精华内容
下载资源
问答
  • 波束形成算法是智能天线研究中最核心的内容。自适应阵列天线的研究可以追溯到20世纪60年代,其中最具代表性的工作包括...自适应波束形成是在某种最优准则下通过自适应算法来实现权集寻优,自适应波束形成能适应各..

    波束形成算法是智能天线研究中最核心的内容。自适应阵列天线的研究可以追溯到20世纪60年代,其中最具代表性的工作包括Adams提出的基于SNR输出的自适应处理器以及Widrow提出的宽带和窄带自适应阵列结构。

     

    波束形成原理:

     

    阵列输出选取一个适当的加权向量以补偿各个阵元的传播时延,从而使得在某一个期望方向上阵列输出可以同向叠加,进而使得阵列在该方向上产生一个主瓣波束;并在可以某个方向上对干扰进行一定程度的抑制。自适应波束形成是在某种最优准则下通过自适应算法来实现权集寻优,自适应波束形成能适应各种环境的变化,实时的将权集调整到最佳位置附近。

     

    波束形成算法:

     

    <1>根据基于的对象不同可以分为:基于方向估计的自适应算法;基于训练信号或者参考信号的方法;基于信号结构的波束形成方法。

     

    <2>根据是否需要发射参考信号分为:非盲算法;盲算法。

     

    自适应波束形成:自适应波束形成通过不同的准则来确定自适应权,并利用不同的自适应算法来实现。

     

    <1>主要的准则有:最小均方误差(mean square error, MSE)准则;最大信噪比(signal noise ratio,SNR)准则;最大似然比(likelihood ratio,LH )准则;最小噪声方差( noise variance,NV )准则等。

     

    <2>自适应算法按照算法的实现分有:闭环算法;开环算法。

     

    主要的闭环算法:最小均方( least mean square,LMS )算法;差分最陡下降(difference steepest descent,DSD)算法;加速梯度( acceleration gradient,AG)算法;以上算法的变形算法。

     

    闭环算法优点:简单、性能可靠,不需数据存储。

     

    闭环算法缺点:收敛于最佳权的响应时间取决于数据特征值分布,在某些干扰分布情况下,算法收敛速度较慢,从而大大限制了它的应用场合。

     

    主要的开环算法:直接求逆( DMI或SMI)法。

     

    开环算法优点:

     

    DMI法通过直接干扰方差矩阵的逆来求解Winner-Hopf方程以获得最优权值,然后作加权相消,它的收敛速度和相消性能都比闭环算法好得多。

     

    发展趋势:随着数字技术的迅速发展,高速度芯片的产生为开环算法提供了更好的前提条件。

     

    衡量自适应算法性能的好坏标准:算法的收敛速度;算法的稳健性;算法的计算复杂度。

    展开全文
  • 简单介绍了Bartlett,Capon,Music等空间谱估计算法,然后从空间谱估计的最优权向量出发,重点讨论了声压阵的自适应波束形成算法的基本原理,并给出仿真结果.回顾了矢量阵信号处理的物理基础及矢量阵波束形成技术
  • 自适应波束形成学习笔记

    万次阅读 多人点赞 2017-06-07 20:22:40
    波束形成原理:  阵列输出选取一个适当的加权向量以补偿各个阵元的传播时沿,从而使得在某一个期望方向上阵列输出可以同向叠加,进而使得阵列在该方向上产生一个主瓣波束;并在可以某个方向上对干

    原文参考于:http://blog.csdn.net/u013346007/article/details/51472869 有适当修改,非常感谢。

    波束形成算法是智能天线研究中最核心的内容。自适应阵列天线的研究可以追溯到20世纪60年代,其中最具代表性的工作包括Adams提出的基于SNR输出的自适应处理器以及Widrow提出的宽带和窄带自适应阵列结构。

    波束形成原理:

    阵列输出选取一个适当的加权向量以补偿各个阵元的传播时延,从而使得在某一个期望方向上阵列输出可以同向叠加,进而使得阵列在该方向上产生一个主瓣波束;并在可以某个方向上对干扰进行一定程度的抑制。自适应波束形成是在某种最优准则下通过自适应算法来实现权集寻优,自适应波束形成能适应各种环境的变化,实时的将权集调整到最佳位置附近。

    波束形成算法:

    <1>根据基于的对象不同可以分为:基于方向估计的自适应算法;基于训练信号或者参考信号的方法;基于信号结构的波束形成方法。

    <2>根据是否需要发射参考信号分为:非盲算法;盲算法。

    自适应波束形成:自适应波束形成通过不同的准则来确定自适应权,并利用不同的自适应算法来实现。

    <1>主要的准则有:最小均方误差(mean square error, MSE)准则;最大信噪比(signal noise ratio,SNR)准则;最大似然比(likelihood ratioLH )准则;最小噪声方差( noise variance,NV )准则等。

    <2>自适应算法按照算法的实现分有:闭环算法;开环算法

    主要的闭环算法最小均方( least mean square,LMS )算法;差分最陡下降(difference steepest descent,DSD)算法;加速梯度( acceleration gradient,AG)算法;以上算法的变形算法。

    闭环算法优点:简单、性能可靠,不需数据存储。

    闭环算法缺点:收敛于最佳权的响应时间取决于数据特征值分布,在某些干扰分布情况下,算法收敛速度较慢,从而大大限制了它的应用场合。

    主要的开环算法:直接求逆( DMI或SMI)法。

    开环算法优点:

    DMI法通过直接干扰方差矩阵的逆来求解Winner-Hopf方程以获得最优权值,然后作加权相消,它的收敛速度和相消性能都比闭环算法好得多。

    发展趋势:随着数字技术的迅速发展,高速度芯片的产生为开环算法提供了更好的前提条件。

    衡量自适应算法性能的好坏标准:算法的收敛速度;算法的稳健性;算法的计算复杂度。

    注:关于自适应波束形成,叶剑杰博主有很好的介绍和说明:

    自适应波束形成(一)——窄带波束形成和宽带波束形成http://blog.csdn.net/yjjat1989/article/details/21713293

    自适应波束形成(二)——时域窄带LCMV波束形成器http://blog.csdn.net/YJJat1989/article/details/22171937

    自适应波束形成(三)——频域宽带LCMV波束形成器http://blog.csdn.net/yjjat1989/article/details/22174925

    自适应波束形成(四)——Frost波束形成1http://blog.csdn.net/yjjat1989/article/details/22398831

    自适应波束形成(五)——Frost波束形成2http://blog.csdn.net/yjjat1989/article/details/22403693

     

    展开全文
  • 为了将窄带波束形成扩展至宽带,可以使用频域LCMV波束形成器。首先将麦克风阵列各阵元接收到的信号进行时延补偿,做DFT变换到频域,然后在频域内划分子频带,在每个子频带内运用窄带LCVM算法,最后将得到的结果做...


    为了将窄带波束形成扩展至宽带,可以使用频域LCMV波束形成器。首先将麦克风阵列各阵元接收到的信号进行时延补偿,做DFT变换到频域,然后在频域内划分子频带,在每个子频带内运用窄带LCVM算法,最后将得到的结果做IDFT逆变换回时域。尽管频域LCMV波束形成器会降低收敛速度,但可以减少计算复杂度。

    1 算法原理

            频域LCMV波束形成器的结构如图1所示。

                    

                                                                       图1  频域LCMV波束形成器

            图中yn(t),n=1,2,…,M,为各阵元接收到的信号,进行时延补偿后的到时序一致的信号xn(t),n=1,2,…,M,然后对其采样,得

                            x(n) = 1Ms(n)+v(n)

    其中x(n)=[x1(n) x2(n) …xM(n)]T为采样后信号向量,1M=[1 1 … 1]T,s(n)为期望信号,v(n)= [v1(n) v2(n) …vM(n)]T为噪声向量。将接收到的划分为S段,每段包含N个采样点。考虑第s段,对其做DFT,得到

                            X(k,s) = [X1(k,s)X2(k,s) …XM(k,s)]T     k=0,1,…,N-1

    由上两式得

                            X(k,s) =1MS(k,s) +V(k,s)

    其中S(k,s)为我们期望信号,V(k,s) = [V1(k,s) V2(k,s) …VM(k,s)]T。在第s段做N次窄带LCMV波束形成,第k次的输出为

                            Z(k,s) = wH(k)X(k,s)

    其中w(k)=[w1(k) w2(k) …wM(k)]T为滤波器权向量。因此问题转化为求解最优权向量,即

                            

    其中RX(k)=E{ X(k,s) XH(k,s)},运用拉格朗日算子,解得

                            wopt(k) = RX-1(k)1M/(1MH RX-1(k)1M)

            如果未做时延补偿,则

                            X(k,s)a(θ,k)S(k,s) +V(k,s)≠1MS(k,s)+V(k,s)

    其中a(θ,k)=[1 e-jk2πτ2/NTs…e-jk2πτM/NTs]T,τm=(m-1)dsinθ/c,此时解最优权向量方程变为

                            

    运用拉格朗日算子,解得

                            wopt(k) = RX-1(k)a(θ,k)/( aH,k) RX-1(k)a(θ,k))

    2 算法仿真

            Matlab仿真代码如下:

            FLCMV

    首先产生两个线性调频信号模拟宽带信号,最低频率400Hz,最高频率4000Hz,中心频率2200Hz,正是语音信号的频带范围;信噪比为-40dB,期望信号持续时间为干扰信号的1/5,在干扰信号的1/5处开始加入期望信号。阵元数为16,阵元间距为半波长约为7.7cm,假设期望信号在0o,干扰信号在40o,仿真结果如图2所示。

                    

                                                 图2  宽带波束形成增强0o信号

            左图是频率为400Hz、2200Hz和4000Hz时对0o信号进行增强的波束图,由图可看出,400Hz时主瓣宽度最大,在40o干扰方向有明显陷波,随着频率的升高主瓣宽度变小,在40o干扰方向上的陷波变得不明显甚至偏差。右图是400Hz~4000Hz的波束图,由图可看出在0o有明显波峰,随频率升高主瓣变窄,说明对高频成分的空间分辨率高于低频成分。

            然后改变期望信号和干扰信号的位置,即期望信号在40o,干扰信号在0o,仿真结果如图3所示。

                    

                                                   图3  宽带波束形成增强40o信号

    由图3能得出相似的结论,右可以看出在0o有较好的陷波。

            最后减少一半麦克风阵元数量,即为8个,期望信号在40o,干扰信号在0o,仿真结果如图4所示。

                    

                                                   图4  8个麦克风宽带波束形成

            比较图4和图2可知,麦克风阵元数减少一半,主瓣宽度明显变宽,空间分辨率降低,且在0o的陷波也不明显。说明麦克风阵元数量的减少会降低宽带波束形成的性能。


    原文来源:http://blog.csdn.net/YJJat1989/article/details/22174925

    展开全文
  • 然而,实际应用中阵列接收数据的自相关是未知的或是时变的,此时约束自适应算法能用来逼近权向量,即Frost波束形成器。  首先,初始化权向量w[0] = C(CHC)-1f,它满足约束条件。然后以一个适当的比例系数朝Rxxw+C...

    1  算法原理

            LCMV波束形成器最优权向量的求解依赖于阵列接收数据的统计知识,即要计算自相关Rx。然而,实际应用中阵列接收数据的自相关是未知的或是时变的,此时约束自适应算法能用来逼近权向量,即Frost波束形成器。

            首先,初始化权向量w[0] = C(CHC)-1f,它满足约束条件。然后以一个适当的比例系数朝Rxxw+Cλ 负梯度方向迭代,得到

                            w[n+1] = w[n] - µ(Rxxw[n] +[n]) 

            既然w[n+1]满足CHw = ,将其代入解得λ[n],然后代回上式,得到

                            w[n+1] = C(CHC)-1f +P(w[n]-µRxxw[n]) 

    其中P=I- C(CHC)-1CHI为单位矩阵。

            由于不知二阶统计量Rxx,自相关矩阵可近似为RxxxxH。而xH w[n]恰是阵列第n次迭代的输出y[n],因此Ftost波束形成器归结为

                            w[0] = C(CHC)-1f

                            w[n+1] = C(CHC)-1f +P(w[n]-µy[n]x[n]) 

    2  对模拟麦克风阵列语音进行增强

            在matlab r2011a的toolbox的phased有波束形成相关的demo,demo之一代码如下:

           

    %Define a Uniform Linear Array 
    %First we define a uniform linear array (ULA) to receive the signal. 
    %The array contains 10 omnidirectional microphones and the element spacing is 5 cm
    hmic=phased.OmnidirectionalMicrophoneElement;
    ha=phased.ULA(4,0.05,'Element',hmic);
    c=340;                                       %sound speed,in m/s
    
    %Simulate the Received Signals
    load('twospeeches','speech1','speech2');
    load('laughter','y');                       %The laughter is stored in variable y
    y=2*y*(1:length(speech1));                   %Amplify and truncate
    fs=8192;                                    %in Hz
    
    wavwrite(speech1,fs,'speech1.wav');
    wavwrite(speech2,fs,'speech2.wav');
    ang1=[-30;0];
    ang2=[60;10];
    angInt=[20;0];
    
    hCollector=phased.WidebandCollector('Sensor',ha,'PropagationSpeed',c,...
         'SampleRate',fs,'ModulateInput',false);
     sigSource=step(hCollector,[speech1 speech2 y],[ang1 ang2 angInt]);
     
     rs=RandStream.create('mt19937ar','Seed',2008);
     noisePwr=1e-4;                              %noise power
     sigNoise=sqrt(noisePwr)*randn(rs,size(sigSource));
     
     sigArray=sigSource+sigNoise;
     wavwrite(sigArray(:,3),fs,'sigArray.wav');
     
     %Plot channel 3
     plot(sigArray(:,3));
     xlabel('Time(sec)');ylabel('Amplitude(V)');
     title('Signal Received at Channal 3');ylim([-3 3]);
     
     %Listen to channal 3
     player=audioplayer(sigArray(:,3),fs);
     play(player);
     
     %Process with a Time Delay Beamformer
     angSteer=ang1;
     hbf=phased.TimeDelayBeamformer('SensorArray',ha,'SampleRate',fs,...
         'Direction',angSteer,'PropagationSpeed',c)
     
     cbfOut=step(hbf,sigArray);
     
     plot(cbfOut);
     xlabel('Time(Sec)');ylabel('Amplitude(V)');
     title('Time Delay Beamformer Output');ylim([-3 3]);
     
     player=audioplay(cbfOut,fs);
     play(player);
     
     agCbf=pow2db(mean((speech2+y).^2+noisePwr)/mean((cbfOut-speech1).^2))
     
     %Process with a Frost Beamdormer
     hbf=phased.FrostBeamformer('SensorArray',ha,'SampleRate',fs,...
         'PropagationSpeed',c,'WeightsOutputPort',true);
     %The beamformer may change its steering direction during processing
     hbf.DirectionSource='Input port';
     hbf.FilterLength=20;    %Set the length of FIR filter for each sensor to 20
     
     [FrostOut,w]=step(hbf,sigArray,ang1);
     
     plot(FrostOut);
     xlabel('Time(sec)');ylabel('Amplitude(V)');
     title('Frost Beamformer Output');ylim([-3 3]);
     
     player=audioplayer(FrostOut,fs);
     play(player);
     
     agFrost=pow2db(mean((speech2+y).^2+noisePwr)/mean((FrostOut-speech1).^2))
     
     %Use Diagonal Loading to Improve Robustness to the Frost Beamformer
     release(hbf);
     dir2=[50;20];               %Estimated steering direction
     FrostOut=step(hbf,sigArray,dir2);
     
     plot(FrostOut);
     xlabel('Time(sec)');ylabel('Amplitude(V)');
     title('Frost Beamformer Output');ylim([-3 3]);
     
     player=audioplayer(FrostOut,fs);
     play(player);
     
     agFrost2=pow2db(mean((speech1+y).^2+noisePwr)/mean((FrostOut-speech2).^2))
     
     release(hbf);
     hbf.DiagonalLoadingFactor=1e-3;    %Specify diagonal loading value
     FrostOut=step(hbf,sigArray,dir2);
     
     plot(FrostOut);
     xlabel('Time(sec)');ylabel('Amplitude(V)');
     title('Frost Beamformer Output');ylim([-3 3]);
     
     player=audioplayer(FrostOut,fs);
     play(player);
     
     agFrostDL=pow2db(mean((speech1+y).^2+noisePwr)/mean((FrostOut-speech2).^2))
    

            首先定义一个均匀线性阵列,包含8个全向性麦克风阵元,阵元间距5cm,声速340m/s;然后模拟麦克风接收到的信号,语音1为一段男声,语音2为一段女声,采样率8192Hz,分别在-30o和60o,同时在20o有一段笑声作为干扰,并加上随机噪声作为本底噪声,用matlab中函数模拟产生一个39922*8的矩阵,每一列代表一个阵元接收到的混合声音信号。各信号如图1所示。

                    

                                                   图1  各方向信号及本底噪声波形

            然后编写C++代码,运用Frost波束形成器,分别对-30o方向男声语音1和60o方向女声语音2进行增强,混合语音、增强后语音1和增强后语音2的波形如图2所示。

                    

                                             图2 混合信号及增强后语音信号波形

            由图2波形图可看出,编写的算法程序明显衰减了不希望的干扰及噪声,增强了期望语音信号,由增强后语音的听音效果可以听出增强效果很明显,能清楚地听到期望声音。

    3  影响语音增强的因素

    (1) 麦克风数量对语音增强效果的影响

            运用上述方法在matlab中模拟产生麦克风阵列语音进行增强,各声音信号方向不变,保持阵元间距为5cm,采样率为8192Hz,语音1平均输入信噪比为-8.4949dB,语音2平均输入信噪比为-10.6588dB,将麦克风数量从10逐渐减小到2,计算两语音平均输出信噪比和平均信噪比增益,如图3所示。

                    

                              图3 不同麦克风数量语音增强平均信噪比增益

            由图3可知,在其他条件不变的情况下,随着麦克风数量的增多,平均信噪比增益增加;当麦克风数量增加到一定程度时,平均信噪比增益提升不明显。因而在实际应用中,在可接受的信噪比增益要求下,使用尽可能多的麦克风。

    (2) 麦克风间距对语音增强效果的影响

            与上面的仿真相似,保持麦克风数量为10个,采样率为8192Hz不变,将麦克风间距从1cm增加到20cm,计算两语音平均平均信噪比增益,如图4所示。

                    

                               图4 不同麦克风间距语音增强平均信噪比增益

            由图4可知,在其他条件不变的情况下,随着麦克风间距的增加,平均信噪比增益先有所提升,然后又有所下降。不同语音信号的最佳麦克风间距不同,因而实际操作中选择的间距应使不同语音都有较大信噪比增益。

    (3) 采样频率对语音增强效果的影响

            最后,保持麦克风数量为10个,麦克风间距为5cm不变,分别仿真采样率为8.192kHz、16kHz、22.05kHz、32kHz、44.1kHz、48kHz时两语音的平均信噪比增益,如图5所示。

                    

                                        图5 不同采样率语音增强平均信噪比增益

            由图5可看出,采样率稍大一些对语音增强效果有一定提升,采样率过大语音增强效果反而下降。不同信号由于频率不同,其最佳采样频率也不同,但一定要大于其最大频率的两倍。
    展开全文
  • 自适应波束形成(二)——时域窄带LCMV波束形成器

    万次阅读 热门讨论 2014-03-26 14:25:34
     如果期望信号的到达角和带宽范围已知,那么可以先对阵列接收数据进行时延补偿,使阵列对期望信号的接收保持一致性,然后对阵列系数强加约束条件以自适应的使波束形成器输出能量E{y(t)*y(t)}最小,等效于使输出信号...
  • 本文详细论述了基于压缩感知的圆阵自适应数字波束形成算法的原理与实现
  • 波束形成就是 让波束的方向图在...自适应波束形成器就是通过自适应算法(SMI,LMS等)让传感器根据来波信号的信息实现波束形成。 前者传感器的权值是事先确定的,指定固定方向,也就是静态权,后者权值是自适应调制的。
  • 本文主要介绍了一个自适应波束形成器的原理及其实现方法,结合当今最先进的可编程芯片,包括数字信号处理器(DSP),现场可编程逻辑门阵列(FPGA)实现了数字波束形成,适用于如3坐标雷达系统等复杂阵列信号处理系统。
  • 第二天理解波束形成的机理:参考类似示意图:写出阵列天线接收信号模型(先考虑简单的均匀线阵或均匀圆阵),也就是N个天线的输出:X(t)=a(θ0)S(t); 然后以方向矢量a(θ0)的共轭作为加权矢量W0(最优加权矢量), 画出...
  • 它采用空间滤波技术,通过辅助接收通道在干扰方向形成波束图的零点,实现对干扰信号的抑制.本文介绍了自适应旁瓣对消的原理,然后给出了基于FPGA的ASLC实现方案,最后通过仿真和试验结果,分析了自适应旁瓣...
  • 它的显著特点是可方便的获得超分辨和低副瓣的性能,实现波束扫描、自校准和自适应波束形成等.对于DBF体制的雷达来说,一方面,多路接收机之间的相似性是关键技术之一,它将直接影响数字波束形成的性能指标;另一...
  • 自适应信号处理

    2016-11-10 22:03:38
    《自适应信号处理(英文版)》既有理论分析,又有物理概念阐述,核心内容是自适应线性组合器、LMS算法、自适应模拟与系统辨识、自适应控制系统、自适应波束形成器的分析。《自适应信号处理(英文版)》要求读者具备工程...
  • 白冰【期刊名称】《电讯工程》【年(卷),期】2009(000)002【摘要】自适应旁瓣对消是雷达抗有源干扰的有效方法,它采用空间滤波技术,通过辅助通道在干扰源方向形成波束图的零点来抑制干扰信号。本文介绍了自适应旁瓣...
  • matlab MVDR算法

    2020-08-09 22:15:32
    MVDR算法,是对CBF算法的改进,是Capon提出的,所以也叫Capon波束形成法,又时也叫自适应波束形成法,其原理为在保持主瓣峰值不变的情况下对旁瓣进行抑制,此程序为函数,用时直接调用
  • 全书共分为11章,包括绪论、自适应滤波器的基本原理、通信信号波形的数字表示、通信中的自适应系统辨识、信道估计与均衡、通信中的自适应噪声抵消、自适应时间延迟估计、自适应阵列信号处理与波束形成自适应天线...
  • 本发明涉及计算机信号处理领域,具体涉及一种用麦克风阵列时延估计定位声源的方法。背景技术:20世纪80年代以来,...1976年,Gabfid将雷达和声纳中的自适应波束形成技术直接应用于简单的声音获取问题。1985年,美国...
  •  智能天线提高系统性能的原理 智能天线分为两大类:多波束天线与自适应天线阵列。多波束天线利用多个并行波束覆盖整个用户区,每个波束的指向是固定的,波束宽度也随天线元数目而确定。当用户在小区中移动时,基站...
  •  近年来,现代数字信号处理技术发展迅速,DSP芯片处理能力的不断提高和芯片价格的不断下降,使得利用数字技术在基带形成天线波束成为可行,促使智能天线技术开始在无线通信中广泛应用。由于智能天线能显著提高系统...
  • 相控阵雷达原理

    热门讨论 2012-06-16 08:19:36
    第6章讨论多波束相控阵雷达,包括发射天线和接收天线的多波束数字形成方法与算法;第7章讨论有源相控阵雷达,对其中的关键,即发射/接收组件作了较详细的介绍;第8章着重讨论相控阵雷达信号检测,包括空一时自适应...
  • 雷达成像原理(Word完整版) 第一章 雷达基础知识 5 1.1雷达的定义 5 1.2雷达简史 5 1.3电磁波 5 1.4脉冲 8 1.5分贝值表示方法 9 1.6天线 10 1 .7雷达散射截面 12 2.1傅立叶变换 14 2.2雷达硬件组成 15 ...
  • 主要内容包括:雷达系统导论、雷达信号模型、脉冲雷达信号的采样和量化、雷达波形、多普勒处理、检测基础原理、恒虚警率检测、合成孔径雷达成像技术、波束形成和空-时二维自适应处理导论。书中包含了大量反映雷达...
  • 雷达信号处理基础

    2018-07-08 10:57:22
    主要内容包括:雷达系统导论、雷达信号模型、脉冲雷达信号的采样和量化、雷达波形、多普勒处理、检测基础原理、恒虚警率检测、合成孔径雷达成像技术、波束形成和空-时二维自适应处理导论。书中包含了大量反映雷达...
  • 雷达信号处理基础part2

    热门讨论 2013-08-17 22:37:50
    主要内容包括:雷达系统导论、雷达信号模型、脉冲雷达信号的采样和量化、雷达波形、多普勒处理、检测基础原理、恒虚警率检测、合成孔径雷达成像技术、波束形成和空-时二维自适应处理导论。书中包含了大量反映雷达...
  • 在分析恒虚警概率检测目标遮蔽和自遮蔽效应形成原因的基础上,提出了一种能够自适应改变噪声电平估计样本的改进CFAR算法,该算法在CFAR检测过程中加入一个反馈操作,当某一频谱单元存在目标时,用估计得到的噪声功率电平...

空空如也

空空如也

1 2
收藏数 26
精华内容 10
关键字:

自适应波束形成原理