精华内容
下载资源
问答
  • 样本总体方差有偏估计和无偏估计的理解

    千次阅读 多人点赞 2019-06-22 15:47:34
    学习概统的时候大家应该都知道有偏估计是 如果把x的均值换成确定的值u那么就是无偏的,原因后面说明 无偏估计是 是关于方差的无偏估计,那么为什么一个是/(n-1),为什么一个是/n呢 首先我们清楚几个公式, ...

     

    学习概统的时候大家应该都知道有偏估计是

    如果把x的均值换成确定的值u那么就是无偏的,原因后面说明

    无偏估计是

    是关于方差的无偏估计,那么为什么一个是/(n-1),为什么一个是/n呢

    首先我们清楚几个公式,

    D(x)=

    E(x)=

    有一个重要的假设,就是随机选取的样本X_{i}与总体样本同分布,它的意思就是说他们的统计特性是完全一样的,即他们的期望值一样,他们的方差值也是一样的:

    E(X_{i})=E(X)=\mu

    D(X_{i})=D(X)=\sigma ^{2}

    由于每个样本的选取是随机的,因此可以假设X_{1},X_{2},...,X_{n}不相关(意味着协方差为0,即Cov(X_{i},X{j})=0,i\neq j),根据方差性质就有:

    D(X_{i}+X_{j})=D(X_{i})+D(X_{j})+2Cov(X_{i},X_{j})=D(X_{i})+D(X_{j})=2\sigma ^{2}

    方差的基本公式:

    D(X)=E(X^2)-E^2(X)

    这个公式比较重要,注意我们估计的均值的方差不为0,说明他本身不是一个确定的值,是有一定的波动范围的,并且由于我们不能完全估计所有的样本来得到均值,选取的是一部分的样本,所以方差是比总的方差小。

    无偏估计的一个定义是:估计量的数学期望等于被估计参数的真实值,则称此此估计量为被估计参数的无偏估计,即具有无偏性,是一种用于评价估计量优良性的准则。无偏估计的意义是:在多次重复下,它们的平均数接近所估计的参数真值。

    我们可以通过下面的对方差求均值来看她的均值

    E(S^{2})=E(\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2})=\frac{1}{n-1}E(\sum_{i=1}^{n}X_{i}^2-n \bar{X}^{2})

    =\frac{1}{n-1}(\sum_{i=1}^{n}E(X_{i}^2)-nE(\bar{X}^{2}) )

    =\frac{1}{n-1}(\sum_{i=1}^{n}[D(X_{i})+E^2(X_{i})]-n[D(\bar{X})+E^{2}(\bar{X}) ])

    =\frac{1}{n-1}(\sum_{i=1}^{n}[\sigma ^2+\mu^2]-n[\frac{1}{n}\sigma ^2+\mu^{2} ])=\sigma ^2

    这个推导的关键在于,样本的均值并不等于实际的均值,他有一定的波动,(如果是实际的均值u,那么结果就是无偏的),当用样本的均值代替实际的均值u的时候,实际的方差的均值也会受到样本均值的方差的影响,从而偏离实际方差,所以要修正就要/n-1。所以他称为无偏估计。

    展开全文
  • 偏估计

    2018-01-22 14:05:25
    比如我要对某个学校一个年级的上千个学生估计他们的平均水平(真实值,上帝才知道的数字),那么我决定抽样来计算。 我抽出一个10个人的样本,可以计算出一个均值。那么如果我下次重新抽样,抽到的10个人可能就不...

    比如我要对某个学校一个年级的上千个学生估计他们的平均水平(真实值,上帝才知道的数字),那么我决定抽样来计算。

    我抽出一个10个人的样本,可以计算出一个均值。那么如果我下次重新抽样,抽到的10个人可能就不一样了,那么这个从样本里面计算出来的均值可能就变了,对不对?

    因为这个均值是随着我抽样变化的,而我抽出哪10个人来计算这个数字是随机的,那么这个均值也是随机的。但是这个均值也会服从一个规律(一个分布),那就是如果我抽很多次样本,计算出很多个这样的均值,这么多均值们的平均数应该接近上帝才知道的真实平均水平。

    如果你能理解“样本均值”其实也是一个随机变量,那么就可以理解为这个随机变量的期望是真实值,所以无偏(这是无偏的定义);而它又是一个随机变量,只是估计而不精确地等于,所以是无偏估计量。

    现在甲市有一万名小学三年级学生,他们进行了一次统考,考试成绩服从1~100的均匀分布:00001号学生得1分,00002号学生得1.01分……10000号学生得100分。那么他们的平均分是多少?(1+1.01+1.02+....+100)/10000=50.5,这个值叫做总体平均数

    现在假定你是教委的一个基层人员,教委主任给你一个早上时间,让你估算一下全市学生的平均成绩,你怎么办?把全市一万名学生都问一遍再计算时间显然是来不及了,因此在有限的时间里,你找到了一个聪明的办法:给全市的78所小学每一所学校打了一个电话,让他们随机选取一名学生的成绩报上来,这样你就得到了78个学生的成绩,这78个学生就是你的样本

    你现在的任务很简单了,拿这78个学生的成绩相加并除以78,你就得到了样本平均数。你把这个数报告给教委主任,这个数就是你估算出来的全市平均成绩。

    这个样本平均数会不会等于总体平均数50.5?很显然这和你的“手气”有关——不过大多数情况下是不会相等的。

    那么问题来了:既然样本平均数不等于总体平均数(也就是说你报给教委主任的平均分和实际的平均分非常有可能是不一样的),要它还有用吗?有!因为样本平均数是总体平均数的无偏估计——也就是说只要你采用这种方法进行估算,估算的结果的期望值(你可以近似理解为很多次估算结果的平均数)既不会大于真实的平均数,也不会小于之。换句话说:你这种估算方法没有系统上的偏差,而产生误差的原因只有一个:随机因素(也就是你的手气好坏造成的)。

    展开全文
  • UE频偏估计

    2019-12-19 21:35:37
    :即频率偏差,引起的原因:a)晶振偏差导致;b)多普勒频移 Q2:危害 频过大,以晶振原因引起为例。发送端与接收端在射频调制解调时,会采用同样中心频点,如1.4G,700M,发送端将数据调制至该频点上,发送...

    利用导频频偏估计经典文章,务看!!:A technique for orthogonal frequency division multiplexing frequency offset

    Q1:定义

    频偏:即频率偏差,引起的原因:a)晶振偏差导致;b)多普勒频移

    整数倍频偏:即频率偏差时子载波f的整数倍周期,认为频域上相当于子载波错位了。但子载波仍然是正交的。

    小数倍频偏:即频率偏差小于子载波间隔f,子载波间不再正交,幅值相位都有损。

    频域上的频率偏移,对应时域的相位旋转。

    文章链接:http://www.doc88.com/p-2157718091003.html

    Q2:危害

    频偏过大,以晶振原因引起为例。发送端与接收端在射频调制解调时,会采用同样中心频点,如1.4G,700M,发送端将数据调制至该频点上,发送出去。接收端应该同样的频率去接收该数据,才能完成正确从射频获取数据。详细内容可参考通信原理上调制解调内容。如果接收端晶振有偏差,经锁相环倍频出频率与发送端不一致,无法正确拿到数据。

    Q3:频偏估计

     

    展开全文
  • 总体样本方差的无偏估计样本方差为什么除以n-1

    万次阅读 多人点赞 2018-08-01 15:02:22
    1)基本概念 我们先从最基本的一些概念入手。 如下图,脑子里要浮现出总体样本,还有一系列随机选取的样本。只要是样本,脑子里就要浮现出...这里一个重要的假设,就是随机选取的样本与总体样本同分布,它的意思...

    1)基本概念

    我们先从最基本的一些概念入手。

    如下图,脑子里要浮现出总体样本X,还有一系列随机选取的样本X_{1},X_{2},...,X_{n}。只要是样本,脑子里就要浮现出它的集合属性,它不是单个个体,而是一堆随机个体集合。样本X_{i}是总体样本中随机抽取一系列个体组成的集合,它是总体样本的一部分。

    应该把样本X_{i}和总体样本X一样进行抽象化理解,因此样本X_{i}也存在期望E(X_{i})和方差D(X_{i})

    这里有一个重要的假设,就是随机选取的样本X_{i}与总体样本同分布,它的意思就是说他们的统计特性是完全一样的,即他们的期望值一样,他们的方差值也是一样的:

    E(X_{i})=E(X)=\mu

    D(X_{i})=D(X)=\sigma ^{2}

    另外,由于每个样本的选取是随机的,因此可以假设X_{1},X_{2},...,X_{n}不相关(意味着协方差为0,即Cov(X_{i},X{j})=0,i\neq j),根据方差性质就有:

    D(X_{i}+X_{j})=D(X_{i})+D(X_{j})+2Cov(X_{i},X_{j})=D(X_{i})+D(X_{j})=2\sigma ^{2}

    另外,还需要知道方差另外一个性质:

    D(aX_{i})=a^{2}D(X_{i}),a为常数。

    还有一个,别忘了方差的基本公式:

    D(X)=E(X^2)-E^2(X)

    以上的公式都很容易百度得到,也非常容易理解。这里不赘述。

    2)无偏估计

    接下来,我们来理解下什么叫无偏估计。

    定义:设统计量\hat{\Theta}=\hat{\Theta}(X_{1},X_{2},...,X_{n})是总体中未知参数\Theta的估计量,若E(\hat{\Theta })=\Theta,则称\hat{\Theta }\Theta无偏估计量;否则称为有偏估计量。

    上面这个定义的意思就是说如果你拿到了一堆样本观测值,然后想通过这一堆观测值去估计某个统计量\Theta,一般就是想估计总体的期望或方差,如果你选择的方法所估计出来的统计量\hat{\Theta}的期望值与总体样本的统计量\Theta相等,那么我们称这种方法下的估计量是无偏估计,否则,就称这种方法下的估计量为有偏估计量。

    按照这么理解,那么有偏无偏是针对你选择估计的方法所说的,它并不是针对具体某一次估计出来的估计量结果。如果方法不对,即使你恰好在某一次计算出来一个值和总体样本统计量值相同,也并不代表你选的这个方法是无偏的。为什么呢?这是因为单次\hat{\Theta}值是和你选取的样本相关的,每次样本(更加严格的意义是某次样本快照)的值变化了,那么每次\hat{\Theta}的值就有可能跟着变化,你就需对这么多\hat{\Theta}求期望值来判断\hat{\Theta}的可信程度,如果一直重复这个试验,然后它的期望值与总体样本的统计量\Theta一样,那么称按照这种方法估计出来的统计量是无偏的。

    来一点题外话:

    但凡是想通过有限的信息去"估计"一个整体的"量",这种情形下谈这个"估计"的方法“有偏”\“无偏”才有意义。一般来说,这种情形下,这个被估计的"量"肯定是有碍于技术或者现实情况无法严格准确获取,比如因为成本过高这些"量"无法通过穷举或者其他办法获知。否则,如果被估计的"量"很容易获取,就不需要"估计"了,采用统计方法就可以了。

    如果你只是要进行简单的"统计"就能获得你想要的"量",那么没必要去关心所采用的方法是"有偏"还是“无偏";尤其是当整体信息很容易获取的情况下谈"有偏"还是“无偏"就毫无意义。比如要谈某个班级的身高的平均值,直接将身高总数除以班级人数就可以了,因为根本没必要去"估计",因为它仅仅是个"统计"问题;同样的,求一个班级的身高方差也不用任何纠结,求方差过程中除以班级人数就OK了,没有必要非常变态的研究是除以"班级总人数"还是"班级总人数-1",你要是去纠结这个,那就是吃饱了撑的了。但是,假如学校有几万人,你要统计的是整个学校所有的人的平均身高,这个时候一个一个进行统计是不现实的,反而需要使用的"估计"的方法。你采用的方法是随便抓100个人过来,将这100人总的身高数值除以100,估计出来的平均值就可以假设认为是整个学校的身高平均值,因为,你是用部分样本估计了总体样本的一个”量“,所以这个是"估计";此时,要是估计整个学校学生身高的方差,如果要想估计方法"无偏", 那就不是除以100了,而是除以99。当然,如果你是一位粗人,无所谓啥"有偏"还是“无偏"的束缚,那么你直接除以100也不会遭到嘲笑的,具体原因得继续往下看。总之,无法通过整体直接"统计"获得你想要的"量"时,你只能通过"部分样本"来做"整体样本""量"的估计时,谈估计方法的"有偏"还是"无偏"才是有意义的。

    3)样本均值的无偏估计

    接下来探讨一下下面的结论:

    定理1:样本均值\bar{X}是总体样本均值\mu的无偏估计。

    注意:这里样本均值\bar{X}不是指某个样本X_{i}的均值。

    这里需要看上面这张图,这里的均指的是特定某次样本集合(X_{1},X_{2},...,X_{n})的快照(上图红色框),显然这个快照也是一个样本,只不过这个样本它的样本大小固定为n,这与抽象的样本不一样(一般我们想象抽象的样本,比如X_{i},是无限大的)。

    明显,

    第一个样本(快照)均值是长这样子的:\frac{1}{n}(x_{11}+x_{21}+...+x_{i1}+...+x_{n1})=\hat{\mu _{1}}

    第二个样本(快照)均值是长这样子的:\frac{1}{n}(x_{12}+x_{22}+...+x_{i2}+...+x_{n2})=\hat{\mu _{2}}

    ....依此类推...

    x_{ij}表示第j次随机从从本X_{i}获取一个个体。

    试验一直进行下去,你就会有一些列估计出来的样本(快照)均值\hat{\mu _{1}},\hat{\mu _{2}}...\hat{\mu _{i}},\hat{\mu _{m}}...,实际上这也称为了一个样本,我们称为均值的样本,既然是样本,它就也有统计量。我们这里重点关注这个均值样本的期望。因为按照估计量的有偏无偏定义,如果E(\hat{\mu})=\mu,那么按照这个方法估计的均值\hat{\mu }就是无偏的。仔细思考,估计量有偏无偏它是针对你所选定的某个估计方法所形成的估计量样本空间来讨论的,讨论单次试验形成的估计量是没有太大意义的,只有针对形成的估计量样本空间才有意义。

    下面验证上面的方法形成的\hat{\mu}估计是无偏的。

    E(\hat{\mu})=\frac{1}{m}(\hat{\mu}_{1}+\hat{\mu}_{2}+...+\hat{\mu}_{m})

    =\frac{1}{n}(\frac{x_{11}+x_{12}+...+x_{1m}}{m}+\frac{x_{21}+x_{22}+...+x_{2m}}{m}+...+\frac{x_{n1}+x_{n2}+...+x_{nm}}{m})

    =\frac{1}{n}(E(X_{1})+E(X_{2})+...+E(X_{n}))

    =\frac{1}{n}(n*\mu )

    =\mu

    这么一来,就和教科书和网上的资料结果上都对上了,教科书上的公式在下面列出(\hat{\mu}符号用\bar{X}代替):

    E(\bar{X})=E(\frac{1}{n}\sum_{i=1}^{n}X_{i} )=\frac{1}{n}\sum_{i=1}^{n}E(X_{i})=\mu

    有了前面的分析,上面的教科书公式就很好理解了,注意,里头的X_{i}是原始样本,\bar{X}也是样本!!!  公式推导过程中,\bar{X}=\frac{1}{n}\sum_{i=1}^{n}X_{i}表示了原始的(X_{1},X_{2},...,X_{n})样本快照求和后再除以n形成的估计量样本,所以是可以对其再进行求期望的。

    讨论完估计量样本\bar{X}的均值,我们别忘了,既然它是个样本,那么可以计算\bar{X}的方差D(\bar X)(后面会用到):

    D(\bar X)=D(\frac{1}{n}\sum_{i=1}^{n}X_{i})

    =\frac{1}{n^2}D(\sum_{i=1}^{n}X_{i})

    =\frac{n\sigma ^2}{n^2}=\frac{\sigma ^2}{n}

    所以,样本(快照)均值的期望还是总体期望,但是,样本(快照)均值的方差却不是原来的方差了,它变成原来方差的1/n。这也容易理解,方差变小了是由于样本不是原来的样本X_{i}了,现在的样本是均值化后的新样本\bar {X},既然均值化了,那么比起原来的老样本X_{i},它的离散程度显然是应当变小的。

    4)样本方差的无偏估计

    定理2:样本方差S^{2}=\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}是总体样本方差\sigma ^{2}的无偏估计。

    也就是需要证明下面的结论:

    E(S^2)=E(\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^2)=\sigma ^2

    首先,脑子里要非常清楚,你截至目前,仅仅知道以下内容:

    E(X_{i})=E(X)=\mu

    D(X_{i})=D(X)=\sigma ^{2}

    Cov(X_{i}X{j})=0,i\neq j

    D(X_{i}+X_{j})=D(X_{i})+D(X_{j})=2\sigma ^{2},i\neq j

    D(X)=\sigma ^{2}=E(X^2)-E(X)^2=E(X^2)-\mu^2

    {\color{Red} E(\bar{X})=\mu}

    {\color{Red} D(\bar X)=\frac{\sigma ^2}{n}}

    其中前面5个来自1),最后2个来自3)。

    至于为什么是S^{2}=\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2},而不是S^{2}=\frac{1}{n}\sum_{n}^{i=1}(X_{i}-\bar{X})^{2},需要看下面的证明。

    E(S^{2})=E(\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2})=\frac{1}{n-1}E(\sum_{i=1}^{n}X_{i}^2-n \bar{X}^{2})

    =\frac{1}{n-1}(\sum_{i=1}^{n}E(X_{i}^2)-nE(\bar{X}^{2}) )

    =\frac{1}{n-1}(\sum_{i=1}^{n}[D(X_{i})+E^2(X_{i})]-n[D(\bar{X})+E^{2}(\bar{X}) ])

    =\frac{1}{n-1}(\sum_{i=1}^{n}[\sigma ^2+\mu^2]-n[\frac{1}{n}\sigma ^2+\mu^{2} ])=\sigma ^2

     

    那么为什么会导致这么个奇怪的结果,不是\frac{1}{n}而是\frac{1}{n-1}  ?

    仔细看上面的公式,如果D(\bar X)=0,那么就应该是\frac{1}{n}了,但是残酷的事实是D(\bar X)\neq 0(除非\sigma本身就等于0),导致\frac{1}{n-1}的罪魁祸首是D(\bar X)\neq 0。这就有告诉我们,D(\bar X)虽然将方差缩小了n倍,但是仍然还有残存,除非\sigma本身就等于0,才会有D(\bar X)=0,但这就意味着所有样本的个体处处等于\mu

    还有一种情况,如果你事先就知道\mu,那么S^{2}=\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2}就是\sigma ^{2}的无偏估计,这个时候就是\frac{1}{n}了。

    ---------------------------------------------------------------------------------------------------------------------------------------------

    有人还是问我为什么\mu(总体均值)已知,就可以用S^{2}=\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2}作为总体方差\sigma ^{2}的无偏估计,这个完全直接推导就可以证明。证明如下:

    E(S^{2})=E(\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2})

    =\frac{1}{n}\sum_{i=1}^{n}E[(X_{i}-\mu)^{2}]

    =\frac{1}{n}\sum_{i=1}^{n}[E(X_{i}^2)-2\mu E(X_{i})+\mu^{2}]

    =\frac{1}{n}\sum_{i=1}^{n}[E(X_{i}^2)-\mu^{2}]

    =\frac{1}{n}\sum_{i=1}^{n}[\sigma^2+\mu^2-\mu^{2}]

    =\sigma^{2}

    这个结论告诉我们,如果某个人很牛逼,他可以知道确切的总体样本均值\mu,那么就可以用S^{2}=\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2}来估计总体样本方差\sigma^{2},并且这个估计方法是保证你无偏的。

    而上面的S^{2}=\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2},请睁大眼睛看清楚,用的是\bar{X}。大部分的实际应用情况下,谁也不知道总体样本均值\mu(请问你知道全球人均身高么?鬼知道,地球上没有一个人可以知道!我想即使是外星爸爸也不知道!),但是我还是想在全球人都不知道的情况下去估计总体的身高方差,怎么办?现在有个办法,我们可以去抓一些人(部分样本)来做一个部分样本均值,那就用部分样本均值也就是\bar{X}来近似代表\mu(上面的定理1告诉我们这种方法对于估计\mu是无偏的),但是现在我想估计另外一个东东,那个东东叫总体样本方差\sigma^{2}。好了,我们可以也用\bar{X}代入S^{2}=\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}来估计总体样本方差\sigma^{2},并且如前面所分析的,这个估计方法针对\sigma^{2}是无偏的。(至于为啥是奇怪的\frac{1}{n-1},简单直接的原因是因为我不知道总体样本均值\mu,因为如果你能够知道\mu,我们就可以不需要用奇怪的\frac{1}{n-1},我们就可以用S^{2}=\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2}去估计总体样本方差)。

    总之,S^{2}=\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2}是理论上的总体样本方差。S^{2}=\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}是实际应用中采用的总体样本方差估计。

    ------------------------------------------------------------------------------------------------------------------------------------------------------------------

    统计学中还有一个"自由度"的概念。为什么是除以n-1还可以从自由度角度进行解释,具体可以参看下面百度的解释:

    自由度 (统计学的自由度)

    展开全文
  • 最佳线性无偏估计量(BLUE)

    万次阅读 2019-03-24 21:23:08
    这个问题提出的原因:MVU估计量即使存在可能也无法求出。比如:有些情况下,可能并不知道数据的PDF;或知道噪声的矩统计量。这些请况下,依赖于CRLB以及充分统计量就不可用,而且充分统计量的方法也无法保证得到的...
  • 偏估计衍生的困惑 一般的频偏估计方法 通常我们进行频偏估计就是选取不同时间到达的接收信号s1s_1s1​与s2s_2s2​,然后求取这两对信号的相位差,进而得到对应的频偏。 遇到的困惑 那么,这里接收到的信号如果是...
  • Unbiased Estimation 无偏估计与分母N-1

    千次阅读 2018-02-23 11:18:31
    何谓无偏估计 个人理解是,用某种方式对采样后的样本进行统计,比如求方差,这个方差会随着样本的不同而浮动,或者说通过样本得到的方差是个随机变量,多次采样后可以对样本的方差求期望,如果方差的期望值中不含变量则...
  • 偏估计【统计学-通俗解释】

    千次阅读 2016-01-24 09:27:39
    现在甲市一万名小学三年级学生,他们进行了一次统考,考试成绩服从1~100的均匀分布:00001号学生得1分,00002号学生得1.01分……10000号学生得100分。那么他们的平均分是多少?(1+1.01+1.02+....+100)/10000=50.5...
  • 样本方差的无偏估计与(n-1)的由来 一、无偏估计 所谓总体参数估计量的无偏性指的是,基于不同的样本,使用该估计量可算出多个估计值,但它们的平均值等于被估参数的真值。  在某些场合下,无...
  • 最大似然估计估计量的无

    千次阅读 2020-07-15 20:59:28
    极大似然估计---以高斯分布为例1.极大似然估计1.1似然函数1.2极大似然的目的1.3极大似然求解步骤 1.极大似然估计   极大似然估计方法(Maximum Likelihood Estimate,MLE)也称为最大概似估计或最大似然估计,是求...
  • 最简单的原因,是因为因为均值已经用了n个数的平均来做估计在求方差时,只有(n-1)个数和均值信息是不相关的。而你的第n个数已经可以由前(n-1)个数和均值 来唯一确定,实际上没有信息量。所以在计算方差时,只除以...
  • 的无偏估计量,进而对其进行修正。令 S 2 = n n − 1 S ~ 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 = σ 2 S^{2}=\frac{n}{n-1}\tilde{S}^{2}=\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}=\sigma^{2} S 2...
  • The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation ...现有的姿态估计方法都是在离散空间中利用像素来测量图像的大小。而利用离散的像素点作为度量,...
  • 简介:在概率统计中两种主要的方法:参数统计和非参数统计(或者说参数估计和非参数估计)。 其中,参数估计是概率统计的一种方法。主要在样本知道情况下,一般知道或假设样本服从某种概率分布,但不知到具体参数...
  • 极大似然估计详解

    万次阅读 多人点赞 2017-05-28 00:55:10
     以前多次接触过极大似然估计,但一直都不太明白到底什么原理,最近在看贝叶斯分类,对极大似然估计有了新的认识,总结如下: 贝叶斯决策  首先来看贝叶斯分类,我们都知道经典的贝叶斯公式:  其中:p(w):...
  • 贝叶斯估计、最大似然估计、最大后验概率估计

    千次阅读 多人点赞 2018-05-31 18:31:23
    贝叶斯估计、最大似然估计(MLE)、最大后验概率估计(MAP)这几个概念在机器学习和深度学习中经常碰到,读文章的时候还感觉挺明白,但独立思考时经常会傻傻分不清楚(��),因此希望通过本文对其进行总结。 2. ...
  • 绝对不会没有原因的,后来仔细一看: 1、惠阳区离危险的大亚湾核电站太近了。这个不是开玩笑的,一旦发生核泄露,那不是一个人致命的问题,可能会感染癌症,可能是得了莫名的慢性病,更可能的是自己没死,结果...
  • 区间估计

    千次阅读 2018-03-17 15:01:31
    实验目的 分别使用Excel、SPSS和Python软件做区间估计,探究哪种软件可以实现哪几种区间估计。二.实验内容参数的点估计给出了一个具体的数值,但其精度如何,点估计本身无法给出回答。在实际中,度量一个点估计的...
  • 广义估计方程GEE

    万次阅读 多人点赞 2019-03-08 21:52:54
    本文大部分内容来源于书本和论文等资料,...广义估计方程(generalized estimating equation, GEE)用于估计广义线性模型的参数(其中线性模型的结果之间可能存在未知的相关性)。于1986年由Liang和Zeger首次提出...
  • 参数估计

    千次阅读 2017-10-01 10:30:32
    关于参数估计 在很多的机器学习或数据挖掘的问题中,我们所面对的只有数据,但数据中潜在的概率密度函数是不知道的,其概率密度分布需要我们从数据中估计出来。想要确定数据对应的概率密度分布,就需要确定两个...
  • 关于参数估计

    千次阅读 2018-01-25 18:11:08
    虽然非计算机专业,但因为一些原因打算学习西瓜书,可由于长时间没有碰过概率统计的知识,有所遗忘。所以特意重新复习了一遍类似的知识,写在这里权当...参数估计的方法多种,各种估计方法得出的结果不一定相同,...
  • 头痛攻略

    千次阅读 2015-05-04 08:59:36
    先介绍一下我的头痛历史吧,我是从上初中后开始发现有偏头痛的,我的是预兆性头痛, 发作的时候,会先预兆,眼花,眼睛里像小光点小光条一样一直在高频率的闪烁, 像大大小小的盲点一样,小光点和小光条...
  • 极大似然估计

    千次阅读 2017-05-17 18:43:46
    极大似然估计
  • m估计及其推到公式

    千次阅读 2017-04-01 22:25:45
    为什么要m-估计? 当我们通过在全部事件的基础上观察某事件出现的比例来估计概率时,例如:P=nc/n.,其中nc为该类别中的样本数量,n为总样本数量。若n=5,当P=0.6时,则nc为3。...1、nc/n产生了一个有偏的过低估
  • 最大似然估计方法介绍

    千次阅读 2018-10-06 14:46:58
    然而面对繁琐的数学公式和复杂的推理过程,使我对概念非常模糊,也不懂到底是什么原理,但通过后来的慢慢学习使我对最大似然估计有了不一样的认识。 最大似然估计是使用概率模型、利用已知的样本结果,反推一件事情...
  • 极大似然估计详解,写的太好了!

    万次阅读 多人点赞 2018-08-18 15:42:08
     以前多次接触过极大似然估计,但一直都不太明白到底什么原理,最近在看贝叶斯分类,对极大似然估计有了新的认识,总结如下:   贝叶斯决策  首先来看贝叶斯分类,我们都知道经典的贝叶斯公式:    其中...
  • 功率谱估计(一)

    千次阅读 2019-07-24 00:12:42
    功率谱估计(一) 功率谱估计是一种对信号的功率谱密度进行估计的方法,用于表征信号的能量特征随频率的变化关系,是信号处理领域的常用分析方法。具体可以分为三类: 直接法:周期图法(psd)、pwelch 基于滤波器组...
  • 估计参数的方法:最大似然估计、贝叶斯推断

    千次阅读 多人点赞 2019-12-13 17:00:47
    假设3个数据点,产生这3个数据点的过程可以通过高斯分布表达。这三个点分别是9、9.5、11。我们如何计算高斯分布的参数μ 、σ的最大似然估计? 我们想要计算的是观测到所有数据的全概率,即所有观测到的数据点的...
  • 人体姿态估计综述

    千次阅读 多人点赞 2020-10-14 19:18:11
    一、人体姿态估计常用数据集 二、人体姿态估计常用评估指标 三、人体姿态估计论文 3.1 DeepPose: Human Pose Estimation via Deep Neural Networks(2014) 3.2 Convolutional Pose Machines(2016) 3.3Stacked ...
  • 1. 方差的有偏估计(biased estimation)How to understand that MLE of Variance is biased in a Gaussian distribution? 2. 均值的有偏估计(biased estimation)Is there an example where MLE produces a biased...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 22,792
精华内容 9,116
关键字:

有偏估计的原因