repeats=repeats,  
                 random_state = seed)
      # create the model 
      model = LogisticRegression(max_iter=1000)
      # evaluate model 
      scores = cross_val_score(
                 model, 
                 X, y, 
                 scoring = 'accuracy', 
                 cv = cv, 
                 n_jobs=-1)
      return scores
    

    Then we will use the sem() method from the scipy library to calculate the standard error for each sample.

    repeats = range(1, 16)
    res = list()
    for rep in repeats:
      scores = asses_model(X, y, rep)
      print('Sample_%d mean=%.4f se=%.3f' % (rep, np.mean(scores), sem(scores)))
      res.append(scores)
    

    Let’s visualize the samples accuracies with a boxplot to better understand the results

    accuracy across splits — image by the author

    The orange line represents the median of the distribution of the accuracy while the green triangle indicates the arithmetic mean.

    As demonstrated in the graph above, the model accuracy stabilizes around 6 and 7, which is the number of folds to harness (0.775 (0.042) accuracy).

    Pros:

    • Higher accuracy

    • Handles class imbalances better.

    • less probability of underfitting

    cons:

    • More prone to overfitting, so we need to monitor the accuracies across folds.

    • High computational power and more execution time.

    Leave-One-Out Cross-validation

    leave one out cross-validation — image by the author

    In this strategy, The algorithm picks a data point for each training fold and excludes it while model training. The validation set hence used to calculate the model the accuracy; then repeat this process for each training fold. The final accuracy has been calculated after averaging each fold accuracy.

    In this strategy, we create n-1 models for n observations in the data.

    from sklearn.model_selection import LeaveOneOut
    loocv = LeaveOneOut()
    model = LogisticRegression(max_iter=1000)
    res = cross_val_score(model, X, y, cv = loocv)
    print('Accuracy: %.3f (%.3f)' % (np.mean(res), np.std(res)))
    

    The resulted accuracy is: 0.776 (0.417)

    Pros:

    • Very efficient if the dataset is limited — since we want to use as much training data as possible when fitting the model.

    • It has the best error estimate possible for a single new data point.

    cons:

    • Computationally expensive.

    • If the dataset is large in size.

    • If testing a lot of different parameter sets.

    The best way to test whether to use LOOCV or not is to run KFold-CV with a large k value — consider 25 or 50, and gauge how long it would take to train the model.

    Takeaways and Closing notes

    We explored the most common strategies to train the model in machine learning effectively. Each method has its pros and cons; however, there are some tips that we may consider when choosing one.

    1. K-fold cross-validation is a rule of thumb for comparing different algorithms’ performance — most k-fold is 3, 5, and 10.

    2. Start with the regular train test split to have a ground truth of a specific algorithm’s estimated performance.

    3. Leave one out cross-validation — LOOCV is a deterministic estimation, where there is no sampling on the training dataset. On the other hand, other strategies follow a stochastic estimate.

    4. LOOCV might be appropriate when you need an accurate estimate of the performance.

    展开全文
  • 用pandas划分数据集实现训练集和测试集,数据,情况下,子集,模块,情况用pandas划分数据集实现训练集和测试集易采站长站,站长之家为您整理了用pandas划分数据集实现训练集和测试集的相关内容。1、使用model_select子...

    用pandas划分数据集实现训练集和测试集,数据,情况下,子集,模块,情况

    用pandas划分数据集实现训练集和测试集

    易采站长站,站长之家为您整理了用pandas划分数据集实现训练集和测试集的相关内容。

    1、使用model_select子模块中的train_test_split函数进行划分

    数据:使用kaggle上Titanic数据集

    划分方法:随机划分# 导入pandas模块,sklearn中model_select模块import pandas as pdfrom sklearn.model_select import train_test_split# 读取数据data = pd.read_csv('.../titanic_dataset/train.csv')# 将特征划分到 X 中,标签划分到 Y 中x = data.iloc[:, 2:]y = data.loc['Survived']# 使用train_test_split函数划分数据集(训练集占75%,测试集占25%)

    x_train, x_test, y_train,y_test = train_test_split(x, y, test_size=0.25, ramdon_state=0)

    缺点:1、数据浪费严重,只对部分数据进行了验证

    2、容易过拟合

    2、k折交叉验证(kfold)

    原理:将数据集划分成n个不相交的子集,每次选择其中一个作为测试集,剩余n-1个子集作为            训练集,共生成 n 组数据

    使用方法:sklearn.model_select.KFold(n_splits=5,shuffle=False,random_state=0)

    参数说明:n_splits:数据集划分的份数,

    shuffle:每次划分前是否重新洗牌 ,False表示划分前不洗牌,每次划分结果一样,True表示划分前洗牌,每次划分结果不同

    random_state:随机种子数

    (1)shuffle=False 情况下数据划分情况# 不洗牌模式下数据划分情况import numpy as npfrom sklearn.model_selection import KFoldx = np.arange(46).reshape(23,2)kf = KFold(n_splits=5,shuffle=False)for train_index, test_index in kf.split(x): print(train_index,test_index)[ 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22] [0 1 2 3 4][ 0 1 2 3 4 10 11 12 13 14 15 16 17 18 19 20 21 22] [5 6 7 8 9][ 0 1 2 3 4 5 6 7 8 9 15 16 17 18 19 20 21 22] [10 11 12 13 14][ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 19 20 21 22] [15 16 17 18][ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18] [19 20 21 22]

    (2)shuffle=True 情况下数据划分情况import numpy as npfrom sklearn.model_selection import KFoldx = np.arange(46).reshape(23,2)kf = KFold(n_splits=5,shuffle=True)for train_index, test_index in kf.split(x): print(train_index,test_index)[ 0 3 4 5 6 7 8 9 10 11 12 14 15 16 17 19 20 21] [ 1 2 13 18 22][ 0 1 2 3 5 6 7 10 11 13 15 16 17 18 19 20 21 22] [ 4 8 9 12 14][ 0 1 2 3 4 7 8 9 10 12 13 14 15 16 17 18 19 22] [ 5 6 11 20 21][ 1 2 3 4 5 6 8 9 10 11 12 13 14 15 18 19 20 21 22] [ 0 7 16 17][ 0 1 2 4 5 6 7 8 9 11 12 13 14 16 17 18 20 21 22] [ 3 10 15 19]

    总结:从数据中可以看出shuffle=True情况下数据的划分是打乱的,而shuffle=False情况下数据的划分是有序的以上就是关于对用pandas划分数据集实现训练集和测试集的详细介绍。欢迎大家对用pandas划分数据集实现训练集和测试集内容提出宝贵意见

    展开全文
  • 数据:使用kaggle上Titanic数据集 划分方法:随机划分 # 导入pandas模块,sklearn中model_select模块 import pandas as pd from sklearn.model_select import train_test_split # 读取数据 data = pd.read_csv('....
  • 1、使用model_select子模块中train_test_split函数进行划分数据:使用kaggle上Titanic数据集划分方法:随机划分# 导入pandas模块,sklearn中model_select模块import pandas as pdfrom sklearn.model_select import...

    1、使用model_select子模块中的train_test_split函数进行划分

    数据:使用kaggle上Titanic数据集

    划分方法:随机划分

    # 导入pandas模块,sklearn中model_select模块

    import pandas as pd

    from sklearn.model_select import train_test_split

    # 读取数据

    data = pd.read_csv('.../titanic_dataset/train.csv')

    # 将特征划分到 X 中,标签划分到 Y 中

    x = data.iloc[:, 2:]

    y = data.loc['Survived']

    # 使用train_test_split函数划分数据集(训练集占75%,测试集占25%)

    x_train, x_test, y_train,y_test = train_test_split(x, y, test_size=0.25, ramdon_state=0)

    缺点:1、数据浪费严重,只对部分数据进行了验证

    2、容易过拟合

    2、k折交叉验证(kfold)

    原理:将数据集划分成n个不相交的子集,每次选择其中一个作为测试集,剩余n-1个子集作为            训练集,共生成 n 组数据

    使用方法:sklearn.model_select.KFold(n_splits=5,shuffle=False,random_state=0)

    参数说明:n_splits:数据集划分的份数,

    shuffle:每次划分前是否重新洗牌 ,False表示划分前不洗牌,每次划分结果一样,True表示划分前洗牌,每次划分结果不同

    random_state:随机种子数

    (1)shuffle=False 情况下数据划分情况

    # 不洗牌模式下数据划分情况

    import numpy as np

    from sklearn.model_selection import KFold

    x = np.arange(46).reshape(23,2)

    kf = KFold(n_splits=5,shuffle=False)

    for train_index, test_index in kf.split(x):

    print(train_index,test_index)

    [ 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22] [0 1 2 3 4]

    [ 0 1 2 3 4 10 11 12 13 14 15 16 17 18 19 20 21 22] [5 6 7 8 9]

    [ 0 1 2 3 4 5 6 7 8 9 15 16 17 18 19 20 21 22] [10 11 12 13 14]

    [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 19 20 21 22] [15 16 17 18]

    [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18] [19 20 21 22]

    (2)shuffle=True 情况下数据划分情况

    import numpy as np

    from sklearn.model_selection import KFold

    x = np.arange(46).reshape(23,2)

    kf = KFold(n_splits=5,shuffle=True)

    for train_index, test_index in kf.split(x):

    print(train_index,test_index)

    [ 0 3 4 5 6 7 8 9 10 11 12 14 15 16 17 19 20 21] [ 1 2 13 18 22]

    [ 0 1 2 3 5 6 7 10 11 13 15 16 17 18 19 20 21 22] [ 4 8 9 12 14]

    [ 0 1 2 3 4 7 8 9 10 12 13 14 15 16 17 18 19 22] [ 5 6 11 20 21]

    [ 1 2 3 4 5 6 8 9 10 11 12 13 14 15 18 19 20 21 22] [ 0 7 16 17]

    [ 0 1 2 4 5 6 7 8 9 11 12 13 14 16 17 18 20 21 22] [ 3 10 15 19]

    总结:从数据中可以看出shuffle=True情况下数据的划分是打乱的,而shuffle=False情况下数据的划分是有序的

    到此这篇关于用pandas划分数据集实现训练集和测试集的文章就介绍到这了,更多相关pandas划分数据集 内容请搜索python博客以前的文章或继续浏览下面的相关文章希望大家以后多多支持python博客!

    展开全文
  • Sklearn中的数据划分方法(划分训练与测试) 1. K折交叉验证: 代码实现 KFold(n_splits=2) #KFold import numpy as np from sklearn.model_selection import KFold X=np.array([[1,2],[3,4],[5,6],[7,8],[9,10...
  • 1、使用model_select子模块中train_test_split函数进行划分数据:使用kaggle上Titanic数据集划分方法:随机划分# 导入pandas模块,sklearn中model_select模块import pandas as pdfrom sklearn.model_select import...
  • 1.留出法(hold-out)直接将数据集D划分为两个互斥集合,训练集S、测试集T,用S训练模型,用T来评估其测试误差。需要注意划分时尽可能保持数据分布一致性,保持样本类别比例相似。可采用分层采样方式。在使用...
  • ML之FE:特征工程中常用五大数据集划分方法(留1法/留p法、随机划分法、K折交叉验证法、自定义分割法、时间序列数据分割法)讲解及其代码实现 目录 特征工程中常用的数据集划分方法 1、留一法、留P法 T1、留...
  • K折数据集验证是机器学习中的一个常用的方法,原理简单的说就是把一个大的数据集切成k个小部分,然后每次迭代使用其中的1个小部分作为测试集,这样可以实现一个数据集的多次使用,解决机器学习中的样本问题。...
  • 在机器学习中,我们拿到一堆数据,在对模型进行训练之前,...普通划分:将数据集划分为训练集和测试集,具体python代码实现如下: from sklearn.model_selection import train_test_split from sklearn import svm
  • 通过学习得到一个学习器,我们要知道它泛化性能,即面对新数据,算法产生结果好不好。...这里介绍3种划分方法。 1、留出法 数据集D划分为训练集S和测试集T,D=S并T,S交T=空集。如1000个数据集,500个正样...
  • 简单的对数据集划分为训练集...很简单,第一步将数据集的序列取出,这里你其实可以直接生成一个0到数据集,长度的list,python就是用range()方法,比如x = [i for i in range(10)],x=[0 1 行序号的行取出2 3 4 5 6 7 8
  • 目录anaconda下安装opencv和dlib人脸图像特征提取的方法HoGDlib卷积神经网络笑脸数据集的划分、训练、测试SVMCNNF1-scoreROC摄像头笑脸识别判断 anaconda下安装opencv和dlib 查看下面的安装教程(非常便捷): ...
  • 从训练数据划分,到分类器性能评价均没有使用scikit-learn中的方法代码具体代码:https://github.com/kai123wen/MachineLearningAlgClass/tree/master/ID3鸢尾花数据下载地址:...直接看就好tree.pyimport coll...
  • 随机梯度方法和梯度上升方法实现鸢尾花数据集分类 将鸢尾花数据集划分为测试集和训练集,利用花萼长度、花萼宽度、花瓣长度、花瓣宽度四个特征识别鸢尾花种类 from numpy import * from sklearn.datasets ...
  • 本文是对 CVPR 2019 论文「Class-Balanced Loss Based on Effective Number of Samples」一篇点评,全文如下:这篇论文针对最常用损耗(softmax 交叉熵、focal ...本文的实现方法(PyTorch) github 地址为:htt...
  • 交叉验证如果给定样本数据充足,进行模型选择一种简单方法是随机地将数据集切分为3部分,分为训练集、验证集和测试集。训练集:训练模型验证集:模型选择测试集:最终对模型评估在学习到不同复杂度模型中,...
  • 机器学习特征选择、开发流程、数据集划分、转换器与估计器机器学习特征工程特征选择(降维)特征选择原因特征选择定义特征选择三大方法过滤式:VarianceThresholdPCA(主成分分析)PCA目的PCA定义PCA代码实现...
  • 划分数据实现最优神经网络训练MATLAB 本主题介绍典型多层网络工作流一部分。有关详细信息和其他步骤,请参阅多层浅层神经网络与反向传播训练。link 在训练多层网络时,通常做法是首先将数据分成三个子集。第一...
  • 决策树 BP神经网络(BPNN) SVM实现iris鸢尾花数据集的分类 决策树 实现流程(详见代码):: 1. 连续值处理 iris数据集是连续数据, 因为连续属性的可取值数目不再有限,因此不能像处理离散属性枚举离散属性取值来对结点...
  • 转载自:...​先说一个sklearn中很好用功能:对一个数据集进行随机划分,分别作为训练集和测试集。使用是cross_validation.train_test_split函数,使用示例如下:​1实现CV最简单的方法是...
  • 传统的交叉验证 在做机器学习时,交叉验证时验证模型稳定性的重要手段。大部分交叉验证仅分为训练集和测试集,每次循环一次,直至覆盖所有数据...实现训练集,测试集,和验证集的一个方法时在训练数据前分割数据,取...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 553
精华内容 221
关键字:

数据集的划分方法实现