精华内容
下载资源
问答
  • 网络协议、socket、webSocket

    万次阅读 多人点赞 2019-07-31 19:20:28
    一、网络协议 网络协议为计算机网络中进行数据交换而建立的规则、标准或约定的集合。 1、OSI七层协议 OSI是一个开放性的通信系统互连参考模型,他是一个定义得非常好的协议规范。OSI模型有7层结构,从上到下分别...

    一、网络协议

    网络协议为计算机网络中进行数据交换而建立的规则、标准或约定的集合。

    1、OSI七层协议

    OSI是一个开放性的通信系统互连参考模型,他是一个定义得非常好的协议规范。OSI模型有7层结构,从上到下分别是 7 应用层 6 表示层 5 会话层 4 传输层 3 网络层 2 数据链路层 1 物理层。

    下面的图表显示不同的协议在最初OSI模型中的位置:

    7 应用层 例如HTTP、SMTP、SNMP、FTP、Telnet、SIP、SSH、NFS、RTSP、XMPP、Whois、ENRP

    6 表示层 例如XDR、ASN.1、SMB、AFP、NCP

    5 会话层 例如ASAP、TLS、SSH、ISO 8327 / CCITT X.225、RPC、NetBIOS、ASP、Winsock、BSD sockets

    4 传输层 例如TCP、UDP、RTP、SCTP、SPX、ATP、IL

    3 网络层 例如IP、ICMP、IGMP、IPX、BGP、OSPF、RIP、IGRP、EIGRP、ARP、RARP、 X.25

    2 数据链路层 例如以太网、令牌环、HDLC、帧中继、ISDN、ATM、IEEE 802.11、FDDI、PPP

    1 物理层 例如线路、无线电、光纤、信鸽

    2、TCP/IP协议组

    TCP/IP(Transmission Control Protocol/Internet Protocol)即传输控制协议/网间协议,定义了主机如何连入因特网及数据如何在它们之间传输的标准,从字面意思来看TCP/IP是TCP和IP协议的合称,但实际上TCP/IP协议是指因特网整个TCP/IP协议族。不同于ISO模型的七个分层,TCP/IP协议参考模型把所有的TCP/IP系列协议归类到四个抽象层中。

    应用层:TFTP,HTTP,SNMP,FTP,SMTP,DNS,Telnet 等等

    传输层:TCP,UDP

    网络层:IP,ICMP,OSPF,EIGRP,IGMP

    数据链路层:SLIP,CSLIP,PPP,MTU

    3、OSI七层和TCP/IP四层的关系

    3.1 OSI引入了服务、接口、协议、分层的概念,TCP/IP借鉴了OSI的这些概念建立TCP/IP模型。

    3.2 OSI先有模型,后有协议,先有标准,后进行实践;而TCP/IP则相反,先有协议和应用再提出了模型,且是参照的OSI模型。

    3.3 OSI是一种理论下的模型,而TCP/IP已被广泛使用,成为网络互联事实上的标准。

    3.4 OSI的应用层、表示层、会话层可以算到TCP/IP的应用层里。

    4、总结

    每一抽象层建立在低一层提供的服务上,并且为高一层提供服务。

    通过上述介绍,就可以搞清楚例如HTTP协议和TCP协议的区别之类的问题了。TPC协议是一种传输层协议,主要解决数据如何在网络中传输,而HTTP协议是应用层协议,主要解决如何包装数据。关于TCP和HTTP协议的关系,网上有一段比较容易理解的介绍:“我们在传输数据时,可以直接使用(传输层)TCP协议,但是那样的话,如果没有应用层,便无法识别数据内容,如果想要使传输的数据有意义,则必须使用到应用层协议,应用层协议有很多,比如HTTP、FTP、TELNET等,也可以自己定义应用层协议。WEB使用HTTP协议作为应用层协议,以封装HTTP文本信息,然后使用TCP作为传输层协议将它发到网络上。”

    TCP(Transmission Control Protocol,传输控制协议)是基于连接的协议,也就是说,在正式收发数据前,必须和对方建立可靠的连接。一个TCP连接必须要经过三次“对话”才能建立起来,其中的过程非常复杂,我们这里只做简单、形象的介绍,你只要做到能够理解这个过程即可。我们来看看这三次对话的简单过程:主机A向主机B发出连接请求数据包:“我想给你发数据,可以吗?”,这是第一次对话;主机B向主机A发送同意连接和要求同步(同步就是两台主机一个在发送,一个在接收,协调工作)的数据包:“可以,你什么时候发?”,这是第二次对话;主机A再发出一个数据包确认主机B的要求同步:“我现在就发,你接着吧!”,这是第三次对话。三次“对话”的目的是使数据包的发送和接收同步,经过三次“对话”之后,主机A才向主机B正式发送数据。

    UDP(User Data Protocol,用户数据报协议)是与TCP相对应的协议。它是面向非连接的协议,它不与对方建立连接,而是直接就把数据包发送过去!UDP适用于一次只传送少量数据、对可靠性要求不高的应用环境。比如,我们经常使用“ping”命令来测试两台主机之间TCP/IP通信是否正常,其实“ping”命令的原理就是向对方主机发送UDP数据包,然后对方主机确认收到数据包,如果数据包是否到达的消息及时反馈回来,那么网络就是通的。例如,在默认状态下,一次“ping”操作发送4个数据包(如图2所示)。大家可以看到,发送的数据包数量是4包,收到的也是4包(因为对方主机收到后会发回一个确认收到的数据包)。这充分说明了UDP协议是面向非连接的协议,没有建立连接的过程。正因为UDP协议没有连接的过程,所以它的通信效果高;但也正因为如此,它的可靠性不如TCP协议高。QQ登陆采用TCP协议和HTTP协议,你和好友之间发送消息时主要采用UDP协议发消息,因此有时会出现收不到消息的情况。

     

    二、socket

    我们经常把socket翻译为套接字,socket是在应用层和传输层之间的一个抽象层,它把TCP/IP层复杂的操作抽象为几个简单的接口供应用层调用以实现进程在网络中通信。socket是一组接口,在设计模式中,socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐藏在socket接口后面,对用户来说,一组简单的接口就是全部,让socket去组织数据,以符合指定的协议。

     

    三、webSocket

    1、简介

    WebSocket协议是基于TCP的一种新的网络协议,和http协议一样属于应用层协议,它实现了浏览器与服务器全双工(full-duplex)通信,也就是允许服务器主动发送信息给客户端。我在实现二维码扫描登录时曾使用过,有了它就不需要通过轮询或者建立长连接的方式来使客户端实时获取扫码状态,因为当扫码后,服务器端可以主动发送消息通知客户端。

    2、webSocket和http的区别

    http链接分为短链接和长链接,短链接是每次请求都要重新建立TCP链接,TCP又要三次握手才能建立,然后发送自己的信息。即每一个request对应一个response。长链接是在一定的期限内保持TCP连接不断开。客户端与服务器通信,必须要由客户端发起然后服务器返回结果。客户端是主动的,服务器是被动的。

    简单的说,WebSocket协议之前,双工通信是通过多个http链接轮询来实现的,这导致了效率低下。WebSocket解决了这个问题,他实现了多路复用,他是全双工通信。在webSocket协议下客服端和浏览器可以同时发送信息。建立了WebSocket之后服务器不必在浏览器发送request请求之后才能发送信息到浏览器。这时的服务器已有主动权想什么时候发就可以什么时候发送信息到客户端,而且信息当中不必再带有head的部分信息了。与http的长链接通信来比,这种方式不仅能降低服务器的压力,而且信息当中也减少了部分多余的信息。

    3、webSocket和socket的区别

    就像Java和JavaScript,并没有什么太大的关系,但又不能说完全没关系。可以这么说:

    • 命名方面,Socket是一个深入人心的概念,WebSocket借用了这一概念;
    • 使用方面,完全两个东西。

    总之,可以把WebSocket想象成HTTP,HTTP和Socket什么关系,WebSocket和Socket就是什么关系。

    最后附上一张有意思的图片:

     

    展开全文
  • 计算机网络协议——通信协议综述

    万次阅读 多人点赞 2019-09-03 23:20:58
    通信协议综述概述一、为什么学习网络协议1.1 常见的网络协议二、网络分层的真正含义2.1 为什么网络要分层?2.2 浏览点击请求过程2.3 揭秘层与层之间的关系三、ifconfig 命令行的由来3.1 ip地址3.2 无类型域间选路...

    这个专栏的计算机网络协议,我是在极客时间上学习 已经有三万多人购买的刘超老师趣谈网络协议专栏,讲的特别好,像看小说一样学习到了平时很枯燥的知识点,计算机网络的书籍太枯燥,感兴趣的同学可以去付费购买,绝对物超所值,本文就是对自己学习专栏的总结,评论区可以留下你的问题,咱们一起讨论!


    概述

    本文也是根据专栏里的板块,对通信网络协议做一个综述,共分为四节去进行介绍;

    • 为什么学习网络协议?
    • 网络协议分层的真正含义;
    • ifconfig命令行的背后;
    • DHCP和PXE:ip的由来;

    一、为什么学习网络协议

    协议

    协议的三要素是:语法、语义、顺序
    连通互联网世界,只教给一台电脑做什么是不够的,需要教会一大片机器做什么,这就是网络协议。只有通过网络协议,才能够使得一大片机器互相协作、共同完成一件事。

    1.1 常见的网络协议

    采用一个下单购物的场景,看看整个过程运用了哪些网络协议。


    首先,在浏览器中输入一个网址www.taobao.com URL,浏览器只知道名字是www.taobao.com,但是不知道具体的地点,所以不知道该如何访问;

    于是,打开地址簿去查找,可以使用一般的地址簿DNS去查找,也可以采用更为精确的地址簿查找协议HTTPDNS

    无论哪一种查找,最后都会得到一个地址:106.114.134.24(任意赋值),这个是IP地址,相当于你在互联网世界中的“门牌号”。知道了目标地址,浏览器开始打包他们的请求。对于普通的浏览请求,往往会采用HTTP协议;但是对于购物的请求,往往需要进行加密传输,因而使用HTTPS协议。无论是什么协议,里面都会声明“你要买什么和买多少”。HTTP头中包含了请求的信息:

    HTTP
    DNS、HTTP、HTTPS所在的层为应用层;


    经过封装以后,浏览器会将应用层的包交给下一层去完成,然后通过socket编程来实现。下一层是传输层,传输层有两种协议:

    • 无连接的协议UDP
    • 面向连接的协议TCP

    对于支付来说,往往采用TCP协议,所谓的面向连接就是,TCP会保证这个包能够到达目的地。如果不能到达,就会重新发送,直至到达;TCP协议中有两个端口,一个是浏览器监听的端口,一个是电商服务器监听的端口。操作系统往往通过端口来判断,它得到的包应该给哪个进程;
    TCP协议


    传输层封装完之后,浏览器会将包交给操作系统的网络层。网络层的协议是IP协议,在IP协议里面会有源IP地址,即浏览器的所在的机器的IP地址和目标IP地址,也就是电商所在的IP地址
    IP地址
    目标IP就是电商地址的门牌号,操作系统知道了目的地的门牌号,就要想着该如何找到目的地;

    首先先判断,目的地是在本地还是在外地;电商系统一般都在那遥远的地方,就比如你到国外要去海关一样,去外地就要经过网关。操作系统启动以后,就会被DHCP协议配置IP地址,以及默认的网关IP地址192.168.1.1;

    如果是本地通信就是靠吼——ARP协议,操作系统大吼一声,谁是192.168.1.1啊?网关会回答它,我就是。这个本地地址就是MAC地址,吼靠的就是ARP协议;

    IP包

    于是操作系统将IP包交给了下一层,也就是MAC层。网卡再将包发出去,包里面包含MAC地址,因此可以到达网关。网关收到包以后,会根据自己的知识,判断下一步该怎么走。网关往往是一个路由器,到了某个IP地址应该怎么走,这个叫作路由表

    路由器就像唐僧西天取经路过的一个个国家之间的城关,每个城关都连接着两个国家,每一个国家都相当于一个局域网,每个国家的内部都可以使用MAC地址进行通信;

    一旦跨越城关,就需要拿出IP头来,里面记录着IP源地址(东土大唐),欲前往西天拜佛取经(目的IP地址),路过宝地,借宿一晚,请问接下来该如何走?
    在这里插入图片描述
    城关与城关之间的沟通协议叫做路由协议,常用的由OSPF和BGP

    城关与城关之间是一个国家,网络包知道了要去哪个城关的时候,还是要使用国家内部的MAC地址,通过下一个城关的MAC地址,找到下一个城关,然后在问下一步该怎么走,一直走到最后一个城关。最后一个城关知道这个网络包要去的地方。于是,对着这个国家吼一声,谁是目标IP啊?目标服务器就会回复一个MAC地址。网络包过关后,通过这个MAC地址就能找到目标服务器;


    目标服务器发现MAC地址对上了以后,取下MAC头来,发送给操作系统的网络层,发现IP地址对上了,在取下IP头。IP头里会写上一层封装的TCP协议,然后交给传输层,即TCP层

    在这一层中,对于收到的每个包,都会有一个回复说明收到了。这个回复的包绝非这次单次请求的结果,例如购物是否成功,扣了多少钱等,而仅仅是TCP层的一个说明,即收到之后的回复。当然这个回复,会沿着刚才来的方向走回去,报个平安,防止在传输过程中造成的丢包等。

    如果过一段时间还没有收到的话,发的端TCP层会重新发送这个包,还是上面的请求,直到收到平安到达的回复。这个重试绝非你的浏览器重新将下单这个动作重新请求一次。对于浏览器来讲,就发送了一次下单请求,TCP层不断自己闷头重试。除非TCP这一层出了问题,例如连接断了,才轮到浏览器的应用层重新发送下单请求。

    当网络包平安到达TCP层之后,TCP头中有目标端口号,通过这个端口号,可以找到电商网站的进程正在监听这个端口号,假设一个Tomcat,将这个包发给电商网站。

    电商网站的进程得到的是HTTP请求知道要买什么东西,买多少。往往一个电商网站最初接待请求的这个Tomcat只是个接待员,负责统筹处理这个请求,而不是所有的事情都自己做。例如,这个接待员要告诉专门管理订单的进程,登记要买某个商品,买多少,要告诉管理库存的进程,库存要减少多少,要告诉支付的进程,应该付多少钱,等等。

    如何告诉相关的进程呢?往往通过RPC调用,即远程过程调用的方式来实现。远程过程调用就是当告诉管理订单进程的时候,接待员不用关心中间的网络互连问题,会由RPC框架统一处理。RPC框架有很多种,有基于HTTP协议放在HTTP的报文里面的,有直接封装在TCP报文里面的。

    当接待员发现相应的部门都处理完毕,就回复一个HTTPS的包,告知下单成功。这个HTTPS的包,会像来的时候一样,经过千难万险到达你的个人电脑,最终进入浏览器,显示支付成功;

    看到这里相信你对于自己之前学过的计算机网络知识有一个连串的感觉了吧,很多公司的面试题都会问在浏览器中输入一个URL的整个过程? 把这一连串说完,相信你的面试官也会觉得你学的很扎实;
    网络协议

    二、网络分层的真正含义

    计算机网络知识点需要背诵,但是更是要理解透彻;

    2.1 为什么网络要分层?

    因为不同层次之间有不同的沟通方式,叫做协议。就像一家公司也是分“层次”,分为总经理、经理、组长、员工,每个人之间都有不同的沟通方式;

    因为复杂的程序都要分层,想象网络包就是一段Buffer,或者一块内存,是有格式的。同时,想象自己是一个处理网络包的程序,而且这个程序可以跑在电脑上,可以跑在服务器上,可以跑在交换机上,也可以跑在路由器上。你想象自己有很多的网口,从某个口拿进一个网络包来,用自己的程序处理一下,再从另一个网口发送出去;

    当然网络包的格式很复杂,这个程序也很复杂,复杂的程序都要分层,这是程序设计的要求。

    2.2 浏览点击请求过程

    浏览点击请求过程如下所示:
    在这里插入图片描述
    在这里插入图片描述
    假设你发现这个包的MAC地址和你的相符,那说明就是发给你的,于是需要调用process_layer3(buffer):这个时候,Buffer里面往往就没有二层的头了,因为已经在上一个函数的处理过程中拿掉了,或者将开始的偏移量移动了一下。在这个函数里面,摘掉三层的头,看看到底是发送给自己的,还是希望自己转发出去的;

    如果IP地址不是自己的,那就应该转发出去;如果IP地址是自己的,那就是发给自己的。根据IP头里面的标识,拿掉三层的头,进行下一层的处理,到底是调用process_tcp(buffer)呢,还是调用process_udp(buffer)呢?

    假设地址是TCP,就会调用process_tcp(Buffer)。这时候,Buffer里面没有三层的头,就需要查看四层的头,看这是一个发起,还是一个应答,又或者是一个正常的数据包,然后分别由不同的逻辑进行处理。如果是发起或者应答,接下来可能要发送一个回复包;如果是一个正常的数据包,就需要交给上层了。交给谁呢?是不是有**process_http(buffer)**函数呢?

    如果你是一个网络包处理程序,你不需要有process_http(buffer),而是应该交给应用去处理。交给哪个应用呢?在四层的头里面有端口号,不同的应用监听不同的端口号。如果发现浏览器应用在监听这个端口,那你发给浏览器就行了。至于浏览器怎么处理,和你没有关系;

    浏览器是解析HTML,显示出页面来。当你再次点击鼠标,点击动作被浏览器捕获,于是浏览器知道又会发起另一个HTTP请求了,于是使用端口号,将请求发送给你。

    你应该调用send_tcp(buffer)。不用说,Buffer里面就是HTTP请求的内容。这个函数里面加一个TCP的头,记录下源端口号。浏览器会给你目的端口号,一般为80端口;

    然后调用send_layer3(buffer)。Buffer里面已经有了HTTP的头和内容,以及TCP的头。在这个函数里面加一个IP的头,记录下源IP的地址和目标IP的地址;随后调用send_layer2(buffer),**Buffer里面已经有了HTTP的头和内容、TCP的头,以及IP的头。这个函数里面要加一下MAC的头,记录下源MAC地址,得到的就是本机器的MAC地址和目标的MAC地址。**不过,这个还要看当前知道不知道,知道就直接加上;不知道的话,就要通过一定的协议处理过程,找到MAC地址。反正要填一个,不能空着;

    2.3 揭秘层与层之间的关系

    现实生活中,往往是员工说一句,组长补充两句,然后经理补充两句,最后总经理再补充两句。但是在网络世界,应该是总经理说话,经理补充两句,组长补充两句,员工再补充两句。

    TCP在三次握手时,TCP每一个消息都会带着IP层和MAC层。因为,TCP每次发送一个消息,IP层和MAC层的所有机制都要重新运行一次,所以TCP在三次握手时,IP和MAC也运行了好久。

    只要是在网络上跑的包,都是完整的。可以有下层没上层,绝对不可能有上层没下层;如果一个HTTP协议的包跑在网络上,它一定是完整的。无论这个包经过哪些设备,它都是完整的。所谓的二层设备、三层设备只是跑在设备上的程序不同;

    • 二层设备:只把MAC头摘下来,看看到底是丢弃、转发,还是自己留着;
    • 三层设备:把MAC头摘下来之后,再把IP头摘下来,看看到底是丢弃、转发,还是自己留着;

    三、ifconfig 命令行的由来

    ifconfig是linux系统中查询ip地址的一个命令,windows是ipconfig;

    3.1 ip地址

    IP地址是一个网卡在网络世界的通讯地址,相当于我们现实世界的门牌号。
    例如:10.100.122.2就是一个IP地址,地址被分为四个部分,每个部分8个bit,所以IP地址总共是32位;

    IP地址被分成了5类,A-E类
    IP地址
    在网络地址中,A、B、C类主要分为两个部分,前一部分是网络号,后一部分是主机号。大家都是六单元1001号,你是小区A的,我是小区B的;

    ip地址范围

    3.2 无类型域间选路(CIDR)

    无类型域间选路,简称CIDR,将IP地址一分为二,前面是网络号,后面是主机号。10.100.122.2/24,这个IP地址中有一个斜杠,斜杠后面有个数字24,这种地址表示形式,就是CIDR,后面24的意思是,32位中,前24位是网络号,后8位是主机号。

    伴随着CIDR存在的,一个是广播地址,10.100.122.125,如果发送这个地址,所有10.100.122网络内的机器都可以收到,另一个是子网掩码,255.255.255.0

    将子网掩码和IP地址按位计算AND,就可以得到网络号,那么上面的ip地址与子网掩码按位取AND,网络号就是10.100.122.0;(1和任意数值取AND,值不变;0和任意数值取AND,即为0);

    3.3 公有IP地址和私有IP地址

    在这里插入图片描述
    平时我们在办公室、学校、家里的IP地址,一般都是私有IP地址,因为这些地址,允许组织内部的IP地址自己管理、自己分配,因此可以重复。就比如你们学校可能由六单元一号,我们学校可能也有六单元1号。

    但是,一旦离开学校就需要使用公有IP地址,就像上海市南京西路88号,这个是国家同统一分配的。公有IP地址,由相关的组织去分配,如果使用,需要购买。

    192.168.0.x,是最常见的私有IP地址,家里有wifi,对应就有一个ip地址,但是一般家庭中的上网设备不会超过256个,所以/24基本就够用了。

    举例:CIDR中容易犯错的点
    16.158.165.91/22,这个CIDR,求网络中的第一个地址、子网掩码和广播地址
    16.158的部分不会动,它占了前16位。中间的165,变为二进制为‭10100101‬。除了前面的16位,还剩6位。所以,这8位中前6位是网络号,16.158.<101001>,而**<01>.91是机器号**;所以第一个地址是16.158.<101001><00>.1,即16.158.164.1,子网掩码是255.255.<111111><00>.0,即255.255.252.0,广播地址是16.158.<101001><11>.255,即16.158.167.255.

    这五类地址中,还有一类D类是组播地址,使用这一类地址,属于某个组的机器都能够收到,这就有点类似于公司中大家加入了一个邮件组,发送邮件,加入这个组的大家都能收到;

    IP地址的后面有个scope对于eth0这张网卡来讲,是global,说明这张网卡是可以对外的,可以接收来自各个地方的包。对于lo来讲,是host,说明这张网卡仅仅可以供本机相互通信;

    lo又被称为loopback,又称环回接口,往往会被分配到127.0.0.1这个地址,这个地址可以用于本机通信,经过内核处理以后直接返回,不会在任何网络中出现;

    3.4 MAC地址

    在IP地址的上一行是link/ether fa:16:3e:c7:79:75 brd ff:ff:ff:ff:ff:ff,这个被称为MAC地址,是一个网卡的物理地址,用十六进制,6个byte表示。既然已经知道了MAC地址,是不是意味着直接可以通过MAC地址进行通信啊?

    个网络包要从一个地方传到另一个地方,除了要有确定的地址,还需要有定位功能。 而有门牌号码属性的IP地址,才是有远程定位功能的。

    比如:你要去某某大学某某学院找小明,你在路上问,有些人不知道某某学院,但是可以给你说某某学校在哪里,但是你直接根据 小明的身份证号 问别人知不知道他在哪个学院,那么肯定没人知道;

    MAC地址更像是身份证,是一个唯一的标识。它的唯一性设计是为了组网的时候,不同的网卡放在一个网络里面的时候,可以不用担心冲突。从硬件角度,保证不同的网卡有不同的标识

    MAC地址是有一定的定位功能的,你可以根据ip地址找到某某学校某某学院某号楼某个实验室,当你到了以后,大吼一声,小明 是哪位,那么他听到了 就会回应你;

    MAC地址的通信范围比较小,局限在一个子网里面。例如,从192.168.0.2/24访问192.168.0.3/24是可以用MAC地址的。一旦跨子网,即从192.168.0.2/24到192.168.1.2/24,MAC地址就不行了,需要IP地址起作用了

    总结:

    • ip是地址,有定位功能;MAC是身份证,无定位功能;
    • CIDR可以用来判断是不是本地人;
    • IP分为公有地址IP和私有地址IP

    四、DHCP和PXE:ip的由来

    只要是在网络上跑的包可以有下层没上层,但是不可以有上层没下层;当一个数据包有自己的ip地址,有目的地的ip地址,但是包发不出去的原因是因为,MAC层还没有填写。

    Linux的默认逻辑是,如果是一个跨网段的调用,它便不会将包直接发送到网络上,而是企图将包发送到网关。网关要和当前的网络至少一个网卡是同一个网段;

    4.1 动态主机配置协议(DHCP)

    动态主机配置协议(Dynamic Host Configuration Protocol),简称DHCP

    有了这个协议,网络管理员就轻松多了。他只需要配置一段共享的IP地址。每一台新接入的机器都通过DHCP协议,来这个共享的IP地址里申请,然后自动配置好就可以了。等人走了,或者用完了,还回去,这样其他的机器也能用。

    如果是数据中心里面的服务器,IP一旦配置好,基本不会变,这就相当于买房自己装修。DHCP的方式就相当于租房。你不用装修,都是帮你配置好的。你暂时用一下,用完退租就可以了。

    4.2 解析DHCP的工作方式

    当一台机器加入一个新的网络的时候,只知道自己的mac地址,先吼一句,有人吗?这一步就是DHCP Discover

    新来的机器使用IP地址0.0.0.0发送了一个广播包,目的IP地址为255.255.255.255。广播包封装了UDP,UDP封装了BOOTP。其实DHCP是BOOTP的增强版,但是如果你去抓包的话,很可能看到的名称还是BOOTP协议;

    在这个广播包里,新人喊一句:我是新来的(Boot request),我的MAC地址是多少,但是我还没有ip地址,谁能给我一个?
    在这里插入图片描述
    网络管理员在网络配置了DHCP server,就相当于IP管理员,MAC地址是其唯一的身份。只有MAC地址唯一,IP管理员才能知道这是一个新人,需要租给它一个新的IP地址,这个过程就是DHCP Offer.

    DHCP Offer格式如下:
    里面会有给新人分配的地址;
    DHCP Offer
    DHCP Server仍然使用广播地址作为目的地址。如果同时收到多个IP地址,那么会选择最先到达的DHCP Offer,并且会向网络发送一个DHCP Request广播数据包,其中包含客户端的MAC地址、接受的租约中的IP地址,提供租约的DHCP服务器地址等,并且告诉所有的DHCP Offer,它将接受哪一台服务器所提供的IP地址,感谢其他DHCP服务器,并且请求撤销他们提供的ip地址,以便提供给下一个租用者。

    在这里插入图片描述
    由于还没有收到DHCP server的最后确认,客户端依然使用自己的源ip地址0.0.0.0、255.255.255.255为目标地址进行广播。在BOOTP里面,接受某个DHCP Server的分配 ip;

    当DHCP Server接收到客户机的DHCP request之后,会广播返回给客户机的一个DHCP ACK消息包,表明已经接受客户机的选择,并且将这一IP地址合法租用信息和其他的配置信息都放到该广播包中,发送给客户机,欢迎它加入网络大家庭;

    在这里插入图片描述
    租约达成以后,还是要广播一下,让大家都知道呢

    ip地址的收回和续租

    如果需要续租的话,需要提前租期的50%,客户机会在租期过去50%的时候,直接向为其提供ip地址的DHCP Server发送DHCP Request消息包,客户机收到该服务器的DHCP ACK消息包之后,会根据包中提供的新的租期,以及其他的已经更新的TCP/IP参数更新自己的配置,这样,ip的租用更新就已经完成了。

    网络管理员不仅能自动分配IP地址,还能帮你自动安装操作系统;

    4.3 预启动执行环境(PXE)

    普通的笔记本一般不会有这种雪球,已经预装好了操作系统。但是数据中心的管理员,可能一下子拿到了几百台空的机器,一台一台装就累死了。

    管理员们不仅希望可以分配好ip地址,还可以自动安装系统,装好系统之后会自动分配IP地址,直接启动最好了。

    安装操作系统的过程,只能插在BIOS启动之后了。因为没安装系统之前,连启动扇区都没有。因而这个过程叫做预启动执行环境(Pre-boot Execution Environment),简称PXE。

    默认的DHCP Server是需要配置的,无非是我们配置IP的时候所需要的IP地址段、子网掩码、网关地址、租期等。如果想使用PXE,则需要配置next-server,指向PXE服务器的地址,另外要配置初始启动文件filename。

    这样PXE客户端启动之后,发送DHCP请求之后,除了能得到一个IP地址,还可以知道PXE服务器在哪里,也可以知道如何从PXE服务器上下载某个文件,去初始化操作系统。

    解析PXE的工作过程

    首先是启动PXE客户端第一步是通过DHCP协议告诉DHCP Server,我啥都没有,DHCP Server便租给它一个ip地址,同时给他PXE服务器的地址、启动文件pexlinux.0;

    其次,PXE客户端知道要去PXE服务器下载这个文件后,就可以初始化机器。于是便开始下载,下载的时候使用的是TFTP协议。所以PXE服务器上,往往还需要有一个TFTP服务器。PXE客户端向TFTP服务器请求下载这个文件,TFTP服务器说好啊,于是就将这个文件传给它;

    然后,PXE客户端收到这个文件后,就开始执行这个文件。这个文件会指示PXE客户端,向TFTP服务器请求计算机的配置信息pxelinux.cfg。TFTP服务器会给PXE客户端一个配置文件,里面会说内核在哪里、initramfs在哪里。PXE客户端会请求这些文件;

    最后,启动Linux内核,一旦启动了操作系统,啥都好办。

    在这里插入图片描述

    总结


    本文是对通信协议综述的总结,共分为四节去介绍:

    1. 为什么学习网络协议?
      通过一个简简单单的下单过程,中间牵扯到这么多的协议,展开介绍;

    2. 网络协议分层的真正含义
      始终想象自己是一个处理网络包的程序:如何拿到网络包,如何根据规则进行处理,如何发出去;
      始终牢记一个原则:只要是在网络上跑的包,都是完整的。可以有下层没上层,绝对不可能有上层没下层;

    3. ifconfig命令行的背后;
      IP是地址,有定位功能;MAC是身份证,无定位功能;
      CIDR可以用来判断是不是本地人;
      IP分公有的IP和私有的IP。后面的章节中我会谈到“出国门”,就与这个有关。

    4. DHCP和PXE:ip的由来;
      DHCP协议主要是用来给客户租用IP地址,和房产中介很像,要商谈、签约、续租,广播还不能“抢单”;
      DHCP协议能给客户推荐“装修队”PXE,能够安装操作系统,这个在云计算领域大有用处;

    展开全文
  • 常见网络协议汇总

    千次阅读 多人点赞 2021-08-06 15:03:27
    常用网络协议前言TCP/IP五层网络模型回顾应用层协议DNS协议:HTTP协议HTTPS协议传输层协议UDP协议TCP网络层IP协议ICMP协议数据链路层ARP协议物理层整体的网络传输流程 前言 本篇博客将对基于 TCP/IP的五层网络模型 ...

    前言

    本篇博客将对基于 计算机网络五层模型 中的常见协议做以总结 ,目的通过这些具体的协议更深刻的认识整体网络的传输流程及相关网络原理

    计算机网络五层模型回顾

    在这里插入图片描述

    • 应用层:为用户为用户的应用进程提供网络通信服务
      协议——DNS协议、HTTP协议、HTTPS协议
    • 传输层:负责两台主机之间的数据传输,将数据从发送端传输到接收端
      协议——TCP协议、UDP协议
    • 网络层:负责传输的地址管理和路由选择,在众多复杂的网络环境中确定一条合适的路径
      协议——IP协议
    • 数据链路层:负责设备之间数据帧的传送和识别,将网络层传递的数据报封装成帧,在处于同一个数据数据链路节点的两个设备之间传输
      协议——ARP协议、MTU协议
    • 物理层:负责光电信号的传递方式,实现相邻计算机节点之间比特流的透明传输

    对于五层网络模型基本都是耳熟能详,但是有没有思考过,网络为什么要这样分层呢?

    最直接的回答就是为了简化网络设计的复杂性,通信协议采用分层结构,各层之间既相互独立又相互协调工作,如此以来便达到的高效的目的。如同设计模式中对于设计一个复杂的程序时,尽量使程序各功能之间是解耦合的一样,对于复杂的网络设计,分层设计也是很明智的一种做法。

    网络分层的最本质就是每一层独立的完成一个任务而不必考虑自己任务之外的实现,而因为不同的任务因此就有了每一层所对应的不同设备。(实例到应用就是,物理层只需要关系0和1的光电信号如何传输,而对它所表达的内容毫不关心;再往上数据链路层只需要关心封装好的数据帧如何准确的送到对应的MAC地址的目的主机中,而不必关心数据报的具体内容和具体会通过何种方式光纤还是局域网…同理往上对于所有层)

    应用层协议

    应用层协议主要负责各个程序间的通信,发生网络传输一个数据时,先由应用层对数据按照对应的协议封装,然后交给下一层传输层,当经过一系列网络传输,数据达到接收端时,一层层的分用,最后一层再由应用层分用,最终得到数据。

    DNS协议:

    DNS协议是一个应用层协议,建立在TCP和UDP的基础之上,使用默认端口为53,其默认通过UDP协议通信,但如果报文过大是则会切换成TCP协议。

    域名系统 (DNS) 的作用是将人类可读的域名 (如,www.baidu.com) 转换为机器可读的 IP 地址 (如,192.0.2.44),本质是通过DNS域名和IP地址的对应关系转换,而这种对应关系则保存在DNS服务器中

    域名的解析过程:

    域名的解析工作大体上可以分为两个步骤:第一步客户端向本地DNS服务器发起一个DNS请求报文,报文里携带需要查询的域名,第二步本地DNS服务器向本机回应一个DNS响应报文,报文里携带查询域名所对应的IP地址

    具体流程如下:

    1. 在本地缓存中查询,如果有则返回对应IP,如果没有将请求发给DNS服务器
    2. 当本地DNS服务器接收到查询后,先在服务器管理区域记录中查询,若没有再在服务器本地缓存中查询,如果没有将请求发送到根域名服务器
    3. 根域名服务器负责解析请求的根域部分,然后将包含下一级域名信息的DNS服务地址返回给本地DNS服务器
    4. 本地DNS服务器利用根域名服务器解析的地址访问下一级DNS服务器,得到再下一级域的DNS服务器地址
    5. 按照上述递归方法逐级接近查询目标,最后在有目标域名的DNS服务器上找到相应的IP地址信息
    6. 本地DNS服务器将最终查询到的IP返回给客户端,让客户端访问对应主机

    HTTP协议

    HTTP协议是一个简单的请求——响应协议,它通常运行在TCP之上。它指定了客户端可能发送给服务器什么样的消息以及得到什么样的响应。
    同其他应用层协议一样,是为了实现某一类具体应用的协议,并由某一运行在用户空间的应用程序来实现其功能。HTTP是一种协议规范,这种规范记录在文档上,为真正通过HTTP进行通信的HTTP的实现程序。

    HTTP是基于TCP协议,且面向连接的。典型的HTTP事务处理有如下的过程:

    1. 客户端与服务器建立连接;
    2. 客户端向服务器提出请求;
    3. 服务器接受请求,并根据请求返回相应的数据作为应答响应;
    4. 客户端与服务器关闭连接。

    HTTP协议报文格式
    HTTP报文由从客户机到服务器的请求(Request)和从服务器到客户机的响应(Respone)构成

    请求由请求行,请求头,请求体组成
    请求行中包含请求方法、路径、版本号,请求头为多个key-value数据,请求正文包含一些请求的数据
    响应由响应行,响应头,响应体组成
    响应行中包含状态码,状态码描述,版本号,响应头为多个key-value数据,响应正文包含一些响应的数据
    在这里插入图片描述
    常见HTTP响应状态码汇总

    200 OK :客户端请求成功

    3XX系列

    301 Moved Permanently :请求的资源以被永久的移动到新URL中,返回的Response中包含一个Location,浏览器会自动重定向到新URL,以后请求都会被新的URL替代
    302 Found :与301类似,但请求的资源只是临时的被移动到新的URL中,下次请求客户端继续使用原URL
    307 Temporary Redirect : 临时重定向,类似于302,使用GET请求重定向

    4XX系列

    400 Bad Request : 客户端请求语法错误,服务器无法理解(在 ajax 请求后台数据时比较常见)
    401 Unauthorized :请求要求用户的身份认证
    403 Forbidden : 服务器理解客户端请求,但是拒绝执行(一般用于用户级别为达到要求等等不支持访问)
    404 Not Found : 服务器无法根据客户端请求找到对应资源
    405 Method Not Allowed : 服务器不支持该方法

    5XX系列

    500 Internal Server Error : 服务器内部错误,无法完成请求
    503 Service Unavailable :由于超载或系统维护,服务器暂时的无法处理客户端的请求。延时的长度可包含在服务器的Retry-After头信息中

    HTTP协议的特点

    1. 支持服务器/客户端模式
    2. 传输较快速,客户端向服务器发送请求,只需要传输请求方法和路径
    3. 灵活,HTTP允许传输任意类型的数据对象
    4. 无连接,每次连接只能处理一个请求,服务器处理完客户端请求,客户端收到响应后就断开连接
    5. 无状态,协议本身对事务处理没有记忆能力,如果后序连接需要之前发送的信息时就需要重传

    HTTP1.0和HTTP1.1和HTTP2.0的区别:

    HTTP1.0和HTTP1.1的区别:

    1. 长连接:HTTP1.0只支持浏览器与服务器的短连接,即每次请求都要重新建立连接,服务器无法记录每个历史请求,HTTP1.1支持长连接即在一次连接下,浏览器可以向服务器发送多次请求
    2. 增加Host字段:HTTP1.0中认为每个服务器都绑定这唯一一个IP,所有发送的请求头URL中没有host信息,而HTTP1.1在请求和响应中都支持了host头域,且请求消息中如果没有Host头域会报告一个错误(400 Bad Request)
    3. 缓存:HTTP1.1在1.0的基础上加入了一些cache的新特性,当缓存对象的Age超过Expire时变为stale对象,cache不需要直接抛弃stale对象,而是与源服务器进行重新激活(revalidation)。
    4. 错误提示:HTTP1.0中定义了16个状态码,对错误或警告的提示不够具体。HTTP1.1引入了一个Warning头域,增加对错误或警告信息的描述,并且还新增了24个状态响应码,如409(Conflict)表示请求的资源与资源的当前状态发生冲突;410(Gone)表示服务器上的某个资源被永久性的删除

    HTTP1.X和HTTP2.0的区别

    1. 增加二进制格式解析:HTTP1.X解析基于文本,而文本格式本身就具有多样性,很多场景下不方便,而引入二进制后,只有0和1组合,使解析更加方便也增强了健壮性
    2. 多路复用:即每个request都是是用作连接共享机制的,每个request都对应一个id,使一个连接可以有多个请求,再根据id将request归属到不同的服务端请求里
    3. header压缩:HTTP1.X中,每次传输都要写点header头,占用了大量数据,因此HTTP2.0在客户端和服务端各保存了一份header fields表,每次传输时只需传输header的更新信息,将header fields表更新即可实现header传输
    4. 服务端推送:HTTP2.0也添加了server push功能

    HTTPS协议

    HTTPS同样作为应用层协议,可以说它是HTTP的升级版,增加了传输数据的安全性,HTTPS协议是在HTTP的基础上增加了一个SSL外壳,HTTPS运行在SSL上,SSL运行在TCP上,对数据的加密工作就是在SSL上完成的
    在这里插入图片描述

    其保证安全性的做法是通过证书验证和对信息混合加密的方式
    混合加密技术:

    混合加密技术:结合对称加密与非对称加密
    服务端生成私钥,再通过私钥生成公钥,然后将公钥放在证书中颁发给客户端
    使用公钥和私钥以非对称方式加密生成密钥
    客户端接下来的传输数据中,都会用密钥以对称方式对信息加密,再传输给服务端

    在这里插入图片描述

    对于,上述提到的公钥和私钥,我们规定用公钥加密的内容必须用私钥才能解开,同样,私钥加密的内容只有公钥能解开

    所以HTTPS传输数据是用被密钥加密的密文和用公钥加密的私钥来保证数据安全的

    HTTPS加密,只用对称加密可以吗?
    不行!无法保证安全性,因为只用对称加密即只用密钥对数据加密传输的话,如果传输途中,信息被第三方劫持,获取到密钥,那接下来的传输,第三方都可以通过密钥对数据解密从而得到原始数据。

    HTTPS加密,只用非对称加密可以吗?两次呢?
    同样不行,如果只用非对称加密。客户端每次传输数据用公钥加密,服务端再用私钥解密这一方向看似安全,但当服务端发送数据用私钥加密,客户端收到用公钥解密时,第三方劫持到信息,但可能在此之前就获得公钥,因为首次服务端向客户端发送公钥是明文传输的。
    而换个角度如果使用两次非对称加密,即两组公钥,两组私钥,客户端服务端各持一组,理论上可以达到安全,但实际HTTPS并未采用,因为非对称加密耗时十分大

    证书:

    单有混合加密技术,看似已经保证了传输的安全性,实则还是有漏洞,问题就在于服务器根本无法识别发送过来的公钥是否是自己的,如此以来在第三方劫持到数据后,自行再定义一个公钥B,并将公钥B传回给客服端,此时客户端就会利用该公钥B重新加密数据然后发送,此时第三方就可以通过自己的公钥B解密得到原始数据了。

    证书就解决了这一问题,指定颁发的为CA机构,当网站使用HTTPS时,会向CA机构申请一个数字证书,证书中可以存放公钥、数据等信息,由此以来,服务端就可以通过证书来向客户端证明正确的公钥是哪一个,以此保证安全。
    而对于证书,还有一些自己的放篡改机制,防止第三方获取到使用
    在这里插入图片描述

    传输层协议

    传输层的主要功能是为了实现“端口到端口”的通信,以确保一条数据发送到主机上后,能够正确的传递到对应的端口上

    UDP协议

    UDP 为应用程序提供了一种无需建立连接就可以发送封装的 IP 数据包的方法,但是UDP也有自己的缺陷,一旦进行通信,就不知道对方是否接收到数据了,很有可能会造成传输数据的丢包问题

    在这里插入图片描述
    特点:

    • 无连接:只需要知道目的ip和端口号就可以发送数据,无需建立连接
    • 不可靠:没有一系列机制来应对传输数据时的丢包问题
    • 面向数据报发送:应用层交给UDP什么样的报文,UDP就会发送什么样的,不会进行拆分,合并
    • UDP一次传输的数据大小有限,最大64k

    UDP的传输流程
    在这里插入图片描述
    UDP的适用范围:

    由于UDP不属于连接型协议,所以具有资源消耗小。处理速度优的特点,因此经常使用与视频、音频通话传输中,因为发送的数据较多,偶尔丢包一两个不会产生太大影响

    TCP

    因为上述讲到UDP的传输是不可靠的,经常会导致连接错误、数据丢包问题,针对这些问题规定了另一个传输层协议——TCP协议,TCP是一种面向连接、可靠的、基于字节流的传输层协议

    在这里插入图片描述

    TCP的特点:

    • 面向连接:在传输数据是,要先建立起客户端与服务端的连接,才能进行数据传输
    • 可靠的通信:TCP输出数据中,会基于内部的各种机制保证数据传输到目的端口
    • 基于字节流:TCP传输数据是基于字节传输的,易于对数据的拆分与合并发送
    • TCP的头部比UDP的开销要打,因为要存放更多的信息

    关于TCP内部各种机制,在这里不做过多的介绍,需要博友可以参考之前的一篇博客网络原理基础

    TCP与UDP的区别:

    • UDP是无连接的,TCP是有连接的
    • UDP是不可靠的,TCP是可靠的
    • UDP面向数据报,TCP面向字节流
    • UDP比TCP的传输消耗小,速度更快

    这里分享一张神图,以便于更加形象的理解TCP和UDP的区别
    在这里插入图片描述

    网络层

    网络层是基于数据链路层和传输层之间的第三层协议,它在数据链路层提供的两个相邻端点之间的数据帧的传送功能上,进一步管理网络中的数据通信,将数据设法从源端经过若干个中间节点传送到目的端,从而向传输层提供最基本的端到端的数据传送服务

    网络层的目的是实现两个端系统之间的数据透明传送,具体功能包括寻址和路由选择、连接的建立、保持和终止等。它提供的服务使传输层不需要了解网络中的数据传输和交换技术。

    IP协议

    IP协议是TCP/IP网络模型中的核心部分,他提供了一种分层的、无关硬件的寻址方式,可以在复杂的路由式网络中传递数据所需的服务

    IP协议可以将多个交换网络连接起来,在源地址和目的地址之间传输数据包,同时它还能提供数据的组装功能,以适应不同网络对数据包大小的要求

    预研知识:

    IP地址:
    IP地址是互联网协议特有的一种地址,它是IP协议提供的一种统一的地址格式,IP地址为互联网的每个网络和每台主机分配了一个逻辑地址,以此来屏蔽物理地址的差异

    IP地址的格式:
    IP地址为32位地址,被分为4个部分,如XXX.XXX.XXX.XXX,IP地址又被划分为两个部分
    网络号:前三部分用于标识网段,保证相互连接的两个网段有不同标识
    主机号:由最后一部分组成,用于标识主机,保证处于同一网段的两台主机有不同的主机号
    通过合理设置主机号和网络号, 就可以保证在相互连接的网络中, 每台主机的IP地址都不相同4

    MAC地址:
    被称为物理地址,是用来标识网络中每个设备的,MAC地址是设备出厂之后就写死的

    引入IP地址的目的:
    在单个局域网网段中,计算机与计算机之间可以使用数据链路层提供的MAC地址进行通信
    如果在路由式网络中,计算机之间就不能用MAC地址实现通信,主要是因为在路由式网络中,数据只是经过一次简单的利用两个计算机之间的MAC地址建立通信,而是需要进行多次的通信,每次跳转都会体目的主机更近一步,经历都次跳转,最终找到目的主机实现通信,而这个过程中,要知道每次向哪跳转才能更接近目的主机,必须使用一种逻辑化、层次化的寻址方案对网络进行组织,这就是 IP 地址

    IP协议数据报格式这里是引用

    IP协议的工作方式:

    由于网络分为同网段和不同网段,所以会分成两种方式

    • 同网段:如果源地址主机和目的地址主机处于同一网段,则目的IP地址被 ARP协议 解析为MAC地址后,源主机会根据目的MAC地址直接将数据包发送给目的主机
    • 不同网段:
      如果源地址主机和目的地址主机不处于同一网段,则数据包会经历多个过程最终发送给目的主机
      1、网关(一般为路由器)的 IP地址 被 ARP协议 解析为 MAC地址,根据该 MAC地址 源主机会将数据包发送到网关
      2、网关根据数据包中的网段ID找到目标网络,如果找到,将数据包发送给目标网路,如果没有则重复第一步发送到更高一级网关
      3、数据包经过网关发送到正确的网段后,目标IP被 ARP协议 解析为MAC地址,在根据该 MAC地址 将数据包发送给目标地址的主机

    ICMP协议

    ICMP协议又叫控制报文协议,ICMP协议用于在IP 和 路由器之间传递控制消息,描述网络是否通畅、主机是否可达、路由器是否可用等网络状态,ICMP本身并不传输数据,但对于用户间数据的传递起着重要的作用

    作用:
    在数据包从源主机传输到目的主机的过程中,会经历一个或多个路由器,而数据包在经过这些路由器传输过程中,可能会遇到很多问题,最终导致数据包没有成功传递给目的主机。为了了解数据包在传输过程中在哪个环节出了问题,就需要用到ICMP协议,它可以跟踪数据包,并把消息返回给源主机。

    在这里插入图片描述

    数据链路层

    数据链路层是TCP/IP网络模型的第二层,基于物理层和网络层之间,数据链路层在物理层提供的服务的基础上向网络层提供服务,其最基本的服务是将源自物理层来的数据可靠地传输到相邻节点的目标机网络层

    ARP协议

    ARP协议是数据进行网络传输过程中,通过IP地址向MAC地址的转换,解决网络层和物理层衔接问题

    引入ARP协议的目的:
    由于 IP 地址和 MAC 地址定位方式不同,ARP 协议成为数据传输的必备协议。主机发送信息前,必须通过 ARP 协议获取目标 IP 地址对应的 MAC 地址,才能正确地发送数据包。
    在这里插入图片描述
    ARP的工作流程:
    在这里插入图片描述
    在这里插入图片描述
    如图展示的是同一网段下的两台主机,ARP的工作流程

    • 主机A以广播的形式向该网段内的所有主机发送ARP请求,请求中包含了目的主机的IP地址
    • 主机B接收到请求,通过请求中的目的IP地址发现自己是主机A要找的,返回响应,响应包括主机B的 MAC地址

    ARP缓存:
    在请求目标主机的 MAC 地址时,每次获取目标主机 MAC 地址都需要发送一次 ARP 请求,然后根据响应获取到 MAC 地址。

    为了避免重复发送 ARP 请求,每台主机都有一个 ARP 高速缓存。当主机得到 ARP 响应后,将目标主机的 IP 地址和物理地址存入本机 ARP 缓存中,并保留一定时间。

    只要在这个时间范围内,下次请求 MAC 地址时,直接查询 ARP 缓存,而无须再发送 ARP 请求,从而节约了网络资源。

    物理层

    物理层,顾名思义就是用物理手段将两个要通信的电脑连接起来,主要用来传输0、1光电信号,因为这一层过于偏硬件,所以本文不做过多的赘述

    整体的网络传输流程

    经过以上对网络传输层中每一层理解下面我们来看看,当访问一个网页时,到底发生了什么?

    主机A:发送http://www.baidu.com网络数据报

    1. DNS解析:将域名转换成对应IP地址(本机DNS缓存栈开始找—>逐级向上查找,如果根域服务器找不到,表示公网上没有该域名主机)
    2. 找到IP后:通过目的IP找到对应的目的MAC地址
    3. 根据目的IP计算目的主机是否和主机A处于同一网段
    4. 如在同网段:接通过ARP协议解析出对应的目的MAC,跳转到底9步
    5. 如不在同一网段:发送数据报到网关,现在ARP缓存表查找,通过网关IP查找MAC地址,找不到发送查询MAC广播数据报,最终返回网关自己的MAC
    6. 交换机转发:在MAC地址转换表中找到对应MAC交换机接口
    7. 路由器接收:分用数据报
      在这里插入图片描述
    8. 途中的设备:与第7步同样操作如目的IP对应的MAC地址不是当前设备则继续重复该操作继续往更接近目的IP的路由发送
      在这里插入图片描述
    9. 找到目的主机B,主机B的服务器开始接受分用请求,解析,最终组织响应
      在这里插入图片描述
    10. 同上述操作一样,由主机B向主机A发送数据
    11. 最终主机A接受到数据报,经过分用,解析,最终得到响应
    展开全文
  • 常见网络协议

    万次阅读 多人点赞 2019-03-26 13:32:50
    一、网络协议 二、TCP(Transmission Control Protocol,传输控制协议)       TCP头格式      TCP协议中的三次握手和四次挥手      TCP报文抓取工具三、...

    一、网络协议

    二、TCP(Transmission Control Protocol,传输控制协议)

          TCP头格式
          TCP协议中的三次握手和四次挥手
          TCP报文抓取工具
    三、HTTP(HyperText Transfer Protocol,超文本传输协议)

          请求报文结构
          请求报文样例
          请求报文参数详解
          响应报文结构
          响应报文样例
          响应报文参数详解
          HTTP报文抓取工具
          Session和Cookie
    四、相关资料

    ---------------------------------------------------------------------------------------------

    一、网络协议

           国际标准化组织(International Standard Organization,ISO)公布了开放系统互连参考模型(OSI/RM)。OSI/RM是一种分层的体系结构,参考模型共有7层。
    TCP/IP(Transmission Control Protocol/Internet Protocol)作为Internet的核心协议。它是个协议族,包含多种协议。
    分层的基本想法是每一层都在它的下层提供的服务基础上提供更高级的增值服务,而最高层提供能运行分布式应用程序的服务。

    发送请求的过程是从最顶层(应用层)出发,每一层负责封装属于自己的信息到请求中,最后将一整个请求发送给对方。
    接收请求的过程是从最底层(网络接口层)开始,每一层的协议负责解析属于自己的东西,比如网际层(IP)处理ip信息,传输层(TCP)处理点对点的端口,应用层(HTTP)处理Request或Response的Line\Header\Body。

     

    二、TCP(Transmission Control Protocol,传输控制协议)

          TCP是一种面向连接(连接导向)的、可靠的基于字节流的传输层通信协议。TCP将用户数据打包成报文段,它发送后启动一个定时器,另一端收到的数据进行确认、对失序的数据重新排序、丢弃重复数据。
    TCP的特点有:

    • TCP是面向连接的运输层协议
    • 每一条TCP连接只能有两个端点,每一条TCP连接只能是点对点的
    • TCP提供可靠交付的服务
    • TCP提供全双工通信。数据在两个方向上独立的进行传输。因此,连接的每一端必须保持每个方向上的传输数据序号。
    • 面向字节流。面向字节流的含义:虽然应用程序和TCP交互是一次一个数据块,但TCP把应用程序交下来的数据仅仅是一连串的无结构的字节流。

    1、TCP头格式

    (1)   Source Port(源端口号):数据发起者的端口号,16bit。
    (2)   Destination Port(目的端口号):数据接收者的端口号,16bit。
    (3)   Sequence Number(顺序号码,Seq):用于在数据通信中解决网络包乱序(reordering)问题,以保证应用层接收到的数据不会因为网络上的传输问题而乱序(TCP会用这个顺序号码来拼接数据),32bit。
    (4)   Acknowledgment Number(确认号码,ack):是数据接收方期望收到发送方在下一个报文段的顺序号码(Seq),因此确认号码应当是上次已成功收到顺序号码(Seq)加1,32bit。
    (5)   Offset(TCP报文头长度):用于存储报文头中有多少个32bit(上图的一行),存储长度为4bit,最大可表示(2^3+2^2+2^1+1)*32bit=60bytes的报文头。最小取值5,5*32bit=20bytes。
    (6)   Reserved(保留):6bit, 均为0
    (7)   TCP Flags(TCP标志位)每个长度均为1bit
              CWR:压缩,TCP Flags值0x80。
              ECE:拥塞,0x40。
              URG:紧急,0x20。当URG=1时,表示报文段中有紧急数据,应尽快传送。
              ACK:确认,0x10。当ACK = 1时,代表这是一个确认的TCP包,取值0则不是确认包。
              PSH:推送,0x08。当发送端PSH=1时,接收端尽快的交付给应用进程。
              RST:复位,0x04。当RST=1时,表明TCP连接中出现严重差错,必须释放连接,再重新建立连接。
              SYN:同步,0x02。在建立连接是用来同步序号。SYN=1, ACK=0表示一个连接请求报文段。SYN=1,ACK=1表示同意建立连接。
              FIN:终止,0x01。当FIN=1时,表明此报文段的发送端的数据已经发送完毕,并要求释放传输连接。
    (8)   窗口:用来控制对方发送的数据量,通知发放已确定的发送窗口上限。
    (9)   检验和:该字段检验的范围包括头部和数据这两部分。由发端计算和存储,并由收端进行验证。
    (10) 紧急指针:紧急指针在URG=1时才有效,它指出本报文段中的紧急数据的字节数。
    (11) TCP选项:长度可变,最长可达40字节

    备注:ISN(Inital Sequence Number):初始化Sequence Number,发生在建立连接时。

    2、TCP协议中的三次握手和四次挥手

    三次握手可以理解成:

    我打电话给你你没看到,一会之后你又打电话给我问有什么事,我再给你说我有什么什么事

    四次挥手可以理解成:

    我给你说我不想再要你送的东西了,你说不行啊还有很多没有送完(继续在送),(送完啦)你说已经把所有东西都送给我啦,我说我收到了那就结束吧-----------

     

    特别注意

    Seq:是发送方当前报文的顺序号码。
    ack:是发送方期望对方在下次返回报文中给回的Seq。

    建立连接需要三次握手

    第一次握手:客户端向服务端发送连接请求包,标志位SYN(同步序号)置为1,顺序号码为X=0。

    第二次握手:服务端收到客户端发过来报文,由SYN=1知道客户端要求建立联机,则为这次连接分配资源。并向客户端发送一个SYN和ACK都置为1的TCP报文,设置初始顺序号码Y=0,将确认序号(ack)设置为上一次客户端发送过来的顺序号(Seq)加1,即X+1 = 0+1=1。

    第三次握手:客户端收到服务端发来的包后检查确认号码(ack)是否正确,即第一次发送的Seq加1(X+1=1)。以及标志位ACK是否为1。若正确,服务端再次发送确认包,ACK标志位为1,SYN标志位为0。确认号码(ack)=Y+1=0+1=1,发送顺序号码(Seq)为X+1=1。Server收到后确认号码值与ACK=1则连接建立成功,可以传送数据了。

    断开连接需要四次挥手

    提醒:中断连接端可以是Client端,也可以是Server端。只要将下面两角色互换即可。
    第一次挥手:客户端给服务端发送FIN报文,用来关闭客户端到服务端的数据传送。将标志位FIN和ACK置为1,顺序号码为X=1,确认号码为Z=1。意思是说”我Client端没有数据要发给你了,但是如果你还有数据没有发送完成,则不必急着关闭Socket,可以继续发送数据。所以你先发送ACK过来。”

    第二次挥手:服务端收到FIN后,发回一个ACK(标志位ACK=1),确认号码为收到的顺序号码加1,即X=X+1=2。顺序号码为收到的确认号码=Z。意思是说“你的FIN请求我收到了,但是我还没准备好,请继续你等我的消息" 这个时候客户端就进入FIN_WAIT状态,继续等待服务端的FIN报文。

    第三次挥手:当服务端确定数据已发送完成,则向客户端发送FIN报文,关闭与客户端的连接。标志位FIN和ACK置为1,顺序号码为Y=1,确认号码为X=2。意思是告诉Client端“好了,我这边数据发完了,准备好关闭连接了。”

    第四次挥手:客户端收到服务器发送的FIN之后,发回ACK确认(标志位ACK=1),确认号码为收到的顺序号码加1,即Y+1=2。顺序号码为收到的确认号码X=2。意思是“我Client端知道可以关闭连接了,但是我还是不相信网络,怕 Server端不知道要关闭,所以发送ACK后进入TIME_WAIT状态,如果Server端没有收到ACK则可以重传。Client端等待了2MSL后依然没有收到回复,则证明Server端已正常关闭,那好,我Client端也可以关闭连接了。“(在TIME_WAIT状态中,如果TCP client端最后一次发送的ACK丢失了,它将重新发送。TIME_WAIT状态中所需要的时间是依赖于实现方法的。典型的值为30秒、1分钟和2分钟。等待之后连接正式关闭,并且所有的资源(包括端口号)都被释放。)

    为什么关闭的时候却是四次挥(握)手?
    因为当Server端收到Client端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。但是关闭连接时,当Server端收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉Client端,"你发的FIN报文我收到了"。只有等到我Server端所有的报文都发送完了,我才能发送FIN报文,因此不能一起发送。故需要四步握手。

    3、TCP报文抓取工具:Wireshark

    捕获过滤器中填入表达式:host www.cnblogs.com and port 80(80等效于http)
    有多个TCP流时在显示过滤器中填入表达式:tcp.stream eq 0 筛选出第一个TCP流(包含完整的一次TCP连接:三次握手和四次挥手)

     

    每条记录都有如下协议层
    (1) Frame:   物理层的数据帧概况
    (2)Ethernet II: 数据链路层以太网帧头部信息
    (3) Internet Protocol Version 4: 互联网层IP包头部信息
    (4)Transmission Control Protocol:  传输层的数据段头部信息,此处是TCP
    (5) Hypertext Transfer Protocol:  应用层的信息,此处是HTTP协议

     

     

    三、HTTP(HyperText Transfer Protocol,超文本传输协议)

          HTTP是一个应用层协议,虽然在2015年已推出HTTP/2版本,并被主要的web浏览器和web服务器支持。但目前使用最广泛的还是HTTP/1.1版本。有关历史请查阅这里
    它的主要特点可概括如下:

    • 支持客户/服务器模式。
    • 简单快速:客户向服务器请求服务时,只需传送请求方法和路径。由于HTTP协议简单,使得HTTP服务器的程序规模小,因而通信速度很快。
    • 灵活:HTTP允许传输任意类型的数据对象。正在传输的类型由Content-Type加以标记。
    • 无连接:无连接的含义是限制每次连接只处理一个请求。服务器处理完客户的请求,并收到客户的应答后,即断开连接。采用这种方式可以节省传输时间。
    • 无状态:HTTP协议是无状态协议。无状态是指协议对于事务处理没有记忆能力。缺少状态意味着如果后续处理需要前面的信息,则它必须重传,这样可能导致每次连接传送的数据量增大。另一方面,在服务器不需要先前信息时它的应答就较快。为了解决这个问题, Web程序引入了Cookie机制来维护状态。

    另外,HTTP请求报文和响应报文都是由开始行(对于请求消息,开始行就是请求行,对于响应消息,开始行就是状态行),消息报头(可选),空行(只有CRLF的行),消息正文(可选)组成。将在下面详细讲解。

    1、请求报文结构

    报文中的数据都使用ASCII编码,各个字段的长度是不确定的(除了作为结尾的CRLF外,不允许出现单独的CR或LF字符)。

    2、请求报文样例

    复制代码
    复制代码
    POST /search HTTP/1.1  
    Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/vnd.ms-excel, application/vnd.ms-powerpoint, 
    application/msword, application/x-silverlight, application/x-shockwave-flash, */*  
    Referer: http://www.google.cn/  
    Accept-Language: zh-cn  
    Accept-Encoding: gzip, deflate  
    User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 2.0.50727; TheWorld)  
    Host: www.google.cn 
    Connection: Keep-Alive  
    Cookie: PREF=ID=80a06da87be9ae3c:U=f7167333e2c3b714:NW=1:TM=1261551909:LM=1261551917:S=ybYcq2wpfefs4V9g; 
    NID=31=ojj8d-IygaEtSxLgaJmqSjVhCspkviJrB6omjamNrSm8lZhKy_yMfO2M4QMRKcH1g0iQv9u-2hfBW7bUFwVh7pGaRUb0RnHcJU37y-
    FxlRugatx63JLv7CWMD6UB_O_r  
    

    hl=zh-CN&source=hp&q=domety

    复制代码
    复制代码

     

    3、请求报文参数详解

    请求方法

    所有请求方法名称全为大写,目前有9种:

    备注
    安全性:https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
    幂等性:表示的操作至多只会被处理一次,每次调用都将返回第一次调用时的处理结果。
    关于HTTP请求GET和POST的区别
    (1).提交形式:
       GET提交的数据会放在URL之后,以?分割URL和传输数据,参数之间以&相连,如EditPosts.aspx?name=test1&id=123456.  POST方法是把提交的数据放在HTTP包的Body中.
    (2).传输数据的大小:
       HTTP协议本身没有对传输的数据大小进行限制,HTTP协议规范也没有对URL长度进行限制。 而在实际开发中存在的限制主要有:
       GET:特定浏览器和服务器对URL长度有限制,例如IE对URL长度的限制是2083字节(2K+35)。对于其他浏览器,如Netscape、FireFox等,理论上没有长度限制,其限制取决于操作系统的支持。
       因此对于GET提交时,传输数据就会受到URL长度的限制。
       POST:由于不是通过URL传值,理论上数据不受限。但实际各个WEB服务器会规定对post提交数据大小进行限制,Apache、IIS6都有各自的配置。
    (3).安全性:
        POST的安全性要比GET的安全性高,具有真正的Security的含义。而且通过GET提交数据,用户名和密码将明文出现在URL上,因为登录页面有可能被浏览器缓存,其他用户浏览历史纪录就可以拿到账号和密码了。

    请求报头域

    报头域指头部中的Key,且不分大小写。

    4、响应报文结构

    如所见,响应报文结构与请求报文结构唯一真正的区别在于第一行中用状态信息代替了请求信息。状态行(status line)通过提供一个状态码来说明所请求的资源情况。

    5、响应报文样例

    复制代码
    复制代码
    HTTP/1.1 200 OK
    Date: Mon, 23 May 2005 22:38:34 GMT
    Content-Type: text/html; charset=UTF-8
    Content-Encoding: UTF-8
    Content-Length: 138
    Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT
    Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)
    ETag: "3f80f-1b6-3e1cb03b"
    Accept-Ranges: bytes
    Connection: close
    

    <html>
    <head>
    <title>An Example Page</title>
    </head>
    <body>
    Hello World, this is a very simple HTML document.
    </body>
    </html>

    复制代码
    复制代码

     

    6、响应报文参数详解

    响应状态码

    状态代码由三位数字组成,第一个数字定义了响应的类别,且有五种可能取值。
    1xx:指示信息--表示请求已接收,继续处理。
    2xx:成功--表示请求已被成功接收、理解、接受。
    3xx:重定向--要完成请求必须进行更进一步的操作。
    4xx:客户端错误--请求有语法错误或请求无法实现。
    5xx:服务器端错误--服务器未能实现合法的请求。
    常用状态码:

    200 OK:成功返回状态,对应,GET,PUT,PATCH,DELETE。
    201 created  - 成功创建。
    302 Found:重定向,新的URL会在response中的Location中返回,浏览器将会使用新的URL发出新的Request。

                     例如在IE中输入http://www.google.com. HTTP服务器会返回304, IE取到Response中Location header的新URL, 又重新发送了一 个 Request.
    304 Not Modified:代表上次的文档已经被缓存了, 还可以继续使用。
    400 bad request   - 请求格式错误。
    401 unauthorized   - 未授权。
    403 forbidden   - 鉴权成功,但是该用户没有权限。
    404 not found - 请求的资源不存在。
    405 method not allowed - 该http方法不被允许。
    410 gone - 这个url对应的资源现在不可用。
    415 unsupported media type - 请求类型错误。
    422 unprocessable entity - 校验错误时用。
    429 too many request - 请求过多。
    500 Internal Server Error:服务器发生了不可预期的错误。
    503 Server Unavailable:服务器当前不能处理客户端的请求,一段时间后可能恢复正常。

    响应报头域

    报头域指头部中的Key,且不分大小写。

    7、HTTP报文抓取工具

    Wireshark、Fiddler、HttpWatch(需结合IE)、Telnet
    Wireshark:
    在显示过滤器中填入表达式:http and ip.addr == 42.121.252.58 and tcp.port == 80 过滤出http的响应和请求流程

     

     

    8、Session和Cookie

    说到HTTP,就不得不提Session和Cookie。但严格来说,Session和Cookie并不是http协议的一部分。由于HTTP协议设计原则是无状态的,但是近年来出现了种种需求,其中cookie的作用就是为了解决HTTP协议无状态的缺陷所作出的努力。后来出现的session机制则是又一种在客户端与服务器之间保持状态的解决方案。 具体来说cookie机制采用的是在客户端保持状态的方案,而session机制采用的是在服务器端保持状态的方案。同时我们也看到,由于采用服务器端保持状态的方案在客户端也需要保存一个标识,所以session机制可能需要借助于cookie机制来达到保存标识的目的,但实际上它还有其他选择。

    Session

    Session是可以存储针对于某一个用户的浏览器以及通过其当前窗口打开的任何窗口具有针对性的用户信息存储机制。 
    通常大家认为,只要关闭浏览器,session就消失,其实这是错误的理解。对session来说也是一样的,除非程序通知服务器删除一个session,否则服务器会一直保留。由于关闭浏览器不会导致session被删除,迫使服务器为seesion设置了一个失效时间,当距离客户端上一次使用session的时间超过这个失效时间时,服务器就可以认为客户端已经停止了活动,才会把session删除以节省存储空间.

    (1)第一次访问某个web站点资源时,客户端提交没有带SessionID的请求(请求报文头没有Cookie头域信息)。
      而web服务器会检查是否有SessionID过来,没有则创建SessionID,并根据web程序自身定义在请求哪个资源时添加属于当前会话的信息(也可为空),这个信息列表以SessionID作为标识。然后将SessionID返回给客户端(通过响应报文头的Set-Cookie头域)。
    (2 )客户端再次访问同个web站点时,提交带有SessionID的请求(通过Cookie头域存储SessionID)。由服务端判断session是否失效,如果未失效,可查询属于当前会话的信息列表。如果失效,则创建新的session(产生新的SessionID),而原先的session(包含session带的信息列表)则丢失,无法访问。

    Cookie

    保存SessionID的方式可以采用Cookie,这样在交互过程中浏览器可以自动的按照规则把这个SessionID发回给服务器。Cookie的命名方式类似于SessionID。有时Cookie被人为的禁止,所以出现了其他机制以便在Cookie被禁止时仍然能够把SessionID传递回服务器。这种技术叫做URL重写,就是把SessionID直接附加在URL路径的后面,附加方式也有两种,一种是作为URL路径的附加信息,表现形式为http://www.wantsoft.com/index.asp;jsessionid= ByOK3vjFD75aPnrF7C2HmdnV6QZcEbzWoWiBYEnLerjQ99zWpBng!-145788764 。
    另一种是作为查询字符串附加在URL后面,表现形式为http://www.wantsoft.com/index?js ... 99zWpBng!-145788764 。

     

    展开全文
  • 网络安全协议

    千次阅读 2019-06-29 23:16:48
    文章目录安全协议网络安全协议概述产生安全协议的原因网络安全协议所需要具有的功能安全协议体系结构安全协议体系结构详细介绍IPsec协议IPsec重要协议安全关联传输方式隧道模式IPsec组成IPsec的AH和ESPIPsec的IKE...
  • 常见的网络安全协议

    万次阅读 2019-09-25 20:38:04
    常见的网络安全协议 网络认证协议Kerberos Kerberos 是一种网络认证协议,其设计目标是通过密钥系统为客户机 / 服务器应用程序提供强大的认证服务。该认证过程的实现不依赖于主机操作系统的认证,无需基于主机...
  • 计算机网络 | 一文搞懂什么是TCP/IP协议

    万次阅读 多人点赞 2019-10-28 12:48:16
    计算机与网络设备之间如果要相互通信,双方就必须基于相同的方法.比如如何探测到通信目标.由哪一边先发起通信,使用哪种语言进行通信,怎样结束通信等规则都需要事先确定.不同的硬件,操作系统之间的通信,所有这一切都...
  • Linux网络编程——网络协议入门

    万次阅读 多人点赞 2015-03-13 16:19:35
    我们每天使用互联网,你是否想过,它是如何实现的?全世界几十亿台电脑,连接在一起,两两通信。北京的某一块网卡送出信号,深圳的另一块网卡居然就收到了,两者实际上...理解了这些协议,就理解了网络的原理。因为...
  • 计算机网络协议总结

    万次阅读 多人点赞 2019-05-12 16:35:29
    计算机网络协议全面总结 一、OSI七层协议 物理层: 很久很久以前,那时候还没有现在的外星人超级电脑,或者华为的P30。比较调皮的小明想要把自己机器上写好的一些个人游戏心得(如何玩好王者农药)发给小红(校花)...
  • 计算机网络协议(三)——UDP、TCP、Socket

    万次阅读 多人点赞 2019-09-04 08:39:53
    底层网络知识详解:最重要的传输层概述一、UDP协议二、TCP协议2.1 TCP的三次握手 概述 这个专栏的计算机网络协议,我是在极客时间上学习 已经有三万多人购买的刘超老师的趣谈网络协议专栏,讲的特别好,像看小说...
  • 网络协议极简总结

    万次阅读 多人点赞 2021-02-03 09:15:49
    一、网络分层 1.1OSI七层模型 由国际标准化组织提出的一种概念模型。该模型将通信系统中的数据流划分为七个层,每个中间层为其上一层提供功能,其自身功能则由其下一层提供。OSI将计算机网络体系结构划分为以下七...
  • 网络协议逆向分析

    万次阅读 2017-03-19 21:07:42
    网络协议逆向分析
  • 网络传输协议总结

    千次阅读 2014-04-05 13:51:29
    TCP/IP是目前最实用的网络协议体系,其同样有对应的安全协议体系。IP协议用于网络接口层,最常用的在于传输层(TCP\UDP—SSL\TLS),应用层(HTTP—-HTTPS, Socket,T3)注意HTTP基于TCP协议上,socket针对两类TCP\...
  • 网络协议分析总结

    千次阅读 多人点赞 2020-12-06 16:31:59
    ARP地址解析协议用于将计算机的网络IP地址转化为物理MAC地址,ARP协议的基本功能 就是通过目标设备的IP地址。查询目标设备的MAC地址,以保证通信的顺利进行。 在每台安装有TCP/IP协议的电脑里都有一个ARP缓存表,...
  • 计算机网络协议(四)——HTTP、HTTPS、P2P协议

    万次阅读 多人点赞 2019-09-04 16:08:17
    这个专栏的计算机网络协议,我是在极客时间上学习 已经有三万多人购买的刘超老师的趣谈网络协议专栏,讲的特别好,像看小说一样学习到了平时很枯燥的知识点,计算机网络的书籍太枯燥,感兴趣的同学可以去付费购买,...
  • 【Linux网络编程】网络协议入门

    千次阅读 多人点赞 2019-11-10 18:03:45
    网络层06. 传输层07. 应用层08. 附录 01. 前言 我们每天使用互联网,你是否想过,它是如何实现的? 全世界几十亿台电脑,连接在一起,两两通信。北京的某一块网卡送出信号,深圳的另一块网卡居然就收到了,两者实际...
  • 网络传输协议概述

    千次阅读 2015-03-13 10:40:30
    网络传输协议概述 第二讲:TCP/IP协议概述 网络传输协议或简称为传送协议(Communications Protocol),是指计算机通信的共同语言。现在最普及的计算机通信为网络通信,所以“传送协议”一般都指计算机...
  • 网络协议学习笔记

    万次阅读 2016-10-26 22:40:59
    网络协议为计算机网络中进行数据交换而建立的规则、标准或约定的集合。 网络协议主要由三个要素组成:语义、语法及时序;语义表示要做什么,语法表示要怎么做,时序表示做的顺序。 网络协议网络上所有设备(网络...
  • Linux系统中网络协议网络配置文件的介绍

    千次阅读 多人点赞 2020-07-08 11:29:10
    网络协议网络配置文件的介绍一.网络协议介绍1.1 网络协议的概念1.2 TCP/IP协议1.3 常见的网络应用协议1.3.1 HTTP协议1.3.2 DNS协议1.3.3 FTP协议1.3.4 Telnet协议二.网络配置文件介绍2.1 配置文件介绍2.2 网络接口...
  • 计算机网络——3.网络协议工作原理

    千次阅读 2016-02-27 21:36:34
    网络协议网络技术学习的基础和根本,它是为计算机网络中数据交换建立的某种规则、标准以及相关的约定。本文将讲解数据链路层协议ARP、网络协议IP、传输层协议TCP和UDP、应用层协议HTTP、FTP、POP3等常用协议
  • 常见网络协议报头格式

    千次阅读 2017-04-23 12:03:27
    网络协议,报头格式
  • 应用层的各种网络应用程序基本上都是通过 Linux Socket 编程接口来和内核空间的网络协议栈通信的。Linux Socket 是从 BSD Socket 发展而来的,它是 Linux 操作系统的重要组成部分之一,它是网络应用程序的基础。从...
  • http协议 http简介 http http(hypertext transfer protocol),“超文本传输协议”。 超文本 包含有超链接和各种多媒体元素标记的文本。常见的超文本格式html(超文本标记语言)。 http协议 定义浏览器如何向...
  • 网络通信协议的基本知识

    千次阅读 2015-07-01 11:03:17
    通过初步的了解,我知道IP协议对应于网络层,TCP协议对应于传输层,而HTTP协议对应于应用层,三者从本质上来说没有可比性,socket则是对TCP/IP协议的封装和应用(程序员层面上)。也可以说,TPC/IP协议是传输层协议...
  • 网络协议】IP协议、ARP协议、RARP协议

    千次阅读 多人点赞 2014-06-11 00:04:02
    前20字节和紧接其后的选项部分是IP数据报的首部,前20个字节是固定的,选项可有可无。...TCP/IP首部中的所有二进制整数在网络中传输时都要求以这种次序,因此它又称作网络字节序,其他形式存储的二进制数据,如little
  • 七层网络协议

    万次阅读 2018-03-26 10:59:41
    一、OSI七层网络协议OSI是Open System Interconnect的缩写,意为开放式系统互联。OSI参考模型各个层次的划分遵循下列原则:1)根据不同层次的抽象分层2)每层应当有一个定义明确的功能3)每层功能的选择应该有助于...
  • 常用的三种网络协议

    万次阅读 2017-07-14 16:50:52
    网络协议(Protocol)是一种特殊的软件,是计算机网络实现其功能的最基本机制。网络协议的本质是规则,即各种硬件和软件必须遵循的共同守则。网络协议并不是一套单独的软件,它融合于其他所有的软件系统中,因此可以说...
  • 网络协议篇之DHCP协议(一)—— DHCP协议基础

    万次阅读 多人点赞 2017-08-12 21:39:33
    一,动态主机配置协议DHCP 1,DHCP简介 DHCP(Dynamic Host Configuration Protocol),动态主机配置协议,是一个应用层协议。当我们将客户主机ip地址设置为动态获取方式时,DHCP服务器就会根据DHCP协议给客户端...
  • 传感器网络协议

    千次阅读 2016-11-23 23:35:24
    网络协议结构是网络协议分层以及网络协议的集合,是对网络及其部件所应完成功能的定义和描述。虽然无线传感器网络与传统网络相比有很多不同的地方,但是其网络协议栈都可以划分成TCP/IP的五层模型,如表1所示。...
  • WebSocket 网络通信协议介绍

    千次阅读 2019-06-26 08:41:02
    WebSocket 是一种网络通信协议。RFC6455定义了它的通信标准。 WebSocket 是 HTML5 开始提供的一种在单个 TCP 连接上进行全双工通讯的协议。 二、为什么需要WebSocket? 我们知道,传统的HTTP协议是无状态的,...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 697,779
精华内容 279,111
关键字:

网络新协议