精华内容
下载资源
问答
  • MATLAB基本原理

    2015-09-12 21:33:00
    是雷刚萨斯图像处理的部分源代码,里面详细讲解了MATLAB基本用法,对于初学者来说,是不可多得的学习资源。
  • 西安电子科技大学出版社的,杨俊老师的书,与书本内容基本差不多,是ppt格式,希望对大家有帮助。
  • 【图像处理】MATLAB基本原理

    千次阅读 2017-10-05 16:07:09
    图像处理MATLAB基本原理

    前言

      兜兜转转,越发意识到夯实基础的重要性。不积跬步无以至千里,想要深入学习图像处理,就得安下心来踏实学习,掌握基本理论知识,切不可再得过且过、吊儿郎当。谨记两个词“刻苦”“创新”!

      本系列参考冈萨雷斯数字图像处理MATLAB第二版一书,作学习笔记。


    基本知识

    坐标约定

    矩阵表示

    读取及显示图像

    f= imread('rose_512.tif');      %读取图像
    
    whos f;                         %附加信息
    
    [M,N]=size(f);                  %图像行数M,列数N。也可表示为M = size(f,1); N = size(f,2);
    
    d = ndims(f);                   %数组维数,大于等于2(标量也作1×1的数组)
    
    figure;                         %保持图像一直显示
    
    imshow(f);                      %显示图像
    
    imwrite(f,'test.jpg')           %保存图像
    
    K = imfinfo('test.jpg');        %保存图像信息到结构变量K
    %对imshow函数的补充:
    
    imshow(f)                       %默认灰度级数为256。
    
    imshow(f,[low high])            %小于或等于low的值显示为黑色,大于或等于high的值显示为白色
    
    imshow(f,[ ])                   %low为 f 的最小值,high为 f 的最大值

    图像类型包括亮度图像、二值图像、索引图像、RGB图像。

    矩阵索引

    常用标准数组

    算术运算符

    图像算术函数

    逻辑算术符

    switch语句(MATLAB与C不同)

    代码优化

    交互式输入输出

    disp(A)                         %在屏幕显示信息
    
    t = input('message','s')        %数据输入
    
    str=sprintf('pi = %.5f',pi);    %输出类型为char
    
    n = str2num(t)                  %字符串转double类数字
    
    param = lower(param)            %将输入转换为小写字母
    
    param = upper(param)            %将输入转换为大写字母

    展开全文
  • GPS基本原理MATLAB仿真,
  • GPS基本原理及其MATLAB实现书中全部MATLAB程序,全部可以运行。
  • gps基本原理及其matlab仿真,里面包含了gps定位原理,以及MATLAB仿真!
  • 讲解GPS原理并且使用Matlab进行仿真演示的很好教材,通信领域的教材
  • 书中以MATLAB 7.15为基础,介绍MATLAB基本原理及其在各个工程领域中的应用。在原理部分,涉及MATLAB的基本使用方法、MATLAB中矩阵和向量的表示方法及其运算、数据的输入/输出、MATLAB的函数、程序流程控制,以及二...
  • GPS基本原理及其MATLAB仿真

    热门讨论 2011-10-04 13:30:05
    本书讲述了GPS的基本原理和概念,阐述了利用Matlab仿真GPS中涉及到的各种算法和原理,给出了仿真源程序和框图,适合作为高等院校导航、通信、测量和测绘等专业的高年级学生或研究生的GPS课程教材。
  • PSO-LSSVM的基本原理MATLAB源码.rar
  • 院系部中心 通信工程学院 专 业 通信工程 班 级 K通信081/082 起 止 日 期 2010/-2010/ 指 导 教 师 潘 子 宇 1课程设计应达到的目的 让学生综合运用信号与线性系统通信原理以及matlab语言等综合应用知识基本熟悉...
  • 对gps原理及相关算法的matlab仿真和实现有详细描述。
  • 调制解调的基本原理 “调制”就是使信号f(t)控制载波的某一个或某些参数(如振幅、频率、相位等),是这些参数按照信号f(t)的规律变化的过程。 解调是调制的逆过程,它的作用是从已调波信号中取出原来的调制信号。
  • 大多数MATLAB书籍里五花八门,但是这本讲义却是帮你截取精华,把和通信原理有关的基本内容进行选择!!帮助你学习通信原理MATLAB事半功倍
  • 神经网络基本原理类书籍及MATLAB实现相关资料大合集,(Phil Kim)MATLAB实现
  • 最小二乘法的基本原理和多项式拟合matlab实现.doc
  • 有关模糊pid的相关知识就把自己从刚接触到仿真出结果看到的大部分资料总结一下,以及一些自己的ps...在讲解模糊PID前,我们先要了解PID控制器的原理(本文主要介绍模糊PID的运用,对PID控制器的原理不做详细介绍)。P...

    有关模糊pid的相关知识就把自己从刚接触到仿真出结果看到的大部分资料总结一下,以及一些自己的ps

     

    以下未说明的都为转载内容

     

    1.转自  https://blog.csdn.net/weixin_36340979/article/details/79168052

    在讲解模糊PID前,我们先要了解PID控制器的原理(本文主要介绍模糊PID的运用,对PID控制器的原理不做详细介绍)。PID控制器(比例-积分-微分控制器)是一个在工业控制应用中常见的反馈回路部件,由比例单元P、积分单元I和微分单元D组成。PID控制的基础是比例控制;积分控制可消除稳态误差,但可能增加超调;微分控制可加快大惯性系统响应速度以及减弱超调趋势。

     

    1.1传统PID控制

     

     

     

     传统PID控制器自出现以来,凭借其结构简单、稳定性好、工作可靠、调整方便等优点成为工业控制主要技术。当被控对象的结构和参数具有一定的不确定性,无法对其建立精确的模型时,采用PID控制技术尤为方便。PID控制原理简单、易于实现,但是其参数整定异常麻烦。对于小车的速度控制系统而言,由于其为时变非线性系统不同时刻需要选用不同的PID参数,采用传统的PID控制器,很难使整个运行过程具有较好的运行效果。

     

    1.2模糊PID控制

     

     模糊PID控制,即利用模糊逻辑并根据一定的模糊规则对PID的参数进行实时的优化,以克服传统PID参数无法实时调整PID参数的缺点。模糊PID控制包括模糊化,确定模糊规则,解模糊等组成部分。小车通过传感器采集赛道信息,确定当前距赛道中线的偏差E以及当前偏差和上次偏差的变化ec,根据给定的模糊规则进行模糊推理,最后对模糊参数进行解模糊,输出PID控制参数。

     

     

     

    2.1模糊化

     

     模糊控制器主要由三个模块组成:模糊化,模糊推理,清晰化。具体如下图所示。而我们将一步步讲解如何将模糊PID算法运用到智能车上。(最好用笔一步步自己写一遍!!!)

     

     

     首先我们的智能车会采集到赛道的相关数据,例如摄像头车,其采集到的数据经过算法处理之后会得到与中线的偏差E,以及当前偏差和上次偏差的变化(差值)EC两个值(即此算法为2维输入,同理也可以是1维和3维,但2维更适合智能车)。例如此时车偏离中线的距离为150,而上一时刻偏离中线的距离为120,则E为150,EC为150 - 120 = 30。

     其次我们要对这两个值进行模糊化。这里我们对E进行举例。摄像头车采集回来的E是有范围的,即与中线的偏差是在一个区间内可行的。在这里我们假设该区间为-240到240,即小车偏离中线的最大距离为240,正负即为左右。再假设中线偏差变化率的可行区间为-40到+40。

     

            接着我们要对这两个值进行模糊化。我现在将E的区间(-240 到 240)分成8个部分,那么他们分别为-240 ~ -180,-180 ~ -120 ,-120 ~ -60,-60 ~ 0,0 ~ 60,60 ~ 120,120 ~ 180,180 ~ 240。然后我们把-180,-120,-60,0,60,120,180分别用NB,NM,NS,ZO,PS,PM,PB表示(个人理解N为negative,P为positive,B为big,M为middle,S为small,ZO为zero)。例如,当E = 170时,此时的E属于PM和PB之间,而此时的E也会对应2(或1)个隶属度。E隶属于PM(120)的百分比为(180 - 170) /  (180 - 120) = 1 / 6 ,而同理隶属于PB(180)的百分比为(170 - 120) / (180 - 120) = 5 / 6  。意思就是120到180进行线性分割了,E离PM和PB哪个更近,则隶属于哪个就更大(当输出值E大于180(PB)时,则隶属度为1,隶属度值为PB,即E完全隶属于PB,同理当E小于 - 180 (NB)时也一样)。同理也可以对EC进行模糊化。

     

    2.2 模糊推理

           对于采集回来的E和EC,我们可以推出它们各所占的隶属度,此时我们可以根据模糊规则表去找出输出值所对应的隶属度。

     

     

         我们假设为E的两个隶属度值为PM、PB,E属于PM的隶属度为a(a < 1),则属于PB的隶属度为(1 - a)。再假设EC的两个隶属度值为NB、NM,EC属于NM的隶属度为b,则属于NB的隶属度为(1 - b)。而在假设中,E属于PM的隶属度为a,EC属于NB的隶属度为( 1 - b ),则输出值属于ZO的隶属度为a *( 1 - b )(看图)。

     

     

           同理我们可以得出,当输出值属于ZO的另外两个隶属度为a * b, ( 1 - a ) * ( 1 - b) ,而输出值属于NS的隶属度为( 1 - a ) * 1 - b。

           在这里我们先证明一个条件,将这四个隶属度加起来,刚好等于1。这是因为

            (a + (1 - a)) * (b + (1 - b)) = a * b + ( 1 - a ) *  b  + a * ( 1 - b ) + ( 1 - a ) * ( 1 - b )   (下图)

           即一个十字相乘的概念。这个等式说明输出值的隶属度之和等于1(第三步求解的时候需要用到隶属度之和)。

     

     

    因此,我们知道了输出值为ZO的隶属度和为 a * b + a * ( 1 - b ) + ( 1 - a ) * ( 1 - b ) ,输出值为NS的隶属度为 ( 1 - a ) *  b 。

     

    2.3 清晰化

           对于输出值,我们同样采用给予隶属度的办法。例如,我们把输出值假设为[1000,1400](即舵机的摆角值范围)的区间同样划分为八个部分,即7个隶属值NB,NM,NS,ZO,PS,PM,PB。根据上一步所得出的结论,我们就可以用隶属度乘以相应的隶属值算出输出值的解,即 (a * b + a * ( 1 - b ) + ( 1 - a ) * ( 1 - b ) ) * ZO   +    ( 1 - a ) *  b * NS。到此为止,整个模糊过程就结束了。

         

    3 模糊PID

          我们已经知道了整个模糊的过程,但上述的过程还不够完美。因为我们的输出值只有一个输出,并没有实现PID。因此我们可以先对E和EC进行模糊化,然后分别对kp和ki和kd(PID的三个参数)进行求解,再套入公式。

     

     

         一般的我们也可以只用kp,kd,不用ki。而模糊规则表一般的论文已经基本给出。因此带入算法之后我们的难度也只是在于调节kp,kd,和适当调节规则表。当然调节的难度会大于普通的PID,因为还要定kp,kd的输出范围,调得不好可能效果并没有普通的PID好。

     

    4. 部分解释

         4.1对于部分论文所说的重心法解模糊,其实就是上述方法。公式如下。

     

          式中μ(Zi) * Zi相当于文章上面的(a * b + a * ( 1 - b ) + ( 1 - a ) * ( 1 - b ) ) * ZO   +    ( 1 - a ) *  b * NS,即隶属度乘以隶属度值之和,而μ(Zi)之和就是输出值的隶属度之和,我们已经证明它是等于1的

     

     

    PS:模糊控制表在相关书籍中都有,都是前辈的经验,一般的无需修改即可,不过如果自己要配自己的数据也可以自己配,逻辑关系理清楚就可以了,反正我自己理来理去还是挺锻炼对pid三个变量的理解的,当然不止pid,模糊控制也可以单独使用,很灵活的,重点就是各个参数范围确定,这是影响模糊控制最重要的因素。

     

     

    2.转自  https://blog.csdn.net/akunainiannian/article/details/41130347

    matlab版本:matlab2010b

    第一步:利用matlab模糊控制工具箱设计模糊控制器。

    1、在matlab命令窗口中输入 fuzzy ,产生如下窗口。

    2、确定模糊控制器结构,即根据具体的系统确定输入、输出量。

    这里我们可以选取标准的二维控制结构,即输入为误差e和误差变化ec,输出为控制量u。输入变量的添加通过 Edit -> Add Variable -> Input 实现。

    3、语言值及隶属函数的确定。

    首先我们要确定描述输入输出变量语言值的模糊子集,如{NB,NM,NS,ZE,PS,PM,PB},并设置输入输出变量的论域,例如我们设置误差E、误差变化EC的论域为[-6 6],控制量U的论域为[-10 10];然后为模糊语言变量选取相应的隶属度函数。通过 Edit -> Membership Functions 打开隶属度函数编辑器,然后分别对输入输出变量定义论域范围,添加隶属函数,以E为例,设置论域范围为[-6 6],添加隶属函数的个数为7。(注:隶属度函数编辑器初始时已为每个变量定义了3个隶属函数,再通过 Edit -> Add MFs 添加隶属函数时,个数选择4即可)

    4、模糊控制规则的制定。

    对于我们这个二维控制结构以及相应的输入模糊集,我们可以制定49条模糊控制规则。

    5、解模糊。

    模糊控制器的输出量是一个模糊集合,通过解模糊化方法判决出一个确切的精确量,解模糊化方法很多,我们这里选取重心法。

    6、保存建立的模糊控制器。

    File -> Export -> To File,文件名为 fuzzy_control。

    第二步:建立Simulink模型。

    1、在matlab命令窗口中输入simulink,产生如下窗口。

    2、新建模糊控制器模型,样式如下。

    3、在matlab命令窗口下输入 fuzzy = readfis('fuzzy_control') ,将之前建立的模糊控制器加载到工作空间,并将Fuzzy Logic Contrtoller的参数设置为fuzzy。

    4、保存该模型,命名为 fuzzy_model

    第三步:系统测试界面的设置。

    1、通过 Tools -> System Test -> Launch System Test 进入系统测试界面。

    2、添加测试模型。

    鼠标选中Main Test ,菜单栏 Insert -> Test Element -> Simulink ,选择第二步中建立的模型 fuzzy_model 。

    3、变量定义。

    在Test Vectors 项里定义两个测试向量,变量名分别为 input1、input2,input1 = [-6:1:6], input2 = [-6:1:6];在Test Variables 里定义测试变量,变量名为output。

    4、变量映射。

    把测试向量input1、input2分别映射到模糊控制器的输入口 in1、in2,做为输入测试信号。把测试变量 output 映射到模糊控制器输出口out1。设置后的界面如下:

    输入测试向量到模糊模型输入口映射:

     

    模糊控制器输出保存映射:

    5、测试数据保存。

    在测试界面点Save Results项,设置如下:

    6、运行测试,注意在Main Test(169 Iterations)(169次迭代,运算代价),等待测试结束。

    第四步:模糊控制查询表的生成

    1、系统测试结果保存在 stresults.ResultsDataSet.output 中,为169*1 cell的单元数组。(注:单元cell为 [n*1 double] 结构,表示系统被测试了n次)。

    2、在matlab命令窗口下输入 test_data = stresults.ResultsDataSet.output ,将测试结果另存在变量 test_data 中。

    3、测试结果格式转换。

    由于所建的二维查询表为13行13列,所需的数据应该为13*13 double数组,但因为test_data为 169*1 cell 的单元数组,无法直接作为表格数据输入,因此需先进行格式转换。

    在matlab命令窗口下输入 table_data = Cell2Array( test_data ,  1 , 13 , 13 ) ,调用Cell2Array函数,取每个单元数组中的第一行元素,即第一次测试数据,返回结果保存在 table_data 中。

    源码如下:

     

    4、新建二维查询表模型,样式如下:

    5、点开二维查询表进行如下设置:

    6、点 Edit 按钮,即可查看所生成的表格。 

     

    PS:以上两篇就是我基本完成的教程了,matlab因为自己不怎么熟,所以折腾了挺久的,基本就是从matlab什么都不懂到可以完成这个仿真,然后我也把新手可能出现的一些问题讲讲吧。

     

    看了第一篇之后到matlab模糊控制器的设置保存应该问题不大,之后就是建立仿真模型,因为从来没用过所以一窍不通,我的版本是2016b,界面也和上面的有些不同,可是吃了点苦头,所以以下就是给新手看看的,不要笑我教的简单哈

    首先,simulink界面不同,我的是新版的

    是这样的界面,刚开始一脸懵逼不知道怎么建立仿真模型

    之后随便点一个建立一个新的就好

    这个界面之后点那个Library Browser,里面有需要的元素,你就按上面那个图把元素都复制过来就好

    注意那个fuzzy的图标,改变输出的个数是双击它有选项,我当初找了半天硬是找不到,,

    把该加的东西都放进去,连接好

    然后在matlab命令行里把之前保存的模型读取出来

    用readfis命令把之前保存的数据赋给变量fuzzy,模型名字你们取得是什么就写什么

    之后在仿真fuzzy图形上双击,把参数设成fuzzy,就是上面的步骤

     

    最后就是test了,很坑啊,matlab2016a之后的版本就没有那个功能了,所以得用下别人的软件来做最后的测试,之后就看着慢慢设置就好,我只做到了测试运行那一步,因为参数还要调整所以就没到之后导表

     

    大概就这么多了,其实都是给新手讲的,也想给自己留着复习复习,还有感谢各位在csdn里留下的各种学习资料,谢谢

     

    展开全文
  • 关于matlab中的查表的基本原理

    千次阅读 2018-12-12 21:55:32
    基本原理就是利用概率与统计中的最小二乘法,首先根据X,与Y两组数据根据”: 写成矩阵形式: :     然该方程组一般而言没有解,所以为了选取最合适的   让该等式"尽量成立"...

      matlab中有个控件 MAP ,最简单的一维表可以输入两组数据,分别X,Y。

    然后就可以任意的给一个输入,就可以获得一个输出,一般开发软件时一些复杂计算,和一些经验值的应用。

    其基本原理就是利用概率与统计中的最小二乘法,首先根据X,与Y两组数据根据”:

    写成矩阵形式:


      

         

    然该方程组一般而言没有解,所以为了选取最合适的

      

    让该等式"尽量成立",引入残差平方和函数S

    就可以得出一个近似关系(如果是曲线关系可能还需要用 曲线拟合),当让如果是多维表就更加复杂了,需要用到多元回归分析方法来得出一个近似关系,然后根据近似关系来根据输入的值来得出输出的值。

     

    展开全文
  • ps基本原理及其matlab仿真(西安电子科技大学)
  • BPSK 误码率的Matlab 仿真实验 作者黄准 南京航空航天大学江苏省 南京市 430062 摘要对于...Matlab 仿真来提供一个比 较好的实例 关键词BPSK高斯白噪声带通滤波器载波抽样判决 1 BPSK 的理论分析 1.1 基本原理 cos t WG
  • 通过代码展示OFDM基本原理,对学习OFDM原理很有帮助
  • 滑模变结构控制MATLAB仿真第三版基本原理与设计方法代码
  • 最小二乘法的基本原理和多项式拟合 一最小二乘法的基本原理 从整体上考虑近似函数P(x)同所给数据点(XiyD(i=0,1,m)误差 i= P(Xj) -yi(i=0,i, ,m)的大小常用的方法有以卜二种一是误差 ri= p(xi)yi(i=0,1,m)绝对值的...
  • 神经网络基本原理matlab代码实例

    千次阅读 2014-07-21 21:02:45
    本文主要内容包括: (1) 介绍神经网络基本原理,(2) AForge.NET实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法 。 第0节、引例   本文以Fisher的Iris数据集作为神经网络程序的测试数据集...

    本文转载自http://www.cnblogs.com/heaad/archive/2011/03/07/1976443.html 


     

    本文主要内容包括: (1) 介绍神经网络基本原理,(2) AForge.NET实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法 。


    第0节、引例 

           本文以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在http://en.wikipedia.org/wiki/Iris_flower_data_set  找到。这里简要介绍一下Iris数据集:

    有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类。不同品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。我们现有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。

      一种解决方法是用已有的数据训练一个神经网络用作分类器。

      如果你只想用C#或Matlab快速实现神经网络来解决你手头上的问题,或者已经了解神经网络基本原理,请直接跳到第二节——神经网络实现。


    第一节、神经网络基本原理 

    1. 人工神经元( Artificial Neuron )模型 

           人工神经元是神经网络的基本元素,其原理可以用下图表示:

    图1. 人工神经元模型

     

           图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值 ( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为:

     

      图中 yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数 ( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为:

     

      若用X表示输入向量,用W表示权重向量,即:

    X = [ x0 , x1 , x2 , ....... , xn ]

     

      则神经元的输出可以表示为向量相乘的形式:

     

     

           若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net为负,则称神经元处于抑制状态。

           图1中的这种“阈值加权和”的神经元模型称为M-P模型 ( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )


    2. 常用激活函数 

           激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。

    (1) 线性函数 ( Liner Function )

     

    (2) 斜面函数 ( Ramp Function )

     

    (3) 阈值函数 ( Threshold Function )

     


     

           以上3个激活函数都属于线性函数,下面介绍两个常用的非线性激活函数。

    (4) S形函数 ( Sigmoid Function )

      该函数的导函数:

    (5) 双极S形函数 

      该函数的导函数:

      S形函数与双极S形函数的图像如下:


    图3. S形函数与双极S形函数图像

      双极S形函数与S形函数主要区别在于函数的值域,双极S形函数值域是(-1,1),而S形函数值域是(0,1)。

      由于S形函数与双极S形函数都是可导的(导函数是连续函数),因此适合用在BP神经网络中。(BP算法要求激活函数可导)


    3. 神经网络模型 

           神经网络是由大量的神经元互联而构成的网络。根据网络中神经元的互联方式,常见网络结构主要可以分为下面3类:

    (1) 前馈神经网络 ( Feedforward Neural Networks )

           前馈网络也称前向网络。这种网络只在训练过程会有反馈信号,而在分类过程中数据只能向前传送,直到到达输出层,层间没有向后的反馈信号,因此被称为前馈网络。感知机( perceptron)与BP神经网络就属于前馈网络。

           图4 中是一个3层的前馈神经网络,其中第一层是输入单元,第二层称为隐含层,第三层称为输出层(输入单元不是神经元,因此图中有2层神经元)。

    图4. 前馈神经网络

     

      对于一个3层的前馈神经网络N,若用X表示网络的输入向量,W1~W3表示网络各层的连接权向量,F1~F3表示神经网络3层的激活函数。

      那么神经网络的第一层神经元的输出为:

    O1 = F1( XW1 )

      第二层的输出为:

    O2 = F2 ( F1( XW1 ) W2 )

      输出层的输出为:

    O3 = F3( F2 ( F1( XW1 ) W2 ) W3 )

           若激活函数F1~F3都选用线性函数,那么神经网络的输出O3将是输入X的线性函数。因此,若要做高次函数的逼近就应该选用适当的非线性函数作为激活函数。

    (2) 反馈神经网络 ( Feedback Neural Networks )

           反馈型神经网络是一种从输出到输入具有反馈连接的神经网络,其结构比前馈网络要复杂得多。典型的反馈型神经网络有:Elman网络和Hopfield网络。

    图5. 反馈神经网络

     

    (3) 自组织网络 ( SOM ,Self-Organizing Neural Networks )

           自组织神经网络是一种无导师学习网络。它通过自动寻找样本中的内在规律和本质属性,自组织、自适应地改变网络参数与结构。

    图6. 自组织网络

     

    4. 神经网络工作方式 

           神经网络运作过程分为学习和工作两种状态。

    (1)神经网络的学习状态 

           网络的学习主要是指使用学习算法来调整神经元间的联接权,使得网络输出更符合实际。学习算法分为有导师学习( Supervised Learning )无导师学习( Unsupervised Learning )两类。

           有导师学习算法将一组训练集 ( training set )送入网络,根据网络的实际输出与期望输出间的差别来调整连接权。有导师学习算法的主要步骤包括:

    1)  从样本集合中取一个样本(Ai,Bi);

    2)  计算网络的实际输出O;

    3)  求D=Bi-O;

    4)  根据D调整权矩阵W;

    5) 对每个样本重复上述过程,直到对整个样本集来说,误差不超过规定范围。

      BP算法就是一种出色的有导师学习算法。

           无导师学习抽取样本集合中蕴含的统计特性,并以神经元之间的联接权的形式存于网络中。

           Hebb学习律是一种经典的无导师学习算法。

    (2) 神经网络的工作状态 

           神经元间的连接权不变,神经网络作为分类器、预测器等使用。

      下面简要介绍一下Hebb学习率与Delta学习规则 。

    (3) 无导师学习算法:Hebb学习率 

      Hebb算法核心思想是,当两个神经元同时处于激发状态时两者间的连接权会被加强,否则被减弱。 

           为了理解Hebb算法,有必要简单介绍一下条件反射实验。巴甫洛夫的条件反射实验:每次给狗喂食前都先响铃,时间一长,狗就会将铃声和食物联系起来。以后如果响铃但是不给食物,狗也会流口水。

    图7. 巴甫洛夫的条件反射实验

     

      受该实验的启发,Hebb的理论认为在同一时间被激发的神经元间的联系会被强化。比如,铃声响时一个神经元被激发,在同一时间食物的出现会激发附近的另一个神经元,那么这两个神经元间的联系就会强化,从而记住这两个事物之间存在着联系。相反,如果两个神经元总是不能同步激发,那么它们间的联系将会越来越弱。

      Hebb学习律可表示为:

           其中wij表示神经元j到神经元i的连接权,yi与yj为两个神经元的输出,a是表示学习速度的常数。若yi与yj同时被激活,即yi与yj同时为正,那么Wij将增大。若yi被激活,而yj处于抑制状态,即yi为正yj为负,那么Wij将变小。

    (4) 有导师学习算法:Delta学习规则

      Delta学习规则是一种简单的有导师学习算法,该算法根据神经元的实际输出与期望输出差别来调整连接权,其数学表示如下:

     

           其中Wij表示神经元j到神经元i的连接权,di是神经元i的期望输出,yi是神经元i的实际输出,xj表示神经元j状态,若神经元j处于激活态则xj为1,若处于抑制状态则xj为0或-1(根据激活函数而定)。a是表示学习速度的常数。假设xi为1,若di比yi大,那么Wij将增大,若di比yi小,那么Wij将变小。

           Delta规则简单讲来就是:若神经元实际输出比期望输出大,则减小所有输入为正的连接的权重,增大所有输入为负的连接的权重。反之,若神经元实际输出比期望输出小,则增大所有输入为正的连接的权重,减小所有输入为负的连接的权重。这个增大或减小的幅度就根据上面的式子来计算。

    (5)有导师学习算法:BP算法 

      采用BP学习算法的前馈型神经网络通常被称为BP网络。

    图8. 三层BP神经网络结构

     

      BP网络具有很强的非线性映射能力,一个3层BP神经网络能够实现对任意非线性函数进行逼近(根据Kolrnogorov定理)。一个典型的3层BP神经网络模型如图7所示。

      BP网络的学习算法占篇幅较大,我打算在下一篇文章中介绍。

     

    第二节、神经网络实现 

     

    1. 数据预处理 

           在训练神经网络前一般需要对数据进行预处理,一种重要的预处理手段是归一化处理。下面简要介绍归一化处理的原理与方法。

    (1) 什么是归一化? 

    数据归一化,就是将数据映射到[0,1]或[-1,1]区间或更小的区间,比如(0.1,0.9) 。

    (2) 为什么要归一化处理? 

    <1>输入数据的单位不一样,有些数据的范围可能特别大,导致的结果是神经网络收敛慢、训练时间长。

    <2>数据范围大的输入在模式分类中的作用可能会偏大,而数据范围小的输入作用就可能会偏小。

    <3>由于神经网络输出层的激活函数的值域是有限制的,因此需要将网络训练的目标数据映射到激活函数的值域。例如神经网络的输出层若采用S形激活函数,由于S形函数的值域限制在(0,1),也就是说神经网络的输出只能限制在(0,1),所以训练数据的输出就要归一化到[0,1]区间。

    <4>S形激活函数在(0,1)区间以外区域很平缓,区分度太小。例如S形函数f(X)在参数a=1时,f(100)与f(5)只相差0.0067。

    (3) 归一化算法 

      一种简单而快速的归一化算法是线性转换算法。线性转换算法常见有两种形式:

           <1>

    y = ( x - min )/( max - min )

      其中min为x的最小值,max为x的最大值,输入向量为x,归一化后的输出向量为y 。上式将数据归一化到 [ 0 , 1 ]区间,当激活函数采用S形函数时(值域为(0,1))时这条式子适用。

           <2>

    y = 2 * ( x - min ) / ( max - min ) - 1

           这条公式将数据归一化到 [ -1 , 1 ] 区间。当激活函数采用双极S形函数(值域为(-1,1))时这条式子适用。

    (4) Matlab数据归一化处理函数 

      Matlab中归一化处理数据可以采用premnmx , postmnmx , tramnmx 这3个函数。

    <1> premnmx

    语法:[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t)

    参数:

    pn: p矩阵按行归一化后的矩阵

    minp,maxp:p矩阵每一行的最小值,最大值

    tn:t矩阵按行归一化后的矩阵

    mint,maxt:t矩阵每一行的最小值,最大值

    作用:将矩阵p,t归一化到[-1,1] ,主要用于归一化处理训练数据集。

    <2> tramnmx

    语法:[pn] = tramnmx(p,minp,maxp)

    参数:

    minp,maxp:premnmx函数计算的矩阵的最小,最大值

    pn:归一化后的矩阵

    作用:主要用于归一化处理待分类的输入数据。

    <3> postmnmx

    语法: [p,t] = postmnmx(pn,minp,maxp,tn,mint,maxt)

    参数:

    minp,maxp:premnmx函数计算的p矩阵每行的最小值,最大值

    mint,maxt:premnmx函数计算的t矩阵每行的最小值,最大值

    作用:将矩阵pn,tn映射回归一化处理前的范围。postmnmx函数主要用于将神经网络的输出结果映射回归一化前的数据范围。

    2. 使用Matlab实现神经网络 

    使用Matlab建立前馈神经网络主要会使用到下面3个函数:

    newff :前馈网络创建函数

    train:训练一个神经网络

    sim :使用网络进行仿真

     下面简要介绍这3个函数的用法。

    (1) newff函数

    <1>newff函数语法 

           newff函数参数列表有很多的可选参数,具体可以参考Matlab的帮助文档,这里介绍newff函数的一种简单的形式。

    语法:net = newff ( A, B, {C} ,‘trainFun’)

    参数:

    A:一个n×2的矩阵,第i行元素为输入信号xi的最小值和最大值;

    B:一个k维行向量,其元素为网络中各层节点数;

    C:一个k维字符串行向量,每一分量为对应层神经元的激活函数

    trainFun :为学习规则采用的训练算法

    <2>常用的激活函数

      常用的激活函数有:

      a) 线性函数 (Linear transfer function)

    f(x) = x

      该函数的字符串为’purelin’。

     

    b) 对数S形转移函数( Logarithmic sigmoid transfer function )

        该函数的字符串为’logsig’。

    c) 双曲正切S形函数 (Hyperbolic tangent sigmoid transfer function )

      也就是上面所提到的双极S形函数。

     

      该函数的字符串为’ tansig’。

      Matlab的安装目录下的toolbox\nnet\nnet\nntransfer子目录中有所有激活函数的定义说明。

    <3>常见的训练函数

        常见的训练函数有:

    traingd :梯度下降BP训练函数(Gradient descent backpropagation)

    traingdx :梯度下降自适应学习率训练函数

    <4>网络配置参数

    一些重要的网络配置参数如下:

    net.trainparam.goal  :神经网络训练的目标误差

    net.trainparam.show   : 显示中间结果的周期

    net.trainparam.epochs  :最大迭代次数

    net.trainParam.lr    : 学习率

    (2) train函数

        网络训练学习函数。

    语法:[ net, tr, Y1, E ]  = train( net, X, Y )

    参数:

    X:网络实际输入

    Y:网络应有输出

    tr:训练跟踪信息

    Y1:网络实际输出

    E:误差矩阵

    (3) sim函数

    语法:Y=sim(net,X)

    参数:

    net:网络

    X:输入给网络的K×N矩阵,其中K为网络输入个数,N为数据样本数

    Y:输出矩阵Q×N,其中Q为网络输出个数

    (4) Matlab BP网络实例 

           我将Iris数据集分为2组,每组各75个样本,每组中每种花各有25个样本。其中一组作为以上程序的训练样本,另外一组作为检验样本。为了方便训练,将3类花分别编号为1,2,3 。

      使用这些数据训练一个4输入(分别对应4个特征),3输出(分别对应该样本属于某一品种的可能性大小)的前向网络。

           Matlab程序如下:

    复制代码
    %读取训练数据 [f1,f2,f3,f4,class] = textread('trainData.txt' , '%f%f%f%f%f',150); %特征值归一化 [input,minI,maxI] = premnmx( [f1 , f2 , f3 , f4 ]') ; %构造输出矩阵 s = length( class) ; output = zeros( s , 3 ) ; for i = 1 : s output( i , class( i ) ) = 1 ; end %创建神经网络 net = newff( minmax(input) , [10 3] , { 'logsig' 'purelin' } , 'traingdx' ) ; %设置训练参数 net.trainparam.show = 50 ; net.trainparam.epochs = 500 ; net.trainparam.goal = 0.01 ; net.trainParam.lr = 0.01 ; %开始训练 net = train( net, input , output' ) ; %读取测试数据 [t1 t2 t3 t4 c] = textread('testData.txt' , '%f%f%f%f%f',150); %测试数据归一化 testInput = tramnmx ( [t1,t2,t3,t4]' , minI, maxI ) ; %仿真 Y = sim( net , testInput ) %统计识别正确率 [s1 , s2] = size( Y ) ; hitNum = 0 ; for i = 1 : s2 [m , Index] = max( Y( : , i ) ) ; if( Index == c(i) ) hitNum = hitNum + 1 ; end end sprintf('识别率是 %3.3f%%',100 * hitNum / s2 )
    复制代码


      以上程序的识别率稳定在95%左右,训练100次左右达到收敛,训练曲线如下图所示:

    图9. 训练性能表现

     

    (5)参数设置对神经网络性能的影响 

           我在实验中通过调整隐含层节点数,选择不通过的激活函数,设定不同的学习率,

     

    <1>隐含层节点个数 

      隐含层节点的个数对于识别率的影响并不大,但是节点个数过多会增加运算量,使得训练较慢。

     

    <2>激活函数的选择 

           激活函数无论对于识别率或收敛速度都有显著的影响。在逼近高次曲线时,S形函数精度比线性函数要高得多,但计算量也要大得多。

     

    <3>学习率的选择 

           学习率影响着网络收敛的速度,以及网络能否收敛。学习率设置偏小可以保证网络收敛,但是收敛较慢。相反,学习率设置偏大则有可能使网络训练不收敛,影响识别效果。

     

    3. 使用AForge.NET实现神经网络 

    (1) AForge.NET简介 

           AForge.NET是一个C#实现的面向人工智能、计算机视觉等领域的开源架构。AForge.NET源代码下的Neuro目录包含一个神经网络的类库。

    AForge.NET主页:http://www.aforgenet.com/

    AForge.NET代码下载:http://code.google.com/p/aforge/

    Aforge.Neuro工程的类图如下:

     

    图10. AForge.Neuro类库类图

     

    下面介绍图9中的几个基本的类:

    Neuron — 神经元的抽象基类

    Layer — 层的抽象基类,由多个神经元组成

    Network —神经网络的抽象基类,由多个层(Layer)组成

    IActivationFunction - 激活函数(activation function)的接口

    IUnsupervisedLearning - 无导师学习(unsupervised learning)算法的接口ISupervisedLearning - 有导师学习(supervised learning)算法的接口

     

    (2)使用Aforge建立BP神经网络 

           使用AForge建立BP神经网络会用到下面的几个类:

    <1>  SigmoidFunction : S形神经网络

      构造函数:public SigmoidFunction( double alpha )

       参数alpha决定S形函数的陡峭程度。

    <2>  ActivationNetwork :神经网络类

      构造函数:

      public ActivationNetwork( IActivationFunction function, int inputsCount, params int[] neuronsCount )

                             : base( inputsCount, neuronsCount.Length )

      public virtual double[] Compute( double[] input )

     

    参数意义:

    inputsCount:输入个数

    neuronsCount :表示各层神经元个数

    <3>  BackPropagationLearning:BP学习算法

     构造函数:

    public BackPropagationLearning( ActivationNetwork network )

     参数意义:

    network :要训练的神经网络对象

    BackPropagationLearning类需要用户设置的属性有下面2个:

    learningRate :学习率

    momentum :冲量因子

    下面给出一个用AForge构建BP网络的代码。

     

    复制代码
    // 创建一个多层神经网络,采用S形激活函数,各层分别有4,5,3个神经元
    //(其中4是输入个数,3是输出个数,5是中间层结点个数) ActivationNetwork network = new ActivationNetwork( new SigmoidFunction(2), 4, 5, 3); // 创建训练算法对象 BackPropagationLearning teacher = new BackPropagationLearning(network); // 设置BP算法的学习率与冲量系数 teacher.LearningRate = 0.1; teacher.Momentum = 0; int iteration = 1 ; // 迭代训练500次 while( iteration < 500 ) { teacher.RunEpoch( trainInput , trainOutput ) ; ++iteration ; } //使用训练出来的神经网络来分类,t为输入数据向量 network.Compute(t)[0]
    复制代码

     


    参考文献 

    [1] Andrew Kirillov. Neural Networks on C#. [Online].   

    http://www.codeproject.com/KB/recipes/aforge_neuro.aspx  2006.10

    [2] Sacha Barber. AI : Neural Network for beginners. [Online].

    http://www.codeproject.com/KB/recipes/NeuralNetwork_1.aspx  2007.5

    [3] Richard O. Duda, Peter E. Hart and David G. Stork. 模式分类. 机械工业出版社. 2010.4

    [4] Wikipedia. Iris flower data set. [Online].      

    http://en.wikipedia.org/wiki/Iris_flower_data_set 

    展开全文
  • MATLAB基本运算

    2020-03-25 14:09:30
    MATLAB基本运算 1.基本运算 加减乘(左乘)除(右除),乘方 MATLAB的算术运算是在矩阵意义下进行的 单独的数据运算只是矩阵的一种特例 加减运算 要求矩阵为同型矩阵 标量也可以与矩阵进行加减运算 点运算 是...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 2,423
精华内容 969
关键字:

matlab基本原理

matlab 订阅