精华内容
下载资源
问答
  • 聚类索引和非聚类索引

    千次阅读 2018-08-31 16:58:47
    为什么要给表加上主键? 为什么加索引后会使查询变快? ...聚集索引和非聚集索引的根本区别是表记录的排列顺序和与索引的排列顺序是否一致, 聚集索引存储记录是物理上连续存在,而非...

    原文转载自https://www.cnblogs.com/aspwebchh/p/6652855.html

    • 为什么要给表加上主键?

    • 为什么加索引后会使查询变快?

    • 为什么加索引后会使写入、修改、删除变慢?

    • 什么情况下要同时在两个字段上建索引?

    聚集索引和非聚集索引的根本区别是表记录的排列顺序和与索引的排列顺序是否一致,

    聚集索引存储记录是物理上连续存在,而非聚集索引是逻辑上的连续,物理存储并不连续

    聚集索引

    在某些关系数据库中, 如果建表时不指定主键,数据库会拒绝建表的语句执行。 事实上, 一个加了主键的表,并不能被称之为「表」。一个没加主键的表,它的数据无序的放置在磁盘存储器上,一行一行的排列的很整齐。如果给表上了主键,那么表在磁盘上的存储结构就由整齐排列的结构转变成了树状结构,也就是「平衡树」结构,换句话说,就是整个表就变成了一个索引。没错, 再说一遍, 整个表变成了一个索引,也就是所谓的「聚集索引」。 这就是为什么一个表只能有一个主键, 一个表只能有一个「聚集索引」,因为主键的作用就是把「表」的数据格式转换成「索引(平衡树)」的格式放置。

    上图就是带有主键的表(聚集索引)的结构图。其中树的所有结点(底部除外)的数据都是由主键字段中的数据构成,也就是通常我们指定主键的id字段。最下面部分是真正表中的数据。

    索引能让数据库查询数据的速度上升, 而使写入数据的速度下降,原因很简单的, 因为平衡树这个结构必须一直维持在一个正确的状态, 增删改数据都会改变平衡树各节点中的索引数据内容,破坏树结构, 因此,在每次数据改变时, DBMS必须去重新梳理树(索引)的结构以确保它的正确,这会带来不小的性能开销,也就是为什么索引会给查询以外的操作带来副作用的原因。

    非聚集索引

    也就是我们平时经常提起和使用的常规索引。非聚集索引和聚集索引一样, 同样是采用平衡树作为索引的数据结构。索引树结构中各节点的值来自于表中的索引字段, 假如给user表的name字段加上索引 , 那么索引就是由name字段中的值构成,在数据改变时, DBMS需要一直维护索引结构的正确性。如果给表中多个字段加上索引 , 那么就会出现多个独立的索引结构,每个索引(非聚集索引)互相之间不存在关联。 如下图

    每次给字段建一个新索引, 字段中的数据就会被复制一份出来, 用于生成索引。 因此, 给表添加索引,会增加表的体积, 占用磁盘存储空间。

    非聚集索引和聚集索引的区别在于, 通过聚集索引可以查到需要查找的数据, 而通过非聚集索引可以查到记录对应的主键值 , 再使用主键的值通过聚集索引查找到需要的数据,如下图

    不管以任何方式查询表, 最终都会利用主键通过聚集索引来定位到数据, 聚集索引(主键)是通往真实数据所在的唯一路径。

    然而, 有一种例外可以不使用聚集索引就能查询出所需要的数据, 这种非主流的方法 称之为「覆盖索引」查询, 也就是平时所说的复合索引或者多字段索引查询。 文章上面的内容已经指出, 当为字段建立索引以后, 字段中的内容会被同步到索引之中, 如果为一个索引指定两个字段, 那么这个两个字段的内容都会被同步至索引之中。

    先看下面这个SQL语句

    create index index_birthday on user_info(birthday);//建立索引

    select user_name from user_info where birthday = '1991-11-1' ;    //查询生日在1991年11月1日出生用户的用户名

    这句SQL语句的执行过程如下

    首先,通过非聚集索引index_birthday查找birthday等于1991-11-1的所有记录的主键ID值

    然后,通过得到的主键ID值执行聚集索引查找,找到主键ID值对就的真实数据(数据行)存储的位置

    最后, 从得到的真实数据中取得user_name字段的值返回, 也就是取得最终的结果

    我们把birthday字段上的索引改成双字段的覆盖索引

    create index index_birthday_and_user_name on user_info(birthday, user_name);

    这句SQL语句的执行过程就会变为

    通过非聚集索引index_birthday_and_user_name查找birthday等于1991-11-1的叶节点的内容,然而, 叶节点中除了有user_name表主键ID的值以外, user_name字段的值也在里面, 因此不需要通过主键ID值的查找数据行的真实所在, 直接取得叶节点中user_name的值返回即可。 通过这种覆盖索引直接查找的方式, 可以省略不使用覆盖索引查找的后面两个步骤, 大大的提高了查询性能,如下图

     

    展开全文
  • 聚集索引和非聚集索引区别有哪些(转) 转载链接:http://www.qeefee.com/article/ws00000543  聚集索引:该索引中键值的逻辑顺序决定了表中相应行的物理顺序。    &...

     聚集索引:该索引中键值的逻辑顺序决定了表中相应行的物理顺序。

          聚集索引确定表中数据的物理顺序。聚集索引类似于电话簿,后者按姓氏排列数据。由于聚集索引规定数据在表中的物理存储顺序,因此一个表只能包含一个聚集索引。但该索引可以包含多个列(组合索引),就像电话簿按姓氏和名字进行组织一样

         聚集索引使用注意事项:
          • 定义聚集索引键时使用的列越少越好。
          • 包含大量非重复值的列。
          • 使用下列运算符返回一个范围值的查询:BETWEEN、>、>=、< 和 <=。
          • 被连续访问的列。
          • 返回大型结果集的查询。
          • 经常被使用联接或 GROUP BY 子句的查询访问的列;一般来说,这些是外键列。对 ORDER BY 或 GROUP BY 子句中指定的列进行索引,可以使 SQL Server 不必对数据进行排序,因为这些行已经排序。这样可以提高查询性能。
          • OLTP 类型的应用程序,这些程序要求进行非常快速的单行查找(一般通过主键)。应在主键上创建聚集索引。

          聚集索引不适用于:

          • 频繁更改的列 。这将导致整行移动(因为 SQL Server 必须按物理顺序保留行中的数据值)。这一点要特别注意,因为在大数据量事务处理系统中数据是易失的。

          • 宽键 。来自聚集索引的键值由所有非聚集索引作为查找键使用,因此存储在每个非聚集索引的叶条目内。

     

          非聚集索引与课本中的目录类似。数据存储在一个地方,索引存储在另一个地方,索引带有指针指向数据的存储位置。

          非聚集索引中的项目按索引键值的顺序存储,而表中的信息按另一种顺序存储(这可以由聚集索引规定)。对于非聚集索引,可以为在表非聚集索引中查找数据时常用的每个列创建一个非聚集索引。有些书籍包含多个索引。例如,一本介绍园艺的书可能会包含一个植物通俗名称索引,和一个植物学名索引,因为这是读者查找信息的两种最常用的方法。

         非聚集索引注意事项

          在创建非聚集索引之前,应先了解您的数据是如何被访问的。可考虑将非聚集索引用于:
          • 包含大量非重复值的列,如姓氏和名字的组合(如果聚集索引用于其它列)。如果只有很少的非重复值,如只有 1 和 0,则大多数查询将不使用索引,因为此时表扫描通常更有效。
          • 不返回大型结果集的查询。
          • 返回精确匹配的查询的搜索条件(WHERE 子句)中经常使用的列。
          • 经常需要联接和分组的决策支持系统应用程序。应在联接和分组操作中使用的列上创建多个非聚集索引,在任何外键列上创建一个聚集索引。
          • 在特定的查询中覆盖一个表中的所有列。这将完全消除对表或聚集索引的访问。

     

         一个通俗的举例,说明两者的区别

          其实,我们的汉语字典的正文本身就是一个聚集索引。比如,我们要查“安”字,就会很自然地翻开字典的前几页,因为“安”的拼音是“an”,而按照拼音排序汉字的字典是以英文字母“a”开头并以“z”结尾的,那么“安”字就自然地排在字典的前部。如果您翻完了所有以“a”开头的部分仍然找不到这个字,那么就说明您的字典中没有这个字;同样的,如果查“张”字,那您也会将您的字典翻到最后部分,因为“张”的拼音是“zhang”。也就是说,字典的正文部分本身就是一个目录,您不需要再去查其他目录来找到您需要找的内容。我们把这种正文内容本身就是一种按照一定规则排列的目录称为“聚集索引”。


       如果您认识某个字,您可以快速地从自动中查到这个字。但您也可能会遇到您不认识的字,不知道它的发音,这时候,您就不能按照刚才的方法找到您要查的字,而需要去根据“偏旁部首”查到您要找的字,然后根据这个字后的页码直接翻到某页来找到您要找的字。但您结合“部首目录”和“检字表”而查到的字的排序并不是真正的正文的排序方法,比如您查“张”字,我们可以看到在查部首之后的检字表中“张”的页码是672页,检字表中“张”的上面是“驰”字,但页码却是63页,“张”的下面是“弩”字,页面是390页。很显然,这些字并不是真正的分别位于“张”字的上下方,现在您看到的连续的“驰、张、弩”三字实际上就是他们在非聚集索引中的排序,是字典正文中的字在非聚集索引中的映射。我们可以通过这种方式来找到您所需要的字,但它需要两个过程,先找到目录中的结果,然后再翻到您所需要的页码。我们把这种目录纯粹是目录,正文纯粹是正文的排序方式称为“非聚集索引”。

     

        下面的表总结了何时使用聚集索引或非聚集索引:

     

    动作描述 使用聚集索引 使用非聚集索引
    列经常被分组排序
    返回某范围内的数据 不应
    一个或极少不同值 不应 不应
    小数目的不同值 不应
    大数目的不同值 不应
    频繁更新的列 不应
    外键列
    主键列
    频繁修改索引列 不应

        下面说说索引使用的几个误区和问题

       第一:聚集索引的约束是唯一性,是否要求字段也是唯一的呢?

      分析:如果认为是的朋友,可能是受系统默认设置的影响,一般我们指定一个表的主键,如果这个表之前没有聚集索引,同时建立主键时候没有强制指定使用非聚集索引,SQL会默认在此字段上创建一个聚集索引,而主键都是唯一的,所以理所当然的认为创建聚集索引的字段也需要唯一。

      结论:聚集索引可以创建在任何一列你想创建的字段上,这是从理论上讲,实际情况并不能随便指定,否则在性能上会是恶梦。

      第二:主键就是聚集索引


      这样有时会对聚集索引的一种浪费。虽然SQL SERVER默认是在主键上建立聚集索引的。但是由于聚集索引的优势是很明显的,而每个表中只能有一个聚集索引的规则,这使得聚集索引变得更加珍贵。


      从我们前面谈到的聚集索引的定义我们可以看出,使用聚集索引的最大好处就是能够根据查询要求,迅速缩小查询范围,避免全表扫描。在实际应用中,因为 ID号是自动生成的,我们并不知道每条记录的ID号,所以我们很难在实践中用ID号来进行查询。这就使让ID号这个主键作为聚集索引成为一种资源浪费。其次,让每个ID号都不同的字段作为聚集索引也不符合“大数目的不同值情况下不应建立聚合索引”规则;当然,这种情况只是针对用户经常修改记录内容,特别是索引项的时候会负作用,但对于查询速度并没有影响。

     第三:是不是聚集索引就一定要比非聚集索引性能优呢?

     如果想查询学分在60-90之间的学生的学分以及姓名,在学分上创建聚集索引是否是最优的呢?

     答:否。既然只输出两列,我们可以在学分以及学生姓名上创建联合非聚集索引,此时的索引就形成了覆盖索引,即索引所存储的内容就是最终输出的数据,这种索引在比以学分为聚集索引做查询性能更好。

     第四:在数据库中通过什么描述聚集索引与非聚集索引的?

     索引是通过二叉树的形式进行描述的,我们可以这样区分聚集与非聚集索引的区别:聚集索引的叶节点就是最终的数据节点,而非聚集索引的叶节仍然是索引节点,但它有一个指向最终数据的指针。

     第五:在主键是创建聚集索引的表在数据插入上为什么比主键上创建非聚集索引表速度要慢?

     有了上面第四点的认识,我们分析这个问题就有把握了,在有主键的表中插入数据行,由于有主键唯一性的约束,所以需要保证插入的数据没有重复。我们来比较下主键为聚集索引和非聚集索引的查找情况:聚集索引由于索引叶节点就是数据页,所以如果想检查主键的唯一性,需要遍历所有数据节点才行,但非聚集索引不同,由于非聚集索引上已经包含了主键值,所以查找主键唯一性,只需要遍历所有的索引页就行,这比遍历所有数据行减少了不少IO消耗。这就是为什么主键上创建非聚集索引比主键上创建聚集索引在插入数据时要快的真正原因。

    展开全文
  • 这里主要简单讲解下两种索引:聚集索引(也称聚类索引、簇集索引)和非聚集索引(也称非聚类索引、非簇集索引)。聚集索引就是存放的物理顺序和列中的顺序一样。一般设置主键索引就为聚集索引。 一个没加主键的表...

    转载来自:

    聚集索引与非聚集索引www.luotf.com
    8e3c324b-d814-eb11-8da9-e4434bdf6706.png

    简介:索引在数据库中的作用类似于目录在书籍中的作用,用来提高查找信息的速度。使用索引查找数据,无需对整表进行扫描,可以快速找到所需数据。这里主要简单讲解下两种索引:聚集索引(也称聚类索引、簇集索引)和非聚集索引(也称非聚类索引、非簇集索引)。

    聚集索引就是存放的物理顺序和列中的顺序一样。一般设置主键索引就为聚集索引。

    一个没加主键的表,它的数据无序的放置在磁盘存储器上,一行一行的排列的很整齐。如果给表上了主键,那么表在磁盘上的存储结构就由整齐排列的结构转变成了树状结构,也就是平衡树结构,换句话说,就是整个表就变成了一个索引,也就是所谓的聚集索引。 这就是为什么一个表只能有一个主键, 一个表只能有一个聚集索引,因为主键的作用就是把表的数据格式转换成索引(平衡树)的格式放置。

    943c324b-d814-eb11-8da9-e4434bdf6706.png

    上图就是带有主键的表(聚集索引)的结构图。其中树的所有结点(底部除外)的数据都是由主键字段中的数据构成,也就是通常我们指定主键的id字段。最下面部分是真正表中的数据。 假如我们执行一个SQL语句:

    select * from table where id = 1256

    首先根据索引定位到1256这个值所在的叶结点,然后再通过叶结点取到id等于1256的数据行。 这里不讲解平衡树的运行细节, 但是从上图能看出,树一共有三层, 从根节点至叶节点只需要经过三次查找就能得到结果。如下图

    993c324b-d814-eb11-8da9-e4434bdf6706.png

    然而, 事物都是有两面的, 索引能让数据库查询数据的速度上升, 而使写入数据的速度下降,原因很简单的,因为平衡树这个结构必须一直维持在一个正确的状态, 增删改数据都会改变平衡树各节点中的索引数据内容,破坏树结构, 因此,在每次数据改变时, DBMS必须去重新梳理树(索引)的结构以确保它的正确,这会带来不小的性能开销,也就是为什么索引会给查询以外的操作带来副作用的原因。

    讲完聚集索引 , 接下来聊一下非聚集索引, 也就是我们平时经常提起和使用的常规索引。

    非聚集索引和聚集索引一样, 同样是采用平衡树作为索引的数据结构。索引树结构中各节点的值来自于表中的索引字段, 假如给user表的name字段加上索引 , 那么索引就是由name字段中的值构成,在数据改变时, DBMS需要一直维护索引结构的正确性。如果给表中多个字段加上索引 , 那么就会出现多个独立的索引结构,每个索引(非聚集索引)互相之间不存在关联。 如下图

    9b3c324b-d814-eb11-8da9-e4434bdf6706.png

    每次给字段建一个新索引, 字段中的数据就会被复制一份出来, 用于生成索引。 因此, 给表添加索引,会增加表的体积, 占用磁盘存储空间。

    非聚集索引和聚集索引的区别在于:

    通过聚集索引可以一次查到需要查找的数据, 而通过非聚集索引第一次只能查到记录对应的主键值 , 再使用主键的值通过聚集索引查找到需要的数据。

    聚集索引一张表只能有一个,而非聚集索引一张表可以有多个。

    展开全文
  • 其实,我们的汉语字典的正文本身就是一个聚集索引。比如,我们要查“安”字,就会很自然地翻开字典的前几页,因为“安”的拼音是“an”,而按照拼音排序汉字的字典是以英文字母“a”开头并以“z”结尾的,那么“安”...
    • 其实,我们的汉语字典的正文本身就是一个聚集索引。比如,我们要查“安”字,就会很自然地翻开字典的前几页,因为“安”的拼音是“an”,而按照拼音排序汉字的字典是以英文字母“a”开头并以“z”结尾的,那么“安”字就自然地排在字典的前部。如果您翻完了所有以“a”开头的部分仍然找不到这个字,那么就说明您的字典中没有这个字;同样的,如果查“张”字,那您也会将您的字典翻到最后部分,因为“张”的拼音是“zhang”。也就是说,字典的正文部分本身就是一个目录,您不需要再去查其他目录来找到您需要找的内容。

    我们把这种正文内容本身就是一种按照一定规则排列的目录称为“聚集索引”。

    • 如果您认识某个字,您可以快速地从自动中查到这个字。但您也可能会遇到您不认识的字,不知道它的发音,这时候,您就不能按照刚才的方法找到您要查的字,而需要去根据“偏旁部首”查到您要找的字,然后根据这个字后的页码直接翻到某页来找到您要找的字。但您结合“部首目录”和“检字表”而查到的字的排序并不是真正的正文的排序方法,比如您查“张”字,我们可以看到在查部首之后的检字表中“张”的页码是672页,检字表中“张”的上面是“驰”字,但页码却是63页,“张”的下面是 “弩”字,页面是390页。很显然,这些字并不是真正的分别位于“张”字的上下方,现在您看到的连续的“驰、张、弩”三字实际上就是他们在非聚集索引中的排序,是字典正文中的字在非聚集索引中的映射。我们可以通过这种方式来找到您所需要的字,但它需要两个过程,先找到目录中的结果,然后再翻到您所需要的页码。

    我们把这种目录纯粹是目录,正文纯粹是正文的排序方式称为“非聚集索引”。

    聚类索引就是本身就是一个目录,我们直接翻就能知道存放的位置(字典的拼音查找)
    而非聚类索引需要在首页的目录中找到对应值的页码,再在对应的页码中找到值(字典的部首查找)

    展开全文
  • 聚集索引:该索引中键值的逻辑顺序决定了表中相应行的物理顺序。 聚集索引确定表中数据的物理顺序。聚集索引类似于电话簿,后者按姓氏排列数据。...但该索引可以包含多个列(组合索引),就像电话簿按姓氏名字...
  • 聚集索引非聚类索引区别 (2013-10-16 08:36:51) 转载▼ 分类:数据库 您可以把索引理解为一种特殊的目录。两种索引:聚集索引(clustered index,也称聚类索引、簇集索引)和非聚集索引...
  • 微软的SQL SERVER提供了两种索引:聚集索引(clustered index,也称聚类索引、簇集索引)和非聚集索引(nonclustered index,也称非聚类索引、非簇集索引)……   (一)深入浅出理解索引结构  实际上,您可以把...
  • 深入浅出数据库索引原理 聚集索引聚集索引的总结
  • 欧式聚类/聚类索引

    2019-11-25 11:44:21
     /*为了从点云索引向量中分割出每个聚类,必须迭代访问点云索引,每次创建一个新的点云数据集,并且将所有当前聚类的点写入到点云数据集中。*/  //迭代访问点云索引cluster_indices,直到分割出所有聚类  int j...
  • 这是我脑子里面的概念,可是SQL Server中索引有聚类索引(CLUSTERED)和非聚类索引。我数据表一般有ID字段,我就自然把它设置成了主键;而SQL Server会将主键设置为聚类索引,很多情况下,这是一种性能损失!! 1....
  • 这是我脑子里面的概念,可是SQL Server中索引有聚类索引(CLUSTERED)和非聚类索引。我数据表一般有ID字段,我就自然把它设置成了主键;而SQL Server会将主键设置为聚类索引,很多情况下,这是一种性能损失!!1. ...
  • 聚集索引和非聚集索引区别

    万次阅读 多人点赞 2019-05-19 01:25:35
    微软的SQL SERVER提供了两种索引:聚集索引(clustered index,也称聚类索引、簇集索引)和非聚集索引(nonclustered index,也称非聚类索引、非簇集索引)。下面,我们举例来说明一下聚集索引和非聚集索引的区别: ...
  • 数据库要不要加order by给大家两...答案就在这个执行计划里,所以,无论何时不要忽略优化器的选择,要不然诡异的现象就会时有发生,另外你都已经有了聚类索引,多加一个order by会死人啊?效率会低啊?我说我自己。
  • 微软的SQL SERVER提供了两种索引:聚集索引(clustered index,也称聚类索引、簇集索引)和非聚集索引(nonclustered index,也称非聚类索引、非簇集索引)。下面,我们举例来说明一下聚集索引和非聚集索引的区别...
  • 针对图像数据噪声大和高维稀疏的特点,提出了一种基于噪声过滤Info-Kmeans 聚类的图像索引构建方法。首先,利用余弦兴趣模式过滤噪声。其次,提出了一种新的Info-Kmeans聚类算法,该算法不仅避免KL-divergence计算...
  • 微软的SQL SERVER提供了两种索引:聚集索引(clustered index,也称聚类索引、簇集索引)和非聚集索引(nonclustered index,也称非聚类索引、非簇集索引)。下面,我们举例来说明一下聚集索引和非聚集索引的区别: ...
  • 提出一种基于潜在语义索引和句子聚类的中文自动文摘方 法。该方法的特色在于:使用潜在语义索引计算句子的相似度,并将层次聚类算法K - 中心聚类算法相结合进行句子聚 类,这样提高了句子相似度计算主题划分的准确...
  • SQL Server的聚集索引和非聚集索引

    热门讨论 2016-07-05 21:58:15
    微软的SQL SERVER提供了两种索引:聚集索引(clustered index,也称聚类索引、簇集索引)和非聚集索引(nonclustered index,也称非聚类索引、非簇集索引)……
  • 提出了一种自动根据对象的数量确定间隔的距离和聚类的数量的聚类方法,合理地将对象进行聚类划分,并将聚类的结果构建Hilbert R-tree索引,通过实验表明算法在建立时间其他性能上均优于传统的Hilbert R-tree索引
  • 微软的SQL SERVER提供了两种索引:聚集索引(clustered index,也称聚类索引、簇集索引)和非聚集索引(nonclustered index,也称非聚类索引、非簇集索引)。下面,我们举例来说明一下聚集索引和非聚集索引的区别:...
  • 微软的SQL SERVER提供了两种索引:聚集索引(clustered index,也称聚类索引、簇集索引)和非聚集索引(nonclustered index,也称非聚类索引、非簇集索引)。下面,我们举例来说明一下聚集索引和非
  • 微软的SQL SERVER提供了两种索引:聚集索引(clustered index,也称聚类索引、簇集索引)和非聚集索引(nonclustered index,也称非聚类索引、非簇集索引)。下面,我们举例来说明一下聚集索引和非聚集索引的区别: ...
  • 微软的SQL SERVER提供了两种索引:聚集索引(clustered index,也称聚类索引、簇集索引)和非聚集索引(nonclustered index,也称非聚类索引、非簇集索引)。下面,我们举例来说明一下聚集索引和非聚集索引的区别: ...
  • 聚集索引 聚集索引是指数据库表行中数据的物理顺序与键值的逻辑(索引)顺序相同。一个表只能有一个聚集索引。因为一个表的物理顺序只有一种...同样,聚集索引也称为聚簇索引,非聚类索引簇集索引。 聚集索引

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 22,472
精华内容 8,988
关键字:

聚类索引和非聚类索引的区别