精华内容
下载资源
问答
  • 汇编指令ldr str stm ldm

    2020-08-16 15:39:37
    ldr命令:把数据从内存加载到寄存器 ldr r0, =addr ;r0 = addr ldr r1, [r0] ; r1 = *r0 ldr r1, [r0, #4] ; r1 = *(r0+4) ldr r1, [r0, #4] ! ; r1 = *(r0+4);r0=r0+4; ldr r1, [r0], #4 ; r1 = *(r0);r0=r0+4; ...

    ldr命令:把数据从内存加载到寄存器

    ldr r0, =addr	;r0 = addr
    ldr r1, [r0]		; r1 = *r0
    ldr r1, [r0, #4]	; r1 = *(r0+4)
    ldr r1, [r0, #4] !	; r1 = *(r0+4);r0=r0+4;
    ldr r1, [r0], #4	; r1 = *(r0);r0=r0+4;
    

    str命令:把数据从寄存器保存到内存

    str r1, [r0]		; *r0 = r1 
    str r1, [r0, #4]	; *(r0+4) = r1 
    str r1, [r0, #4] !	; *(r0+4) = r1;r0=r0+4;
    str r1, [r0], #4	; *r0 = r1;r0=r0+4;
    

    **多数据传输指令:stm ldm **
    ARM指令的多数据传输(STM、LDM)中,提到:多寄存器的Load和Store指令分为2组:一组用于数据的存储与读取,对应于IA、IB、DA、DB,一组用于堆栈操作,对应于FD、ED、FA、EA,两组中对应的指令含义相同。
    即:

    STMIB(地址先增而后完成操作)、STMFA(满递增堆栈);
    STMIA(完成操作而后地址递增)、STMEA(空递增堆栈);
    STMDB(地址先减而后完成操作)、STMFD(满递减堆栈);
    STMDA(完成操作而后地址递减)、STMED(空递减堆栈)。
    上述各组2个指令含义相同只是适用场合不同,同理有:
    LDMIB、LDMED;
    LDMIA、LDMFD;
    LDMDB、LDMEA;
    LDMDA、LDMFA。
    
    IA模式表示:每次传送后地址+4;(After Increase)
    DB模式表示:每次传送前地址-4;(Before Decrease)
    多寄存器加载/存储指令共有8种模式(4个用与数据块的传输,4个用于栈操作)
    
    

    举例
    指令:stmdb sp!,{r0-r12,lr}
    含义:sp = sp - 4,先压lr,sp = lr(即将lr中的内容放入sp所指的内存地址)。sp = sp - 4,再压r12,sp = r12。sp = sp - 4,再压r11,sp = r11…sp = sp - 4,最后压r0,sp = r0。

    如果想要将r0-r12和lr弹出,可以用ldmia指令:
    指令:ldmia sp!,{r0-r12,lr}

    展开全文
  • ADD add r0,r1,#4 //r0 = r1 + 4 SUB sub r0,r1,#4 //r0 = r1 - 4 sub r0,r1,r2 //r0 = r1 - r2 LDR LDR 寄存器 ⬅内存 LDR R0,=0x50000050 // r0 = 0x50000050 LDR R1,=0xE000...

    ADD

    add r0,r1,#4          //r0 = r1 + 4
    

    SUB

    sub r0,r1,#4          //r0 = r1 - 4
    sub r0,r1,r2          //r0 = r1 - r2
    

    在这里插入图片描述

    LDR

    LDR 寄存器 ⬅内存

    LDR     R0,=0x50000050    // r0 = 0x50000050
    LDR     R1,=0xE0000000  ;R1=0xE0000000
    LDR     R1,0xE0000000   ;将内存中地址为0xE0000000的内容载入到R1
    LDR     R1,[R0]         ;将R0中的数所指定的地址的内容传输到R1
    

    STR

    STR 寄存器 ➡内存

    STR     R1,[R0]     ;将R1中的内容传输到R0中的数所指定的地址的内存中去
    

    LDM

    读内存,写入多个寄存器

    STM

    把多个寄存器写入内存

    LDIA

    看上图理解

    ldmia sp,{fp,ip,pc}
    /*
    		假设sp=4080
    		1.先读fp = 4080~4083的值
    		2.sp = 4080 + 4 = 4084
    		3.先读ip = 4084~4087的值
    		4.ip = 4084 + 4 = 4088
    		5.先读pc = 4087~4091的值
    		6.pc = 4088 + 4 = 4092
    		注:fp,ip,pc 高编号存放高地址(fp(R11),ip(R12),pc(R15))
    		   SP后无感叹号,所以sp仍然为4080
    */
    

    STMDB

    stmdb sp!,{fp,ip,pc}
    /*
    		假设sp=4096
    		1.先减sp = sp - 4 = 4092的值
    		2.再存:地址4092存pc的值
    		3.先减sp = sp - 4 = 4088的值
    		4.再存:地址4088存ip的值
    		5.先减sp = sp - 4 = 4084的值
    		6..再存:地址4084存fp的值
    		注:fp,ip,pc 高编号存放高地址(fp(R11),ip(R12),pc(R15))
    		   SP后有感叹号,所以sp=4084
    */
    

    注:ia 先存后加 db先减后存

    展开全文
  • STM32单片机-汇编指令1

    2021-06-20 10:29:36
    1)LDR指令 2)STR和LDRB指令3)MOV指令4)使用示例 2、MOVS指令 3、LDM表示装载,STM表示存储 4、teq指令 5、使用tst来检查是否设置了特定的位 6、'^'的理解 7、spsr_cxsf,cpsr_cxsf的理解 8、cpsr的理解 9...

    目录:

    1、ldr/str/mov指令

    1)LDR指令   2)STR和LDRB指令   3)MOV指令   4)使用示例

    2、MOVS指令

    3、LDM表示装载,STM表示存储

    4、teq指令

    5、使用tst来检查是否设置了特定的位

    6、'^'的理解

    7、spsr_cxsf,cpsr_cxsf的理解

    8、cpsr的理解

    9、指令后缀和条件判断

    10、B、BL、BX、BLX 和 BXJ指令的区别

    1)B 指令   2)BL 指令   3)BLX 指令   4)BX 指令和BXJ指令   5)总结

    --------------------------------------------

    说明:

    STM32单片机-汇编指令使用1

    STM32单片机-汇编指令使用2

    ARM单片机汇编指令的查找见“STM32单片机二之十五、查找汇编指令”。

    --------------------------------------------

    .macro restore_user_regs //宏

       ldr r1,[sp, #S_PSR]

       ldr lr,[sp, #S_PC]!   @ !用来控制基址变址寻址的最终新地址是否进行回写操作,

                                      @ 执行ldr之后sp被回写成sp+#S_PC基址变址寻址的新地址

       msrspsr,r1              @ 把cpsr的值保存到spsr中

       ldmdb sp,{r0 - lr}^@lr=[sp-1*4],r13=[sp-2*4],r12=[sp-3*4],......,r0=[sp-15*4]

                                     @ 因为没对pc赋值,所以^的表示将数据恢复到User模式的[r0-lr]寄存器组中[gliethttp]

       mov r0,r0 

       add sp,sp,#S_FRAME_SIZE - S_PC

       movs pc,lr

    .endm

    -------------------------------------------------------------------------------------------------------

    1、ldr/str/mov指令

    1)LDR指令

    LDR格式:LDR{条件}   目的寄存器  <存储器地址>

    LDR作用:将存储器地址所指地址处连续的4个字节(1个字)的数据传送到目的寄存器

    比如想把数据从内存中某处读取到寄存器中,只能使用ldr

    比如:ldr r0, 0x12345678

    就是把0x12345678这个地址中的值存放到r0。

    而mov不能干这个活,mov只能在寄存器之间移动数据,或者把立即数移动到寄存器中。

    -------------------

    2)STR和LDRB指令

    STR格式:STR{条件}  源寄存器,<存储器地址>

    STR作用:STR指令用于从源寄存器中将一个32位的字数据传送到存储器中。该指令在程序设计中比较常用,寻址方式灵活多样,使用方式可参考指令LDR。 

    LDRB:字节数据加载指令

    -------------------

    3)MOV指令

    MOV格式:mov source, destination

    MOV作用:source 和 destination 的值可以是内存地址,存储在内存中的数据值,指令语句中定义的数据值,或者寄存器。

    -------------------

    4)使用示例

       ldr ip,[sp],#4 //将sp中内容存入ip,之后sp=sp+4;

       ldr ip,[sp,#4] //将sp+4这个新地址下内容存入ip,之后sp值保持不变

       ldr ip,[sp,#4]! //将sp+4这个新地址下内容存入ip,之后sp=sp+4将新地址值赋给sp

       str ip,[sp],#4 //将ip存入sp地址处,之后sp=sp+4;

       str ip,[sp,#4] //将ip存入sp+4这个新地址,之后sp值保持不变

       str ip,[sp,#4]! //将ip存入sp+4这个新地址,之后sp=sp+4将新地址值赋给sp

    -------------------------------------------------------------------------------------------------------

    2、MOVS指令

       movs r1,#3 ; //movs将导致ALU被更改,因为r1赋值非0,即操作结果r0非0,所以ALU的Z标志清0

       bne 1f  ; //因为Z=0,说明不等,所以向前跳到标号1:所在处继续执行其他语句

     

    MOVS pc,r14_und; //cpsr(状态寄存器)←spsr_und(备份状态寄存器),pc←r14_und

    相关指令详见“嵌入式网络那些事LwIP协议深度剖析与实战演练P42下方”。

    MOVS总是会影响cpsr, 包括N,Z,C标志位,执行MOVS pc,lr(也就是r14寄存器)时,cpsr会被spsr覆盖,如上。内核态,USER和SYSTEM模式下没有spsr。

    -------------------------------------------------------------------------------------------------------

    3、LDM表示装载,STM表示存储

       LDMED LDMIB 预先增加装载

       LDMFD LDMIA 过后增加装载

       LDMEA LDMDB 预先减少装载

       LDMFA LDMDA 过后减少装载

       STMFA STMIB 预先增加存储

       STMEA STMIA 过后增加存储

       STMFD STMDB 预先减少存储

       STMED STMDA 过后减少存储

    注意ED不同于IB;只对于预先减少装是相同的.在存储的时候,ED是过后减少的.

    FD、ED、FA、和 EA 指定是满栈还是空栈,是升序栈还是降序栈.

    对于存储STM而言

    先加后存 FA 姑且这么来记,先加(first add),存数据

    后加先存 EA 姑且这么来记,存数据,后加end add

    先减后存 FD 姑且这么来记,先减first dec,存数据

    后减先存 ED 姑且这么来记,存数据,后减end dec

    然后记忆LDM,LDM是STM的反相弹出动作,所以

    因为是先加后存,所以后减先取 FA 就成了与STM对应的取数据,后减

    因为是后加先存,所以先减后取 EA 就成了与STM对应的先减,取数据

    因为是先减后存,所以后加先取 FD 就成了与STM对应的取数据,后加

    因为是后减先存,所以先加后取 ED 就成了与STM对应的先加,取数据

    我想通过上面的变态方式可以比较容易的记住这套指令[gliethttp]

    一个满栈的栈指针指向上次写的最后一个数据单元,而空栈的栈指针指向第一个空闲单元.

    一个降序栈是在内存中反向增长(就是说,从应用程序空间结束处开始反向增长)而升序栈在内存中正向增长. 

    其他形式简单的描述指令的行为,意思分别是

    IA过后增加(Increment After)、

    IB预先增加(Increment Before)、

    DA过后减少(Decrement After)、

    DB预先减少(Decrement Before).

    RISC OS使用传统的满降序栈.在使用符合APCS规定的编译器的时候,它通常把你的栈指针设置在应用程序空间的

    结束处并接着使用一个FD(满降序-Full Descending)栈.如果你与一个高级语言(BASIC或C)一起工作,你将别无选择.

    栈指针(传统上是R13)指向一个满降序栈.你必须继续这个格式,或则建立并管理你自己的栈.

    -------------------------------------------------------------------------------------------------------
    4、teq指令
    teq r1,#0      //r1-0,将结果送入状态标志,如果r1和0相减的结果为0,那么ALU的Z置位,否则Z清0
    bne reschedule//ne表示Z非0,即:不等,那么执行reschedule函数

    -------------------------------------------------------------------------------------------------------
    5、使用tst来检查是否设置了特定的位
    tst r1,#0x80 //按位and操作,检测r1的0x1<<7,即第7位是否置1,按位与之后结果为0,那么ALU的Z置位
    beq reset    //如果Z置位,即:以上按位与操作结果是0,那么跳转到reset标号执行

    -------------------------------------------------------------------------------------------------------
    6、'^'的理解
    '^'是一个后缀标志,不能在User模式和Sys系统模式下使用该标志.该标志有两个存在目的:
    1)对于LDM操作,同时恢复的寄存器中含有pc(r15)寄存器,那么指令执行的同时cpu自动将spsr拷贝到cpsr中
    如:在IRQ中断返回代码中[如下为ads环境下的代码gliethttp]
    ldmfd {r4}           //读取sp中保存的的spsr值到r4中
    msr spsr_cxsf,r4     //对spsr的所有控制为进行写操作,将r4的值全部注入spsr
    ldmfd {r0-r12,lr,pc}^//当指令执行完毕,pc跳转之前,将spsr的值自动拷贝到cpsr中[gliethttp]

    -------------------
    2)数据的送入、送出发生在User用户模式下的寄存器,而非当前模式寄存器
    如:ldmdb sp,{r0 - lr}^;表示sp栈中的数据回复到User分组寄存器r0-lr中,而不是恢复到当前模式寄存器r0-lr
    当然对于User,System,IRQ,SVC,Abort,Undefined这6种模式来说[gliethttp]r0-r12是共用的,只是r13和r14
       为分别独有,对于FIQ模式,仅仅r0-r7是和前6中模式的r0-r7共用,r8-r14都是FIQ模式下专有.

    -------------------------------------------------------------------------------------------------------
    7、spsr_cxsf,cpsr_cxsf的理解
    c - control field maskbyte(PSR[7:0])
    x - extension field maskbyte(PSR[15:8])
    s - status field maskbyte(PSR[23:16)
    f - flags field maskbyte(PSR[31:24]).
    老式声明方式:cpsr_flg,cpsr_all在ADS中已经不在支持
    cpsr_flg对应cpsr_f
    cpsr_all对应cpsr_cxsf

    需要使用专用指令对cpsr和spsr操作:mrs,msr
    mrs tmp,cpsr      //读取CPSR的值
    bic tmp,tmp,#0x80 //如果第7位为1,将其清0
    msr cpsr_c,tmp    //对控制位区psr[7:0]进行写操作

    -------------------------------------------------------------------------------------------------------
    8、cpsr的理解
    CPSR = Current Program Status Register
    SPSR = Saved Program Status Registers
    CPSR寄存器(和保存它的SPSR寄存器)

    (上图)
    N,Z,C,V称为ALU状态标志
    N:如果结果是负数则置位
    Z:如果结果是零则置位
    C:如果发生进位则置位
    V:如果发生溢出则置位
    I:置位表示禁用IRQ中断,清0表示使能IRQ
    F:置位表示禁用FIQ中断,清0表示使能FIQ
    T:置位表示系统运行在Thumb态,清0表示运行在ARM态
    M[4:0]:
    10000 User模式,和System系统模式一样
    10001 FIQ模式
    10010 IRQ模式
    10011 SVC超级管理模式
    10111 Abort数据异常模式
    11011 Undefined未定义指令模式
    11111 System系统模式,和User模式一样

    举例:
    ands r2,r2,#7 使用运算结果改变标志位,如果运算结果r2=0,那么Z置位,EQ相等判断成立
    subs r2,r2,#1 使用运算结果改变标志位,如果运算结果r2=0,那么Z置位,EQ相等判断成立
    beq wordcopy

    -------------------------------------------------------------------------------------------------------

    9、指令后缀和条件判断

     (上图)

    EQ : 等于
    NE : 不等
    CS : 无符号>=
    CC : 无符号<</span>
    MI : 负数
    PL : 非负[>=0]
    VS : 溢出
    VC : 无溢出
    HI : 无符号>
    LS : 无符号<=
    GE : 有符号>=
    LT : 有符号<</span>
    GT : 有符号>
    LE : 有符号<=
    AL : 总是[默认]

     

    对于arm汇编指令,可以参考linux内核的arch/arm目录,那里的汇编指令很丰富[gliethttp_20080603]
    __CopyFromStart
    ;    ldr     r3, [r9],#4
    ;    str     r3, [r7], #4
    ;    sub   r8, r8, #4
        ldrb   r3, [r9], #1
        strb   r3, [r7], #1
        sub   r8, r8, #1
        cmp  r8, #0
        bgt    __CopyFromStart
        b       __JumpToBootImage

        __JumpToBootImage
        MOV     pc, r0

     

    -------------------------------------------------------------------------------------------------------

    10、B、BL、BX、BLX 和 BXJ指令的区别

    跳转指令用于实现程序流程的跳转,在 ARM 程序中有两种方法可以实现程序流程的跳转:

    使用专门的跳转指令。

    直接向程序计数器 PC 写入跳转地址值。

    通过向程序计数器 PC 写入跳转地址值,可以实现在 4GB 的地址空间中的任意跳转,在跳转之前结合使用

    MOV LR , PC

    等类似指令,可以保存下一条指令地址作为将来的返回地址值,从而实现在 4GB 连续的线性地址空间的子程序调用。

    专门的跳转指令

    B、BL、BX、BLX 和 BXJ:

    跳转、带链接跳转(带返回的跳转)、跳转并切换指令集、带链接跳转并切换指令集(带返回的跳转并切换指令集)、跳转并转换到 Jazelle 状态。

    -------------------

    1)B 指令

    B 指令的格式为:B{条件} 目标地址

    B 指令是最简单的跳转指令。一旦遇到一个 B 指令,ARM 处理器将立即跳转到给定的目标地址,从那里继
    续执行。注意存储在跳转指令中的实际值是相对当前PC 值的一个偏移量,而不是一个绝对地址,它的值由汇编器来计算(参考寻址方式中的相对寻址)。它是 24 位有符号数,左移两位后有符号扩展为 32 位,表示的有效偏移为 26 位(前后32MB 的地址空间)。以下指令:

    B Label ;程序无条件跳转到标号 Label 处执行

    CMP R1 ,# 0 ;当 CPSR 寄存器中的 Z 条件码置位时,程序跳转到标号 Label 处执行

    BEQ Label

    -------------------

    2)BL 指令

    BL 指令的格式为:BL{条件} 目标地址

    BL 是另一个跳转指令,但跳转之前,会在寄存器R14 中保存PC 的当前内容,因此,可以通过将R14 的内容重新加载到PC 中,来返回到跳转指令之后的那个指令处执行。该指令是实现子程序调用的一个基本但常用的手段以下指令:

    BL Label ;当程序无条件跳转到标号 Label 处执行时,同时将当前的 PC 值保存到 R14 中

    -------------------

    3)BLX 指令

    BLX 指令的格式为:BLX 目标地址

    BLX 指令从ARM 指令集跳转到指令中所指定的目标地址,并将处理器的工作状态有ARM 状态切换到Thumb 状态,该指令同时将PC 的当前内容保存到寄存器R14 中。因此,当子程序使用Thumb 指令集,而调用者使用ARM 指令集时,可以通过BLX 指令实现子程序的调用和处理器工作状态的切换。

    同时,子程序的返回可以通过将寄存器R14 值复制到PC 中来完成。

    -------------------

    4)BX 指令和BXJ指令

    BX 指令的格式为:BX{条件} 目标地址

    BX 指令跳转到指令中所指定的目标地址,目标地址处的指令既可以是ARM 指令,也可以是Thumb指令。

    -------------------

    5)总结

    语法

    op1{cond}{.W} label
    op2{cond} Rm

    其中:

    op1

    是下列项之一:

    B

    跳转。

    BL

    带链接跳转

    BLX

    带链接跳转并切换指令集。

    op2

    是下列项之一:

    BX

    跳转并切换指令集。

    BLX

    带链接跳转并切换指令集。

    BXJ

    跳转并转换为 Jazelle 执行。

    cond

    是一个可选的条件代码。 cond 不能用于此指令的所有形式。

    .W

    是一个可选的指令宽度说明符,用于强制要求在 Thumb-2 中使用 32 位 B 指令。

    label

    是一个程序相对的表达式。

    Rm

    是一个寄存器,包含要跳转到的目标地址。

    操作

    所有这些指令均会引发跳转,或跳转到 label,或跳转到包含在 Rm 中的地址处。 此外:

    BL 和 BLX 指令可将下一个指令的地址复制到 lr(r14,链接寄存器)中

    BX 和 BLX 指令可将处理器的状态从 ARM 更改为 Thumb,或从 Thumb 更改为 ARM

    BLX label 无论何种情况,始终会更改处理器的状态。

    BX Rm  BLX Rm 可从 Rm 的位 [0] 推算出目标状态:

    如果 Rm 的位 [0] 为 0,则处理器的状态会更改为(或保持在)ARM 状态

    如果 Rm 的位 [0] 为 1,则处理器的状态会更改为(或保持在)Thumb 状态。

     

    BXJ 指令会将处理器的状态更改为 Jazelle

     

    -------------------------------------------------------------------------------------------------------

    展开全文
  • 1、ldr指令和str指令 2、ldm指令和stm指令 3、ldm和stm指令应用举例

    1、ldr指令和str指令


    2、ldm指令和stm指令


    3、ldm和stm指令应用举例


    展开全文
  • 1)LDR指令 2)STR和LDRB指令3)MOV指令4)使用示例 2、movs指令 3、LDM表示装载,STM表示存储 4、teq指令 5、使用tst来检查是否设置了特定的位 6、'^'的理解 7、spsr_cxsf,cpsr_cxsf的理解 8、cpsr的...
  • stm32_汇编(STR和LDR)

    千次阅读 2019-10-31 12:00:34
    ARM是RISC结构,数据从内存到CPU之间的移动只能通过L/S指令来完成,也就是ldr/str指令。 STR -(Store Register)存储指令 格式: str{条件} 源寄存器,<存储器地址> 将源寄存器中数据存到存储器地址中。 ...
  • STM32指令周期

    千次阅读 2019-09-17 18:10:03
    在keil中编程时,写了一行代码,然后就想知道,执行这句C代码需要多长时间。 时钟周期在这就不解释了,频率的倒数。 指令周期,个人理解就是cpu执行...使用STM32F103RC,。配置其主时钟HCLK为72mhz测试代码如下: ...
  • STM32常用汇编指令.pdf

    2020-08-25 20:47:11
    在嵌入式开发中汇编程序常常用于非常关键的地方比如系统启动时初始化进出中断时 的环境保护恢复等对性能...ARM指令使用的基本格式如下 opcode{ cond}{S} RdRn{operand2} opcode 操作码指令助记符如LDRSTR等 cond 可选的
  • 电子-STM32学习之路入门篇之指令集及cortexm1.pdf,单片机/嵌入式STM32-F0/F1/F2
  • STM32--ARM常用汇编指令

    千次阅读 2019-03-06 16:50:14
    ARM常用汇编指令: 1、 EQU:给数字常量取一个符号名,相当于C语言中的define 2、 AREA:汇编一个新的代码段或者数据段 3、 SPACE:分配内存空间 4、 PRESERVE8:当前文件栈需要按照8字节对齐 5、 EXPORT:声明一个标号...
  • STM32详解一 转载w282529350最后发布于2013-12-09 14:31:06阅读数 8413收藏 展开 STM32详解1 一、在进入主题之前我们先了解一些必要的基础知识----stm32系列芯片的种类和型号: startup_stm32f10x_cl.s 互联型的...
  • ldr,str,ldm,stm的命名规律: 这几个指令命名看起来不易记住,现在找找规律。 指令 样本 效果 归纳名称解释 ldr Rd,addressing ldr r1,[r0] addressing to Rd [mem to reg] load to register ...
  • layout: post ...comments: true前言分析startup_stm32f10x_md.s汇编指令EQUAREASPACEDCDPROCLDR常见的转移指令源码分析 前言 这里以stm32f103为硬件平台,搭建了stm32f1系列的标准库,版本是V3.5,在路...
  • ARM LDR/STR, LDM/STM 指令

    2015-07-13 16:19:00
    这里比较下容易混淆的四条指令,已经在这4条指令的混淆上花费了很多精力,现在做个小结,LDR,STR,LDM,STM这四条指令, 关于LDM和STM的说明,见另外一个说明文件,说明了这两个文件用于栈操作时的注意事项。 (1...
  • STM32CubeMX HAL库+STM32F407+uC/OS-III移植详细过程 前言 参考资料: 官网资料:https://micrium.atlassian.net/wiki/spaces/osiiidoc/overview 正点原子STM32F4 UCOS开发手册_v3.0.pdf [野火]uCOS-III内核实现与...
  • origin: ...  版权声明:本文为博主原创文章,未经博主允许不得转载。... Memeory accesses(内存访问的方式) 通常有以下三种方式,允许用作内存访问指令: 《1》...
  • [STM32系列]二、实现STM32 GPIO端口状态实现最大速度翻转 文章目录[STM32系列]二、实现STM32 GPIO端口状态实现最大速度翻转前言一、实验准备二、测试1.C语言翻转测试2.汇编翻转测试总结 前言 在STM32F103系列应用...
  • STR LDR STM LDM

    2014-05-19 16:41:36
    转自:http://hi.baidu.com/zp2000/blog/item/26cacf112016a711b8127b6e.html,由于原始帖子已经被删了,所以我转成原创并进行修改了...这里比较下容易混淆的四条指令,已经在这4条指令的混淆上花费了很多精力,现在做
  • 在启动文件内部使用的都是汇编语言,这个文件的作用是负责执行微控制器从“复位”到“开始执行 main 函数”中间这段启动时间所必须进行的工作。它完成的具体工作有:...汇编指令 打开STM32的启动文件会发现,里面全...
  • STM32F407--指令集小结

    千次阅读 2018-03-08 23:35:24
    一、指令集介绍 ...(1)32位的ARM指令集。对应处理器状态:ARM状态 (2)16位的Thumb指令集。对应处理器状态:Thumb状态 2、可见,这两种指令集也对应了两种处理器执行状态。在程序的执行过程中,处...
  • 转载 STM32 ARM THUMB指令机器码表

    千次阅读 2018-05-17 17:24:22
    STM32 ARM THUMB指令机器码表作者:fly 发布于:2014-4-1 17:52 分类:嵌入式v is immed_valuen is Rnm is Rms is Rsr is register_listc is condition表一:按指令字母升序排列0100 0001 01mm mddd -- ADC Rd,Rm...
  • 汇编指令ldr和str,ldm和stm的区别 文章转自https://www.cnblogs.com/icefree/p/7636125.html (1)LDR:L表示LOAD,LOAD的含义应该理解为:Load from memory into register。下面这条语句就说明的很清楚: LDR R1...
  • 本章教程主要跟大家讲STM32H7的启动过程,这里的启动过程是指从CPU上电复位执行第1条指令开始(汇编文件)到进入C程序main()函数入口之间的部分。启动过程相对来说还是比较重要的,理解了这个过程,...
  • 【IoT】STM32 启动代码汇编指令详解

    千次阅读 2019-03-27 09:24:25
    指令EQU用来为一个数字常量或一个和内核寄存器相关的数值或一个和程序计数器相关的数值定义的一个符号名称,类似于C语言中的"#define"。 语法格式:name EQU expr{ , type} 注意:语法格式中的{ }不属于语法格式...
  • 任务一:寻找main函数的汇编指令集 任务二:寻找main函数中的SystemClock...运行例程中GPIO工程时,总会加载startup_stm32f103xb.s文件.如此文件注释所说 ;******************** (C) COPYRIGHT 2016 STMicroelectro...
  • stm32 IAR

    2017-09-15 10:21:32
     (扩展-IAP主要用于产品出厂后应用程序的更新作用,考虑到出厂时要先烧写IAP 再烧写APP应用程序要烧写2次增加工人劳动力基础上写了“STM32 IAP+APP ...startup_stm32f10x_cl.s 互联型的器件,STM32F105xx,STM32F
  • STM32 官方为广大开发者提供一套统一开发固件,主要是屏蔽寄存器封装,提供初始化等功能,较少开发者负担。只需要调用相关模块封装,对相关结构提初始化即可,较少开发调试时间。本次主要以官方STM32F4xx_DSP_...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 2,900
精华内容 1,160
关键字:

ldr指令stm32