精华内容
下载资源
问答
  • Linux网络编程中socket常见错误分析

    千次阅读 2014-03-18 14:26:36
    socket错误码:   EINTR: 4 阻塞的操作被取消阻塞的调用打断。如设置了发送接收超时,就会遇到这种错误。 只能针对阻塞模式的socket。读,写阻塞的socket时,-1返回,错误号为INTR。另外,如果出现EINTR即...

    socket错误码:

     

    EINTR: 4

    阻塞的操作被取消阻塞的调用打断。如设置了发送接收超时,就会遇到这种错误。

    只能针对阻塞模式的socket。读,写阻塞的socket时,-1返回,错误号为INTR。另外,如果出现EINTR即errno为4,错误描述Interrupted system call,操作也应该继续。如果recv的返回值为0,那表明连接已经断开,接收操作也应该结束。

     

    ETIMEOUT:110

    1、操作超时。一般设置了发送接收超时,遇到网络繁忙的情况,就会遇到这种错误。

    2、服务器做了读数据做了超时限制,读时发生了超时。

    3、错误被描述为“connect time out”,即“连接超时”,这种情况一般发生在服务器主机崩溃。此时客户 TCP 将在一定时间内(依具体实现)持续重发数据分节,试图从服务 TCP 获得一个 ACK 分节。当最终放弃尝试后(此时服务器未重新启动),内核将会向客户进程返回 ETIMEDOUT 错误。如果某个中间路由器判定该服务器主机已经不可达,则一般会响应“destination unreachable”-“目的地不可达”的ICMP消息,相应的客户进程返回的错误是 EHOSTUNREACH 或ENETUNREACH。当服务器重新启动后,由于 TCP 状态丢失,之前所有的连接信息也不存在了,此时对于客户端发来请求将回应 RST。如果客户进程对检测服务器主机是否崩溃很有必要,要求即使客户进程不主动发送数据也能检测出来,那么需要使用其它技术,如配置 SO_KEEPALIVE Socket 选项,或实现某些心跳函数。

     

    EAGAIN:

    1、Send返回值小于要发送的数据数目,会返回EAGAIN和EINTR。

    2、recv 返回值小于请求的长度时说明缓冲区已经没有可读数据,但再读不一定会触发EAGAIN,有可能返回0表示TCP连接已被关闭。

    3、当socket是非阻塞时,如返回此错误,表示写缓冲队列已满,可以做延时后再重试.

    4、在Linux进行非阻塞的socket接收数据时经常出现Resource temporarily unavailable,errno代码为11(EAGAIN),表明在非阻塞模式下调用了阻塞操作,在该操作没有完成就返回这个错误,这个错误不会破坏socket的同步,不用管它,下次循环接着recv就可以。对非阻塞socket而言,EAGAIN不是一种错误。

     

    EPIPE:

    1、Socket 关闭,但是socket号并没有置-1。继续在此socket上进行send和recv,就会返回这种错误。这个错误会引发SIGPIPE信号,系统会将产生此EPIPE错误的进程杀死。所以,一般在网络程序中,首先屏蔽此消息,以免发生不及时设置socket进程被杀死的情况。

    2、write(..) on a socket that has been closed at the other end will cause a SIGPIPE.

    3、错误被描述为“broken pipe”,即“管道破裂”,这种情况一般发生在客户进程不理会(或未及时处理)Socket 错误,继续向服务 TCP 写入更多数据时,内核将向客户进程发送 SIGPIPE 信号,该信号默认会使进程终止(此时该前台进程未进行 core dump)。结合上边的 ECONNRESET 错误可知,向一个 FIN_WAIT2 状态的服务 TCP(已 ACK 响应 FIN 分节)写入数据不成问题,但是写一个已接收了 RST 的 Socket 则是一个错误。

     

    EBADF:

    read(..) or write(..) on a locally closed socket will return EBADF

     

    EFAULT:

    地址错误。

     

    EBUSY:

     

    ECONNREFUSED:

    1、拒绝连接。一般发生在连接建立时。

    拔服务器端网线测试,客户端设置keep alive时,recv较快返回0, 先收到ECONNREFUSED (Connection refused)错误码,其后都是ETIMEOUT。

    2、an error returned from connect(), so it can only occur in a client (if a client is defined as the party that initiates the connection

     

    ECONNRESET:

    1、在客户端服务器程序中,客户端异常退出,并没有回收关闭相关的资源,服务器端会先收到ECONNRESET错误,然后收到EPIPE错误。

    2、连接被远程主机关闭。有以下几种原因:远程主机停止服务,重新启动;当在执行某些操作时遇到失败,因为设置了“keep alive”选项,连接被关闭,一般与ENETRESET一起出现。

    3、远程端执行了一个“hard”或者“abortive”的关闭。应用程序应该关闭socket,因为它不再可用。当执行在一个UDP socket上时,这个错误表明前一个send操作返回一个ICMP“port unreachable”信息。

    4、如果client关闭连接,server端的select并不出错(不返回-1,使用select对唯一一个socket进行non- blocking检测),但是写该socket就会出错,用的是send.错误号:ECONNRESET.读(recv)socket并没有返回错误。

    5、该错误被描述为“connection reset by peer”,即“对方复位连接”,这种情况一般发生在服务进程较客户进程提前终止。当服务进程终止时会向客户 TCP 发送 FIN 分节,客户 TCP 回应 ACK,服务 TCP 将转入 FIN_WAIT2 状态。此时如果客户进程没有处理该 FIN (如阻塞在其它调用上而没有关闭 Socket 时),则客户 TCP 将处于 CLOSE_WAIT 状态。当客户进程再次向 FIN_WAIT2 状态的服务 TCP 发送数据时,则服务 TCP 将立刻响应 RST。一般来说,这种情况还可以会引发另外的应用程序异常,客户进程在发送完数据后,往往会等待从网络IO接收数据,很典型的如 read 或 readline 调用,此时由于执行时序的原因,如果该调用发生在 RST 分节收到前执行的话,那么结果是客户进程会得到一个非预期的 EOF 错误。此时一般会输出“server terminated prematurely”-“服务器过早终止”错误。

     

    EINVAL:

    无效参数。提供的参数非法。有时也会与socket的当前状态相关,如一个socket并没有进入listening状态,此时调用accept,就会产生EINVAL错误。

     

    EMFILE:

    打开了太多的socket。对进程或者线程而言,每种实现方法都有一个最大的可用socket数目处理,或者是全局的,或者是局部的。

     

    EWOULDBLOCK:EAGAIN

    资源暂时不可用。这个错误是从对非阻塞socket进行的不能立即结束的操作返回的,如当没有数据在队列中可以读时,调用recv。并不是fatal错误,稍后操作可以被重复。调用在一个非阻塞的SOCK_STREAM socket 上调用connect时会产生这个错误,因为有时连接建立必须消耗一定的时间。

     

    ENOTCONN

    在一个没有建立连接的socket上,进行read,write操作会返回这个错误。出错的原因是socket没有标识地址。Setsoc也可能会出错。

     

    ECONNRESET

     Connection reset by peer.

    连接被远程主机关闭。有以下几种原因:远程主机停止服务,重新启动;当在执行某些操作时遇到失败,因为设置了“keep alive”选项,连接被关闭,一般与ENETRESET一起出现。

     

    ECONNABORTED

    1、软件导致的连接取消。一个已经建立的连接被host方的软件取消,原因可能是数据传输超时或者是协议错误。

    2、该错误被描述为“software caused connection abort”,即“软件引起的连接中止”。原因在于当服务和客户进程在完成用于 TCP 连接的“三次握手”后,客户 TCP 却发送了一个 RST (复位)分节,在服务进程看来,就在该连接已由 TCP 排队,等着服务进程调用 accept 的时候 RST 却到达了。POSIX 规定此时的 errno 值必须 ECONNABORTED。源自 Berkeley 的实现完全在内核中处理中止的连接,服务进程将永远不知道该中止的发生。服务器进程一般可以忽略该错误,直接再次调用accept。

    当TCP协议接收到RST数据段,表示连接出现了某种错误,函数read将以错误返回,错误类型为ECONNERESET。并且以后所有在这个套接字上的读操作均返回错误。错误返回时返回值小于0。

     

    ENETUNREACH

    网络不可达。Socket试图操作一个不可达的网络。这意味着local的软件知道没有路由到达远程的host。

     

    ENETRESET

    网络重置时丢失连接。

    由于设置了"keep-alive"选项,探测到一个错误,连接被中断。在一个已经失败的连接上试图使用setsockopt操作,也会返回这个错误。

     

    EINPROGRESS:

    操作正在进行中。一个阻塞的操作正在执行。

     

    ENOTSOCK:

    在非socket上执行socket操作。

     

    EDESTADDRREQ:

    需要提供目的地址。

    在一个socket上的操作需要提供地址。如往一个ADDR_ANY 地址上进行sendto操作会返回这个错误。

     

    EMSGSIZE:

    消息体太长。

    发送到socket上的一个数据包大小比内部的消息缓冲区大,或者超过别的网络限制,或是用来接收数据包的缓冲区比数据包本身小。

     

    EPROTOTYPE

    协议类型错误。标识了协议的Socket函数在不支持的socket上进行操作。如ARPA Internet

    UDP协议不能被标识为SOCK_STREAM socket类型。

     

    ENOPROTOOPT

    该错误不是一个 Socket 连接相关的错误。errno 给出该值可能由于,通过 getsockopt 系统调用来获得一个套接字的当前选项状态时,如果发现了系统不支持的选项参数就会引发该错误。

     

    EPROTONOSUPPORT

    不支持的协议。系统中没有安装标识的协议,或者是没有实现。如函数需要SOCK_DGRAM socket,但是标识了stream protocol.。

     

    ESOCKTNOSUPPORT

    Socket类型不支持。指定的socket类型在其address family中不支持。如可选选中选项SOCK_RAW,但实现并不支持SOCK_RAW sockets。

     

    EOPNOTSUPP

     Operation not supported.

     

    The attempted operation is not supported for the type of object referenced. Usually this occurs when a socket descriptor to a socket that cannot support this operation, for example, trying to accept a connection on a datagram socket.

     

    EPFNOSUPPORT

     Protocol family not supported.

     

    The protocol family has not been configured into the system or no implementation for it exists. Has a slightly different meaning to EAFNOSUPPORT, but is interchangeable in most cases, and all Windows Sockets functions that return one of these specify EAFNOSUPPORT.

     

    EAFNOSUPPORT

     Address family not supported by protocol family.

     

    An address incompatible with the requested protocol was used. All sockets are created with an associated "address family" (i.e. AF_INET for Internet Protocols) and a generic protocol type (i.e. SOCK_STREAM). This error will be returned if an incorrect protocol is explicitly requested in the socket call, or if an address of the wrong family is used for a socket, e.g. in sendto.

     

    EADDRINUSE

     Address already in use.

     

    Only one usage of each socket address (protocol/IP address/port) is normally permitted. This error occurs if an application attempts to bind a socket to an IP address/port that has already been used for an existing socket, or a socket that wasn't closed properly, or one that is still in the process of closing. For server applications that need to bind multiple sockets to the same port number, consider using setsockopt(SO_REUSEADDR). Client applications usually need not call bind at all - connect will choose an unused port automatically. When bind is called with a wild-card address (involving ADDR_ANY), a EADDRINUSE error could be delayed until the specific address is "committed." This could happen with a call to other function later, including connect, listen, Connect or JoinLeaf.

     

    EADDRNOTAVAIL

     Cannot assign requested address.

     

    The requested address is not valid in its context. Normally results from an attempt to bind to an address that is not valid for the local machine. This can also result from connect, sendto, Connect, JoinLeaf, or SendTo when the remote address or port is not valid for a remote machine (e.g. address or port 0).

     

    ENETDOWN

     Network is down.

     

    A socket operation encountered a dead network. This could indicate a serious failure of the network system (i.e. the protocol stack that the WinSock DLL runs over), the network interface, or the local network itself.

     

    ENOBUFS

     No buffer space available.

     

    An operation on a socket could not be performed because the system lacked sufficient buffer space or because a queue was full.

     

    EISCONN

     Socket is already connected.

     

    A connect request was made on an already connected socket. Some implementations also return this error if sendto is called on a connected SOCK_DGRAM socket (For SOCK_STREAM sockets, the to parameter in sendto is ignored), although other implementations treat this as a legal occurrence.

     

    连接过程可能出现的错误情况有:

    (1) 如果客户机TCP协议没有接收到对它的SYN数据段的确认,函数以错误返回,错误类型为ETIMEOUT。通常TCP协议在发送SYN数据段失败之后,会多次发送SYN数据段,在所有的发送都高中失败之后,函数以错误返回。

    注:SYN(synchronize)位:请求连接。TCP用这种数据段向对方TCP协议请求建立连接。在这个数据段中,TCP协议将它选择的初始序列号通知对方,并且与对方协议协商最大数据段大小。SYN数据段的序列号为初始序列号,这个SYN数据段能够被确认。当协议接收到对这个数据段的确认之后,建立TCP连接。

    (2) 如果远程TCP协议返回一个RST数据段,函数立即以错误返回,错误类型为ECONNREFUSED。当远程机器在SYN数据段指定的目的端口号处没有服务进程在等待连接时,远程机器的TCP协议将发送一个RST数据段,向客户机报告这个错误。客户机的TCP协议在接收到RST数据段后不再继续发送SYN数据段,函数立即以错误返回。

    注:RST(reset)位:表示请求重置连接。当TCP协议接收到一个不能处理的数据段时,向对方TCP协议发送这种数据段,表示这个数据段所标识的连接出现了某种错误,请求TCP协议将这个连接清除。有3种情况可能导致TCP协议发送RST数据段:(1)SYN数据段指定的目的端口处没有接收进程在等待;(2)TCP协议想放弃一个已经存在的连接;(3)TCP接收到一个数据段,但是这个数据段所标识的连接不存在。接收到RST数据段的TCP协议立即将这条连接非正常地断开,并向应用程序报告错误。

    (3) 如果客户机的SYN数据段导致某个路由器产生“目的地不可到达”类型的ICMP消息,函数以错误返回,错误类型为EHOSTUNREACH或ENETUNREACH。通常TCP协议在接收到这个ICMP消息之后,记录这个消息,然后继续几次发送SYN数据段,在所有的发送都告失败之后,TCP协议检查这个ICMP消息,函数以错误返回。

    注:ICMP:Internet 消息控制协议。Internet的运行主要是由Internet的路由器来控制,路由器完成IP数据包的发送和接收,如果发送数据包时发生错误,路由器使用 ICMP协议来报告这些错误。ICMP数据包是封装在IP数据包的数据部分中进行传输的,其格式如下:

    类型

    校验和

    数据

    0 8 16 24 31

    类型:指出ICMP数据包的类型。

    代码:提供ICMP数据包的进一步信息。

    校验和:提供了对整个ICMP数据包内容的校验和。

    ICMP数据包主要有以下类型:

    (1) 目的地不可到达:A、目的主机未运行;B、目的地址不存在;C、路由表中没有目的地址对应的条目,因而路由器无法找到去往目的主机的路由。

    (2) 超时:路由器将接收到的IP数据包的生存时间(TTL)域减1,如果这个域的值变为0,路由器丢弃这个IP数据包,并且发送这种ICMP消息。

    (3) 参数出错:当IP数据包中有无效域时发送。

    (4) 重定向:将一条新的路径通知主机。

    (5) ECHO请求、ECHO回答:这两条消息用语测试目的主机是否可以到达。请求者向目的主机发送ECHO请求ICMP数据包,目的主机在接收到这个ICMP数据包之后,返回ECHO回答ICMP数据包。

    (6) 时戳请求、时戳回答:ICMP协议使用这两种消息从其他机器处获得其时钟的当前时间。

     

    调用函数connect的过程中,当客户机TCP协议发送了SYN数据段的确认之后,TCP状态由CLOSED状态转为SYN_SENT状态,在接收到对 SYN数据段的确认之后,TCP状态转换成ESTABLISHED状态,函数成功返回。如果调用函数connect失败,应该用close关闭这个套接字描述符,不能再次使用这个套接字描述符来调用函数connect。

     

    connect函数的出错处理:

    (1)ETIMEOUT-connection timed out 目的主机不存在,没有返回任何相应,例如主机关闭

    (2)ECONNREFUSED-connection refused(硬错)到达目的主机后,由于各种原因建立不了连接,主机返回RST(复位)响应,例如主机监听进程未启用,tcp取消连接等

    (3)EHOSTTUNREACH-no route to host(软错)路由上引发了一个目的地不可达的ICMP错误

     

    其中(1)(3),客户端会进行定时多次重试,一定次数后才返回错误。另外,当connect连接失败时,sockfd套接口不可用,必须关闭后重新socket分配才行。

     

    getsockopt 和 setsockopt 还可能引发以下错误:

     

    getsockopt/setsockopt(2) man page 写道

    ERRORS

     

    The getsockopt() and setsockopt() system calls will succeed unless:

     

    [EBADF] The argument socket is not a valid file descriptor.

    [EFAULT] The address pointed to by option_value is not in a valid part of the process dress space. For getsockopt(), this error may also be returned if option_len is not in a valid part of the process address space.

    [EINVAL] The option is invalid at the level indicated.

    [ENOBUFS]Insufficient memory buffers are available.

    [ENOPROTOOPT] The option is unknown at the level indicated.

    [ENOTSOCK] The argument socket is not a socket (e.g., a plain file).

     

    The setsockopt() system call will succeed unless:

     

    [EDOM] The argument option_value is out of bounds.

    [EISCONN]socket is already connected and a specified option cannot be set while this is the case.

    展开全文
  • 而实际在网络编程中很多情况都是在发送和接收数据时出现了socket上有异常导致操作无法完成,而返回值只能涉及到操作相关的字节数和是否错误,并不能反映完全的错误信息。 也不讨论windows上的错误信息获取,而主要...

    这里不讨论直接调用后,通过返回值返回错误号的情况,因为这种情况是比较简单的。而实际在网络编程中很多情况都是在发送和接收数据时出现了socket上有异常导致操作无法完成,而返回值只能涉及到操作相关的字节数和是否错误,并不能反映完全的错误信息。
    也不讨论windows上的错误信息获取,而主要是Linux上的。
    实际的常用方法如下:
    方法一:strerror
    这个函数以及errno全局变量是最常用的获取Linux中错误信息的函数。因此使用起来相当顺手,而且这个函数也可以捕捉所有的Linux中的错误,因为其使用的错误号是全局变量。
    劣势也在于此:在获取这个错误时不能完全保证这个错误信息就是之前的,很由可能在获取该信息时错误号和错误信息已经再度更新修改了,会造成误判。在网络编程中,特别是在异步的网络操作时,检测到错误后,再去获取错误是又时间差的,容易被覆盖修改。

    方法二:gai_strerror
    有很多socket相关的函数的错误号和错误信息是无法通过errno,strerror(errno)函数去获取的。其原因在于很多函数并没有将errno.h作为错误码:
    相关说明:
    if getaddrinfo fails, we can’t use perror or strerror to generate an error message. Instead, we need to call gai_strerrorto convert the error code returned into an error message.
    下面的 getnameinfo 也用 gai_strerror 收集错误信息。
    这也是不能用 perror or strerror 处理的原因,因为它没有用 errno(#include <errno.h>) 作为错误代码。
    所以使用gai_strerror的主要是为了统一OS的转换的getnameinfo 、getaddrinfo 之类的函数,需要尤其注意。
    缺点:其参数是getnameinfo 、getaddrinfo 之类的函数的执行后的返回值,所以只适用于特定范围。

    方法三:getsockopt(第三个参数SO_ERROR)
    这个函数将获取fd上的错误信息。如果epoll获取select、poll检测到fd上有异常,那么通过getsockopt的SO_ERROR来获取fd上的错误码无疑是最准确地。

    因此,综上所述,这些错误信息获取方式各有优缺点和适宜的场景,大家可以根据使用场景,合理的去调用。

    展开全文
  • 网络编程学习笔记一:Socket编程

    万次阅读 多人点赞 2013-03-21 01:11:11
    话虽些许夸张,但是事实也是,现在的网络编程几乎都是用的socket。 ——有感于实际编程和开源项目研究。 我们深谙信息交流的价值,那网络进程之间如何通信,如我们每天打开浏览器浏览网页时,浏览器的进程怎么与...

    “一切皆Socket!”

    话虽些许夸张,但是事实也是,现在的网络编程几乎都是用的socket。

    ——有感于实际编程和开源项目研究。

    我们深谙信息交流的价值,那网络中进程之间如何通信,如我们每天打开浏览器浏览网页时,浏览器的进程怎么与web服务器通信的?当你用QQ聊天时,QQ进程怎么与服务器或你好友所在的QQ进程通信?这些都得靠socket?那什么是socket?socket的类型有哪些?还有socket的基本函数,这些都是本文想介绍的。本文的主要内容如下:

    • 1、网络中进程之间如何通信?
    • 2、Socket是什么?
    • 3、socket的基本操作
      • 3.1、socket()函数
      • 3.2、bind()函数
      • 3.3、listen()、connect()函数
      • 3.4、accept()函数
      • 3.5、read()、write()函数等
      • 3.6、close()函数
    • 4、socket中TCP的三次握手建立连接详解
    • 5、socket中TCP的四次握手释放连接详解
    • 6、一个例子(实践一下)
    • 7、留下一个问题,欢迎大家回帖回答!!!

    1、网络中进程之间如何通信?

    本地的进程间通信(IPC)有很多种方式,但可以总结为下面4类:

    • 消息传递(管道、FIFO、消息队列)
    • 同步(互斥量、条件变量、读写锁、文件和写记录锁、信号量)
    • 共享内存(匿名的和具名的)
    • 远程过程调用(Solaris门和Sun RPC)

    但这些都不是本文的主题!我们要讨论的是网络中进程之间如何通信?首要解决的问题是如何唯一标识一个进程,否则通信无从谈起!在本地可以通过进程PID来唯一标识一个进程,但是在网络中这是行不通的。其实TCP/IP协议族已经帮我们解决了这个问题,网络层的“ip地址可以唯一标识网络中的主机,而传输层的“协议+端口可以唯一标识主机中的应用程序(进程)。这样利用三元组(ip地址,协议,端口)就可以标识网络的进程了,网络中的进程通信就可以利用这个标志与其它进程进行交互。

    使用TCP/IP协议的应用程序通常采用应用编程接口:UNIX  BSD的套接字(socket)和UNIX System V的TLI(已经被淘汰),来实现网络进程之间的通信。就目前而言,几乎所有的应用程序都是采用socket,而现在又是网络时代,网络中进程通信是无处不在,这就是我为什么说“一切皆socket”。

    2、什么是Socket?

    上面我们已经知道网络中的进程是通过socket来通信的,那什么是socket呢?socket起源于Unix,而Unix/Linux基本哲学之一就是“一切皆文件”,都可以用“打开open –> 读写write/read –> 关闭close”模式来操作。我的理解就是Socket就是该模式的一个实现,socket即是一种特殊的文件,一些socket函数就是对其进行的操作(读/写IO、打开、关闭),这些函数我们在后面进行介绍。

    socket一词的起源

    在组网领域的首次使用是在1970年2月12日发布的文献IETF RFC33中发现的,撰写者为Stephen Carr、Steve Crocker和Vint Cerf。根据美国计算机历史博物馆的记载,Croker写道:“命名空间的元素都可称为套接字接口。一个套接字接口构成一个连接的一端,而一个连接可完全由一对套接字接口规定。”计算机历史博物馆补充道:“这比BSD的套接字接口定义早了大约12年。”

    3、socket的基本操作

    既然socket是“open—write/read—close”模式的一种实现,那么socket就提供了这些操作对应的函数接口。下面以TCP为例,介绍几个基本的socket接口函数。

    3.1、socket()函数

    int socket(int domain, int type, int protocol);

     socket函数对应于普通文件的打开操作。普通文件的打开操作返回一个文件描述字,而socket()用于创建一个socket描述符(socket descriptor),它唯一标识一个socket。这个socket描述字跟文件描述字一样,后续的操作都有用到它,把它作为参数,通过它来进行一些读写操作。

    正如可以给fopen的传入不同参数值,以打开不同的文件。创建socket的时候,也可以指定不同的参数创建不同的socket描述符,socket函数的三个参数分别为:

    • domain:即协议域,又称为协议族(family)。常用的协议族有,AF_INETAF_INET6AF_LOCAL(或称AF_UNIX,Unix域socket)、AF_ROUTE等等。协议族决定了socket的地址类型,在通信中必须采用对应的地址,如AF_INET决定了要用ipv4地址(32位的)与端口号(16位的)的组合、AF_UNIX决定了要用一个绝对路径名作为地址。
    • type:指定socket类型。常用的socket类型有,SOCK_STREAMSOCK_DGRAMSOCK_RAWSOCK_PACKETSOCK_SEQPACKET等等(socket的类型有哪些?)。
    • protocol:故名思意,就是指定协议。常用的协议有,IPPROTO_TCPIPPTOTO_UDPIPPROTO_SCTPIPPROTO_TIPC等,它们分别对应TCP传输协议、UDP传输协议、STCP传输协议、TIPC传输协议(这个协议我将会单独开篇讨论!)。

    注意:并不是上面的type和protocol可以随意组合的,如SOCK_STREAM不可以跟IPPROTO_UDP组合。当protocol为0时,会自动选择type类型对应的默认协议。

    当我们调用socket创建一个socket时,返回的socket描述字它存在于协议族(address family,AF_XXX)空间中,但没有一个具体的地址。如果想要给它赋值一个地址,就必须调用bind()函数,否则就当调用connect()listen()时系统会自动随机分配一个端口。

    3.2、bind()函数

    正如上面所说bind()函数把一个地址族中的特定地址赋给socket。例如对应AF_INETAF_INET6就是把一个ipv4或ipv6地址和端口号组合赋给socket。

    int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

    函数的三个参数分别为:

    • sockfd:即socket描述字,它是通过socket()函数创建了,唯一标识一个socket。bind()函数就是将给这个描述字绑定一个名字。
    • addr:一个const struct sockaddr *指针,指向要绑定给sockfd的协议地址。这个地址结构根据地址创建socket时的地址协议族的不同而不同,如ipv4对应的是: 
      struct sockaddr_in {
          sa_family_t    sin_family; /* address family: AF_INET */
          in_port_t      sin_port;   /* port in network byte order */
          struct in_addr sin_addr;   /* internet address */
      };
      
      /* Internet address. */
      struct in_addr {
          uint32_t       s_addr;     /* address in network byte order */
      };

      ipv6对应的是: 

      struct sockaddr_in6 { 
          sa_family_t     sin6_family;   /* AF_INET6 */ 
          in_port_t       sin6_port;     /* port number */ 
          uint32_t        sin6_flowinfo; /* IPv6 flow information */ 
          struct in6_addr sin6_addr;     /* IPv6 address */ 
          uint32_t        sin6_scope_id; /* Scope ID (new in 2.4) */ 
      };
      
      struct in6_addr { 
          unsigned char   s6_addr[16];   /* IPv6 address */ 
      };

      Unix域对应的是: 

      #define UNIX_PATH_MAX    108
      
      struct sockaddr_un { 
          sa_family_t sun_family;               /* AF_UNIX */ 
          char        sun_path[UNIX_PATH_MAX];  /* pathname */ 
      };

       

    • addrlen:对应的是地址的长度。

    通常服务器在启动的时候都会绑定一个众所周知的地址(如ip地址+端口号),用于提供服务,客户就可以通过它来接连服务器;而客户端就不用指定,有系统自动分配一个端口号和自身的ip地址组合。这就是为什么通常服务器端在listen之前会调用bind(),而客户端就不会调用,而是在connect()时由系统随机生成一个。

    网络字节序与主机字节序

    主机字节序就是我们平常说的大端和小端模式:不同的CPU有不同的字节序类型,这些字节序是指整数在内存中保存的顺序,这个叫做主机序。引用标准的Big-Endian和Little-Endian的定义如下:

      a) Little-Endian就是低位字节排放在内存的低地址端,高位字节排放在内存的高地址端。

      b) Big-Endian就是高位字节排放在内存的低地址端,低位字节排放在内存的高地址端。

    网络字节序:4个字节的32 bit值以下面的次序传输:首先是0~7bit,其次8~15bit,然后16~23bit,最后是24~31bit。这种传输次序称作大端字节序。由于TCP/IP首部中所有的二进制整数在网络中传输时都要求以这种次序,因此它又称作网络字节序。字节序,顾名思义字节的顺序,就是大于一个字节类型的数据在内存中的存放顺序,一个字节的数据没有顺序的问题了。

    所以:在将一个地址绑定到socket的时候,请先将主机字节序转换成为网络字节序,而不要假定主机字节序跟网络字节序一样使用的是Big-Endian。由于这个问题曾引发过血案!公司项目代码中由于存在这个问题,导致了很多莫名其妙的问题,所以请谨记对主机字节序不要做任何假定,务必将其转化为网络字节序再赋给socket。

    3.3、listen()、connect()函数

    如果作为一个服务器,在调用socket()bind()之后就会调用listen()来监听这个socket,如果客户端这时调用connect()发出连接请求,服务器端就会接收到这个请求。

    int listen(int sockfd, int backlog);
    int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

    listen函数的第一个参数即为要监听的socket描述字,第二个参数为相应socket可以排队的最大连接个数。socket()函数创建的socket默认是一个主动类型的,listen函数将socket变为被动类型的,等待客户的连接请求。

    connect函数的第一个参数即为客户端的socket描述字,第二参数为服务器的socket地址,第三个参数为socket地址的长度。客户端通过调用connect函数来建立与TCP服务器的连接。

    3.4、accept()函数

    TCP服务器端依次调用socket()bind()listen()之后,就会监听指定的socket地址了。TCP客户端依次调用socket()connect()之后就想TCP服务器发送了一个连接请求。TCP服务器监听到这个请求之后,就会调用accept()函数取接收请求,这样连接就建立好了。之后就可以开始网络I/O操作了,即类同于普通文件的读写I/O操作。

    int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

    accept函数的第一个参数为服务器的socket描述字,第二个参数为指向struct sockaddr *的指针,用于返回客户端的协议地址,第三个参数为协议地址的长度。如果accpet成功,那么其返回值是由内核自动生成的一个全新的描述字,代表与返回客户的TCP连接。

    注意:accept的第一个参数为服务器的socket描述字,是服务器开始调用socket()函数生成的,称为监听socket描述字;而accept函数返回的是已连接的socket描述字。一个服务器通常通常仅仅只创建一个监听socket描述字,它在该服务器的生命周期内一直存在。内核为每个由服务器进程接受的客户连接创建了一个已连接socket描述字,当服务器完成了对某个客户的服务,相应的已连接socket描述字就被关闭。

    3.5、read()、write()等函数

    万事具备只欠东风,至此服务器与客户已经建立好连接了。可以调用网络I/O进行读写操作了,即实现了网咯中不同进程之间的通信!网络I/O操作有下面几组:

    • read()/write()
    • recv()/send()
    • readv()/writev()
    • recvmsg()/sendmsg()
    • recvfrom()/sendto()

    我推荐使用recvmsg()/sendmsg()函数,这两个函数是最通用的I/O函数,实际上可以把上面的其它函数都替换成这两个函数。它们的声明如下:

           #include <unistd.h>
    
           ssize_t read(int fd, void *buf, size_t count);
           ssize_t write(int fd, const void *buf, size_t count);
    
           #include <sys/types.h>
           #include <sys/socket.h>
    
           ssize_t send(int sockfd, const void *buf, size_t len, int flags);
           ssize_t recv(int sockfd, void *buf, size_t len, int flags);
    
           ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,
                          const struct sockaddr *dest_addr, socklen_t addrlen);
           ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,
                            struct sockaddr *src_addr, socklen_t *addrlen);
    
           ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags);
           ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);

    read函数是负责从fd中读取内容.当读成功时,read返回实际所读的字节数,如果返回的值是0表示已经读到文件的结束了,小于0表示出现了错误。如果错误为EINTR说明读是由中断引起的,如果是ECONNREST表示网络连接出了问题。

    write函数将buf中的nbytes字节内容写入文件描述符fd.成功时返回写的字节数。失败时返回-1,并设置errno变量。 在网络程序中,当我们向套接字文件描述符写时有俩种可能。1)write的返回值大于0,表示写了部分或者是全部的数据。2)返回的值小于0,此时出现了错误。我们要根据错误类型来处理。如果错误为EINTR表示在写的时候出现了中断错误。如果为EPIPE表示网络连接出现了问题(对方已经关闭了连接)。

    其它的我就不一一介绍这几对I/O函数了,具体参见man文档或者baidu、Google,下面的例子中将使用到send/recv。

    3.6、close()函数

    在服务器与客户端建立连接之后,会进行一些读写操作,完成了读写操作就要关闭相应的socket描述字,好比操作完打开的文件要调用fclose关闭打开的文件。

    #include <unistd.h>
    int close(int fd);

    close一个TCP socket的缺省行为时把该socket标记为以关闭,然后立即返回到调用进程。该描述字不能再由调用进程使用,也就是说不能再作为read或write的第一个参数。

    注意:close操作只是使相应socket描述字的引用计数-1,只有当引用计数为0的时候,才会触发TCP客户端向服务器发送终止连接请求。

    4、socket中TCP的三次握手建立连接详解

    我们知道tcp建立连接要进行“三次握手”,即交换三个分组。大致流程如下:

    • 客户端向服务器发送一个SYN J
    • 服务器向客户端响应一个SYN K,并对SYN J进行确认ACK J+1
    • 客户端再想服务器发一个确认ACK K+1

    只有就完了三次握手,但是这个三次握手发生在socket的那几个函数中呢?请看下图:

    image

    图1、socket中发送的TCP三次握手

    从图中可以看出,当客户端调用connect时,触发了连接请求,向服务器发送了SYN J包,这时connect进入阻塞状态;服务器监听到连接请求,即收到SYN J包,调用accept函数接收请求向客户端发送SYN K ,ACK J+1,这时accept进入阻塞状态;客户端收到服务器的SYN K ,ACK J+1之后,这时connect返回,并对SYN K进行确认;服务器收到ACK K+1时,accept返回,至此三次握手完毕,连接建立。

    总结:客户端的connect在三次握手的第二个次返回,而服务器端的accept在三次握手的第三次返回。

    5、socket中TCP的四次握手释放连接详解

    上面介绍了socket中TCP的三次握手建立过程,及其涉及的socket函数。现在我们介绍socket中的四次握手释放连接的过程,请看下图:

    image

    图2、socket中发送的TCP四次握手

    图示过程如下:

    • 某个应用进程首先调用 close主动关闭连接,这时TCP发送一个FIN M;
    • 另一端接收到FIN M之后,执行被动关闭,对这个FIN进行确认。它的接收也作为文件结束符传递给应用进程,因为FIN的接收意味着应用进程在相应的连接上再也接收不到额外数据;
    • 一段时间之后,接收到文件结束符的应用进程调用 close关闭它的socket。这导致它的TCP也发送一个FIN N;
    • 接收到这个FIN的源发送端TCP对它进行确认。

    这样每个方向上都有一个FIN和ACK。

    6、一个例子(实践一下)

    说了这么多了,动手实践一下。下面编写一个简单的服务器、客户端(使用TCP)——服务器端一直监听本机的6666号端口,如果收到连接请求,将接收请求并接收客户端发来的消息;客户端与服务器端建立连接并发送一条消息。

    服务器端代码:

    #include<stdio.h> #include<stdlib.h> #include<string.h> #include<errno.h> #include<sys/types.h> #include<sys/socket.h> #include<netinet/in.h>
    #define MAXLINE 4096 int main(int argc, char** argv) { int listenfd, connfd; struct sockaddr_in servaddr; 
    char buff[4096]; int n;
    if( (listenfd = socket(AF_INET, SOCK_STREAM, 0)) == -1 ){ printf("create socket error: %s(errno: %d)\n",strerror(errno),errno); exit(0); } 
    memset(&servaddr, 0, sizeof(servaddr)); 
    servaddr.sin_family = AF_INET; servaddr.sin_addr.s_addr = htonl(INADDR_ANY); servaddr.sin_port = htons(6666); 
    if( bind(listenfd, (struct sockaddr*)&servaddr, sizeof(servaddr)) == -1){ printf("bind socket error: %s(errno: %d)\n",strerror(errno),errno); exit(0); } 
    if( listen(listenfd, 10) == -1){ printf("listen socket error: %s(errno: %d)\n",strerror(errno),errno); exit(0); } 
    printf("======waiting for client's request======\n"); 
    while(1){ if( (connfd = accept(listenfd, (struct sockaddr*)NULL, NULL)) == -1){ printf("accept socket error: %s(errno: %d)",strerror(errno),errno); continue; } n = recv(connfd, buff, MAXLINE, 0); buff[n] = '\0'; 
    printf("recv msg from client: %s\n", buff); close(connfd); } close(listenfd); }

    客户端代码:

    #include<stdio.h> #include<stdlib.h> #include<string.h> #include<errno.h> #include<sys/types.h> #include<sys/socket.h> #include<netinet/in.h> 
    #define MAXLINE 4096 int main(int argc, char** argv) { int sockfd, n; char recvline[4096], sendline[4096]; 
    struct sockaddr_in servaddr; if( argc != 2){ printf("usage: ./client <ipaddress>\n"); exit(0); } if( (sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0){ printf("create socket error: %s(errno: %d)\n", strerror(errno),errno); 
    exit(0); } memset(&servaddr, 0, sizeof(servaddr)); servaddr.sin_family = AF_INET; servaddr.sin_port = htons(6666); if( inet_pton(AF_INET, argv[1], &servaddr.sin_addr) <= 0){ printf("inet_pton error for %s\n",argv[1]); exit(0); } 
    if( connect(sockfd, (struct sockaddr*)&servaddr, sizeof(servaddr)) < 0){ printf("connect error: %s(errno: %d)\n",strerror(errno),errno); exit(0); } 
    printf("send msg to server: \n"); fgets(sendline, 4096, stdin); 
    if( send(sockfd, sendline, strlen(sendline), 0) < 0) { printf("send msg error: %s(errno: %d)\n", strerror(errno), errno); exit(0); } close(sockfd); exit(0); }

    当然上面的代码很简单,也有很多缺点,这就只是简单的演示socket的基本函数使用。其实不管有多复杂的网络程序,都使用的这些基本函数。上面的服务器使用的是迭代模式的,即只有处理完一个客户端请求才会去处理下一个客户端的请求,这样的服务器处理能力是很弱的,现实中的服务器都需要有并发处理能力!为了需要并发处理,服务器需要fork()一个新的进程或者线程去处理请求等。

    7、动动手

    留下一个问题,欢迎大家回帖回答!!!是否熟悉Linux下网络编程?如熟悉,编写如下程序完成如下功能:

    服务器端:

    接收地址192.168.100.2的客户端信息,如信息为“Client Query”,则打印“Receive Query”

    客户端:

    向地址192.168.100.168的服务器端顺序发送信息“Client Query test”,“Cleint Query”,“Client Query Quit”,然后退出。

    题目中出现的ip地址可以根据实际情况定。

    ——本文只是介绍了简单的socket编程。

    更为复杂的需要自己继续深入。

    (unix domain socket)使用udp发送>=128K的消息会报ENOBUFS的错误(一个实际socket编程中遇到的问题,希望对你有帮助)

     

     

    作者:吴秦
    出处:http://www.cnblogs.com/skynet/
    本文基于署名 2.5 中国大陆许可协议发布,欢迎转载,演绎或用于商业目的,但是必须保留本文的署名吴秦(包含链接).

    http://www.cnblogs.com/skynet/archive/2010/12/12/1903949.html

     

    展开全文
  • 熟练掌握Linux下的TCP/IP网络编程,至少有三个层面的知识需要熟悉: 1. TCP/IP协议(如连接的建立和终止、重传和确认、滑动窗口和拥塞控制等等) 2. Socket I/O系统调用(重点如read/write),这是TCP/IP协议在...

     熟练掌握Linux下的TCP/IP网络编程,至少有三个层面的知识需要熟悉:

    1. TCP/IP协议(如连接的建立和终止、重传和确认、滑动窗口和拥塞控制等等)

    2. Socket I/O系统调用(重点如read/write),这是TCP/IP协议在应用层表现出来的行为。

    3. 编写Performant, Scalable的服务器程序。包括多线程、IO Multiplexing、非阻塞、异步等各种技术。

    关于TCP/IP协议,建议参考Richard Stevens的《TCP/IP Illustrated,vol1》(TCP/IP详解卷1)。

    关于第二层面,依然建议Richard Stevens的《Unix network proggramming,vol1》(Unix网络编程卷1),这两本书公认是Unix网络编程的圣经。

    至于第三个层面,UNP的书中有所提及,也有著名的C10K问题,业界也有各种各样的框架和解决方案,本人才疏学浅,在这里就不一一敷述。

     

    本文的重点在于第二个层面,主要总结一下Linux下TCP/IP网络编程中的read/write系统调用的行为,知识来源于自己网络编程的粗浅经验和对《Unix网络编程卷1》相关章节的总结。由于本人接触Linux下网络编程时间不长,错误和疏漏再所难免,望看官不吝赐教。

     

    一. read/write的语义:为什么会阻塞?

    先从write说起:

    #include <unistd.h>
    ssize_t write(int fd, const void *buf, size_t count);

    首先,write成功返回,只是buf中的数据被复制到了kernel中的TCP发送缓冲区。至于数据什么时候被发往网络,什么时候被对方主机接收,什么时候被对方进程读取,系统调用层面不会给予任何保证和通知。

    write在什么情况下会阻塞?当kernel的该socket的发送缓冲区已满时。对于每个socket,拥有自己的send buffer和receive buffer。从Linux 2.6开始,两个缓冲区大小都由系统来自动调节(autotuning),但一般在default和max之间浮动。

    # 获取socket的发送/接受缓冲区的大小:(后面的值是在我在Linux 2.6.38 x86_64上测试的结果)
    sysctl net.core.wmem_default       #126976
    sysctl net.core.wmem_max        #131071
    sysctl net.core.wmem_default       #126976
    sysctl net.core.wmem_max           #131071

    已经发送到网络的数据依然需要暂存在send buffer中,只有收到对方的ack后,kernel才从buffer中清除这一部分数据,为后续发送数据腾出空间。接收端将收到的数据暂存在receive buffer中,自动进行确认。但如果socket所在的进程不及时将数据从receive buffer中取出,最终导致receive buffer填满,由于TCP的滑动窗口和拥塞控制,接收端会阻止发送端向其发送数据。这些控制皆发生在TCP/IP栈中,对应用程序是透明的,应用程序继续发送数据,最终导致send buffer填满,write调用阻塞。

    一般来说,由于接收端进程从socket读数据的速度跟不上发送端进程向socket写数据的速度,最终导致发送端write调用阻塞。

    而read调用的行为相对容易理解,从socket的receive buffer中拷贝数据到应用程序的buffer中。read调用阻塞,通常是发送端的数据没有到达。

     

    二. blocking(默认)和nonblock模式下read/write行为的区别:

    将socket fd设置为nonblock(非阻塞)是在服务器编程中常见的做法,采用blocking IO并为每一个client创建一个线程的模式开销巨大且可扩展性不佳(带来大量的切换开销),更为通用的做法是采用线程池+Nonblock I/O+Multiplexing(select/poll,以及Linux上特有的epoll)。

    1
    2
    3
    4
    5
    6
    7
    8
    // 设置一个文件描述符为nonblock
    int set_nonblocking( int fd)
    {
         int flags;
         if ((flags = fcntl(fd, F_GETFL, 0)) == -1)
             flags = 0;
         return fcntl(fd, F_SETFL, flags | O_NONBLOCK);
    }

    几个重要的结论:

    1. read总是在接收缓冲区有数据时立即返回,而不是等到给定的read buffer填满时返回。

    只有当receive buffer为空时,blocking模式才会等待,而nonblock模式下会立即返回-1(errno = EAGAIN或EWOULDBLOCK)

    2. blocking的write只有在缓冲区足以放下整个buffer时才返回(与blocking read并不相同)

    nonblock write则是返回能够放下的字节数,之后调用则返回-1(errno = EAGAIN或EWOULDBLOCK)

     对于blocking的write有个特例:当write正阻塞等待时对面关闭了socket,则write则会立即将剩余缓冲区填满并返回所写的字节数,再次调用则write失败(connection reset by peer),这正是下个小节要提到的:

     

    三. read/write对连接异常的反馈行为:

    对应用程序来说,与另一进程的TCP通信其实是完全异步的过程:

    1. 我并不知道对面什么时候、能否收到我的数据

    2. 我不知道什么时候能够收到对面的数据

    3. 我不知道什么时候通信结束(主动退出或是异常退出、机器故障、网络故障等等)

    对于1和2,采用write() -> read() -> write() -> read() ->...的序列,通过blocking read或者nonblock read+轮询的方式,应用程序基于可以保证正确的处理流程。

    对于3,kernel将这些事件的“通知”通过read/write的结果返回给应用层。


    假设A机器上的一个进程a正在和B机器上的进程b通信:某一时刻a正阻塞在socket的read调用上(或者在nonblock下轮询socket)

    当b进程终止时,无论应用程序是否显式关闭了socket(OS会负责在进程结束时关闭所有的文件描述符,对于socket,则会发送一个FIN包到对面)。

    ”同步通知“:进程a对已经收到FIN的socket调用read,如果已经读完了receive buffer的剩余字节,则会返回EOF:0

    ”异步通知“:如果进程a正阻塞在read调用上(前面已经提到,此时receive buffer一定为空,因为read在receive buffer有内容时就会返回),则read调用立即返回EOF,进程a被唤醒。

    socket在收到FIN后,虽然调用read会返回EOF,但进程a依然可以其调用write,因为根据TCP协议,收到对方的FIN包只意味着对方不会再发送任何消息。 在一个双方正常关闭的流程中,收到FIN包的一端将剩余数据发送给对面(通过一次或多次write),然后关闭socket。

    但是事情远远没有想象中简单。优雅地(gracefully)关闭一个TCP连接,不仅仅需要双方的应用程序遵守约定,中间还不能出任何差错。

    假如b进程是异常终止的,发送FIN包是OS代劳的,b进程已经不复存在,当机器再次收到该socket的消息时,会回应RST(因为拥有该socket的进程已经终止)。a进程对收到RST的socket调用write时,操作系统会给a进程发送SIGPIPE,默认处理动作是终止进程,知道你的进程为什么毫无征兆地死亡了吧:)

    from 《Unix Network programming, vol1》 3rd Edition:

    "It is okay to write to a socket that has received a FIN, but it is an error to write to a socket that has received an RST."

    通过以上的叙述,内核通过socket的read/write将双方的连接异常通知到应用层,虽然很不直观,似乎也够用。

    这里说一句题外话:

    不知道有没有同学会和我有一样的感慨:在写TCP/IP通信时,似乎没怎么考虑连接的终止或错误,只是在read/write错误返回时关闭socket,程序似乎也能正常运行,但某些情况下总是会出奇怪的问题。想完美处理各种错误,却发现怎么也做不对。

    原因之一是:socket(或者说TCP/IP栈本身)对错误的反馈能力是有限的。

     

    考虑这样的错误情况:

    不同于b进程退出(此时OS会负责为所有打开的socket发送FIN包),当B机器的OS崩溃(注意不同于人为关机,因为关机时所有进程的退出动作依然能够得到保证)/主机断电/网络不可达时,a进程根本不会收到FIN包作为连接终止的提示。

    如果a进程阻塞在read上,那么结果只能是永远的等待。

    如果a进程先write然后阻塞在read,由于收不到B机器TCP/IP栈的ack,TCP会持续重传12次(时间跨度大约为9分钟),然后在阻塞的read调用上返回错误:ETIMEDOUT/EHOSTUNREACH/ENETUNREACH

    假如B机器恰好在某个时候恢复和A机器的通路,并收到a某个重传的pack,因为不能识别所以会返回一个RST,此时a进程上阻塞的read调用会返回错误ECONNREST

    恩,socket对这些错误还是有一定的反馈能力的,前提是在对面不可达时你依然做了一次write调用,而不是轮询或是阻塞在read上,那么总是会在重传的周期内检测出错误。如果没有那次write调用,应用层永远不会收到连接错误的通知。

    write的错误最终通过read来通知应用层,有点阴差阳错?

     

    四. 还需要做什么?

    至此,我们知道了仅仅通过read/write来检测异常情况是不靠谱的,还需要一些额外的工作:

    1. 使用TCP的KEEPALIVE功能?

    cat /proc/sys/net/ipv4/tcp_keepalive_time
    7200
    
    cat /proc/sys/net/ipv4/tcp_keepalive_intvl
    75
    
    cat /proc/sys/net/ipv4/tcp_keepalive_probes
    9

    以上参数的大致意思是:keepalive routine每2小时(7200秒)启动一次,发送第一个probe(探测包),如果在75秒内没有收到对方应答则重发probe,当连续9个probe没有被应答时,认为连接已断。(此时read调用应该能够返回错误,待测试)

    但在我印象中keepalive不太好用,默认的时间间隔太长,又是整个TCP/IP栈的全局参数:修改会影响其他进程,Linux的下似乎可以修改per socket的keepalive参数?(希望有使用经验的人能够指点一下),但是这些方法不是portable的。

     

    2. 进行应用层的心跳

    严格的网络程序中,应用层的心跳协议是必不可少的。虽然比TCP自带的keep alive要麻烦不少(怎样正确地实现应用层的心跳,我或许会用一篇专门的文章来谈一谈),但有其最大的优点:可控。

    展开全文
  • Linux网络编程socket错误分析

    万次阅读 2010-09-04 19:06:00
    socket 错误码 返回值 errno
  • 网络编程中的基本概念

    千次阅读 2016-12-12 10:25:03
    socket可以看成是用户进程与内核网络协议栈的编程接口。 socket不仅可以用于本机的进程间通信,还可以用于网络上不同主机的进程间通信。 Socket本身有“插座”的意思,在Linux环境下,用于表示进程间网络通信的特殊...
  • 【带你入门】java网络编程

    万次阅读 多人点赞 2018-02-18 12:10:41
    网络编程网络编程对于很多的初学者来说,都是很向往的一种编程技能,但是很多的初学者却因为很长一段时间无法进入网络编程的大门而放弃了对于该部分技术的学习。在 学习网络编程以前,很多初学者可能觉得网络编程是...
  • 老曹眼中的网络编程基础 转自:https://mp.weixin.qq.com/s/XXMz5uAFSsPdg38bth2jAA 我们是幸运的,因为我们拥有网络。网络是一个神奇的东西,它改变了你和我的生活方式,改变了整个世界。 然而,网络的无标度...
  • 网络编程中的常用函数整理

    千次阅读 2017-10-10 14:27:47
    网络编程常用到的函数,进行整理。先上图基于TCP协议: 基于UDP协议:常用函数:socket: 函数原型:int socket(int domain, int type, int protocol); 参数说明: domain:称协议族(family),常用的协议族有AF...
  • 32-网络编程概述

    千次阅读 2017-04-19 13:53:48
    1. 预备知识从网络编程开始(基于 ...我并不打算把这些知识在网络编程中重复,所以如果你对这些知识感觉很困惑,请跳到《Linux环境编程学习笔记》学习。另一方面,有关基本的网络编程基础,在《Linux环境编程学习笔记
  • Linux网络编程中的地址问题

    千次阅读 2011-09-18 21:23:17
    Linux网络编程中的地址问题 在网络系统内核 IP地址是32位,由4组十进制数组成,每组数值的范围为0~255,而平时我们使用的IP地址是16位字符串形式的IP地址,例如:“192.168.1.11”。在程序设计经常要用到字符串...
  • Linux 网络编程中之心跳机制应用

    千次阅读 2014-12-14 13:48:56
    Linux 网络编程中之心跳机制应用 一、问题:Linux TCP 如何判断非正常连接的断开 二、方法分析:  面向连接的TCP连接,在实际的应用经常需要检测连接是否断开。而在实际的连接过程,连接断开分为两...
  • 网络编程

    千次阅读 2019-04-12 21:17:58
    网络编程就是如何在程序实现两台计算机的通信。 TCP/IP简介 1、TCP/IP协议族 链路层:处理与电缆或其他传输媒介的物理接口。 网络层:处理数据在网络的活动。  ip协议——>网络互连协议  用途:将多个包在...
  • Qt网络编程

    千次阅读 2012-05-27 16:37:39
    Qt网络编程之一 ... 网络编程目录 ...*Qt有关网络编程的类 *HTTP和FTP高层网络操作 *使用QTcpSocket和QTcpServer进行TCP编程 *使用QUdpSocket进行UDP编程 *使用QHostInfo解析主机名 *对于网络代理的支
  • 网络编程常见问题总结

    千次阅读 2011-02-21 16:23:00
     对于网络编程的更多详细说明建议参考下面的书籍 《UNIX网络编程》 《TCP/IP 详解》 《Unix环境高级编程》 非阻塞IO和阻塞IO: 在网络编程中对于一个网络句柄会遇到阻塞IO和非阻塞IO的概念, 这里对于这两种...
  • 网络编程中的阻塞,非阻塞、同步,异步概念网络编程中,我们常常接触阻塞,非阻塞,同步,异步等概念,有些概念可能交叉使用,比如异步非阻塞,同步非阻塞,同步阻塞等等,这些概念看似相似,却往往又有着不同的概念,...
  • socket网络编程中read与recv区别

    万次阅读 2017-05-27 16:01:39
    使用read接收文件,由于传过来的文件大小错误,结果导致程序卡死在read处,之后改用recv接收。 recv使用MSG_DONTWAIT,在发现多次接收长度小于等于0时,中断接收返回。 下面是摘抄的一段read和recv区别的介绍。1、...
  • 利用WSAGetLastError()获得的socket编程中常见错误(摘自MSDN) 2006年12月25日 星期一 10:55 常数 值 描述 sckOutOfMemory 7 内存不足 sckInvalidPropertyValue 380 属性值无效。 ...
  • Java网络编程详解

    万次阅读 多人点赞 2014-09-10 17:55:34
    1、网络编程 网络编程  网络编程对于很多的初学者来说,都是很向往的一种编程技能,但是很多的初学者却因为很长一段时间无法进入网络编程的大门而放弃了对于该部分技术的学习。  在 学习网络编程以前...
  • C# 网络编程之套接字编程基础知识

    千次阅读 2013-07-13 22:08:28
    最近阅读了周存杰编写的《C#网络编程实例教程》并阅读了很多相关方面的资料,同时自己也做了一些套接字编程方面的C#...套接字(Winsock)是一种独立于协议的网络编程接口,在OSI集中在会话层和传输层 (补充知识) 简单
  • 手机本身是作为手机终端使用的,因此它的计算...Android完全支持JDK本身的TCP,UDP网络通信API,也可以使用ServerSocket,Socket来建立基于TCP/IP协议的网络通信,也可以使用DatagramSocket,Datagrampacket来建立基于UD
  • 网络编程 详解

    千次阅读 2017-05-08 11:19:05
    分类 ...网络编程 ...网络字节序和主机字节序地址结构地址和服务转换TCPIO模型阻塞输入...网络编程在一个项目占到的比重一般比较小,更重要的是基于网络的功能的实现,但几乎每一个项目都离不开网络。网络编程
  • 为了处理程序运行的系统调用错误和一般性错误(比如有时候需要输出错误消息,有时候需要输出错误消息并终止进程,有时当进程以后台方式运行时需要将错误消息记录到syslog),我们定义了一些通用的错误处理函数,...
  • .net网络编程之一:Socket编程

    万次阅读 热门讨论 2009-03-18 09:22:00
    在.net下进行网络编程其实也相对比较简单,因为在.net类库已经提供了大量封装好的类。在.net下网络编程比较底层的类是System.Net.Sockets.Socket类,这个类提供了丰富的方法和属性,并且还提供了异步数据传输支持。...
  • 目录 一、OSI七层模型 二、TCP/IP模型 三、TCP/IP协议族 四、TCP和UDP 五、地址和端口号 端口号的确定 端口号与协议 六、TCP/IP介绍 6.1、TCP链接建立-三次...6.3、TCP/IP的数据包 6.4、TCP的通讯原理...
  • 网络编程Socket之SocketOption参数

    万次阅读 2014-12-12 23:49:55
    被规定为两二个队列总和在最大值,大多数实现 默认值为5,但在高并发web服务器此值显然 不够,lighttpd此值 达到128*8.需要风轻云淡此值更大一此在原因是未完成连接发队列 在长度可能因为客户端syn的到达及等待...
  • python网络编程

    千次阅读 2018-09-09 22:58:13
    网络编程就是在程序实现网络两台计算机的通信。而用Python进行网络编程,就是在Python程序本身这个进程内,连接别的服务器进程的通信端口进行通信。 初识Socket Socket(又称套接字)起源于Unix,是应用层与...
  • Linux 网络编程—— libpcap 详解

    万次阅读 多人点赞 2015-04-02 19:32:04
    概述libpcap 是一个网络数据包捕获函数库,功能非常强大,Linux 下著名的 tcpdump 就是以它为基础的。libpcap主要的作用1)捕获各种数据包,列如:网络流量统计。2)过滤网络数据包,列如:过滤掉本地上的一些数据,...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 212,107
精华内容 84,842
关键字:

网络编程中参数错误