精华内容
下载资源
问答
  • matlab图像处理常用函数大全

    万次阅读 多人点赞 2018-07-16 16:03:34
    显示索引图像和灰度图像>> [X,map]=imread('trees.tif');>> gmap=rgb2gray(map);&...利用膨胀函数平移图像I = imread('football.jpg');se = translate(strel(1), [...
    显示索引图像和灰度图像
    
    >> [X,map]=imread('trees.tif');
    >> gmap=rgb2gray(map);
    >> figure,imshow(X,map);
    >> figure,imshow(X,gmap);


    利用膨胀函数平移图像
    I = imread('football.jpg');
    se = translate(strel(1), [30 30]);%将一个平面结构化元素分别向下和向右移动30个位置
    J = imdilate(I,se);%利用膨胀函数平移图像
    subplot(121);imshow(I), title('原图')
    subplot(122), imshow(J), title('移动后的图像');


    水平翻转和上下翻转
    I = imread('cameraman.tif');
    Flip1=fliplr(I);               %  对矩阵I左右反转
    subplot(131);imshow(I);title('原图');
    subplot(132);imshow(Flip1);title('水平镜像');
    Flip2=flipud(I);               %  对矩阵I垂直反转
    subplot(133);imshow(Flip2);title('竖直镜像');


    图像旋转
    I=imread('cameraman.tif');
    B=imrotate(I,60,'bilinear','crop');
    %双线性插值法旋转图像,并裁剪图像,使其和原图像大小一致
    subplot(121),imshow(I),title('原图');
    subplot(122),imshow(B),title('旋转图像60^{o},并剪切图像');


    截取图像
    I = imread('circuit.tif');
    I2 = imcrop(I,[75 68 130 112]);
    imshow(I), figure, imshow(I2)


    画轮廓
    >> I=imread('circuit.tif');
    >> imshow(I)
    >> figure
    >> imcontour(I,3)


    噪声和滤波
    I=imread('cameraman.tif');
    J=imnoise(I,'salt & pepper',0.02);%添加椒盐噪声
    subplot(121),imshow(J);title('噪声图像')
    K=medfilt2(J);%使用3*3的邻域窗的中值滤波
    subplot(122),imshow(K);title('中值滤波后图像')




    Matlab数字数字图像处理函数汇总:


    1、数字数字图像的变换


    ① fft2:fft2函数用于数字数字图像的二维傅立叶变换,如:i=imread('104_8.tif');


    j=fft2(i);


    ②ifft2::ifft2函数用于数字数字图像的二维傅立叶反变换,如:


     i=imread('104_8.tif');


     j=fft2(i);


    k=ifft2(j);


    2、模拟噪声生成函数和预定义滤波器


    ① imnoise:用于对数字数字图像生成模拟噪声,如:


     i=imread('104_8.tif');


     j=imnoise(i,'gaussian',0,0.02);%模拟高斯噪声


    ② fspecial:用于产生预定义滤波器,如:


    h=fspecial('sobel');%sobel水平边缘增强滤波器


    h=fspecial('gaussian');%高斯低通滤波器


    h=fspecial('laplacian');%拉普拉斯滤波器


    h=fspecial('log');%高斯拉普拉斯(LoG)滤波器


    h=fspecial('average');%均值滤波器


    2、数字数字图像的增强


    ①直方图:imhist函数用于数字数字图像的直方图显示,如:


    i=imread('104_8.tif');


    imhist(i);


    ②直方图均化:histeq函数用于数字数字图像的直方图均化,如:


    i=imread('104_8.tif');


    j=histeq(i);


    imshow(J)
    ③对比度调整:imadjust函数用于数字数字图像的对比度调整,如:i=imread('104_8.tif');


    j=imadjust(i,[0.3,0.7],[]);


    ④对数变换:log函数用于数字数字图像的对数变换,如:


    i=imread('104_8.tif');


    j=double(i);


    k=log(j);


    ⑤基于卷积的数字数字图像滤波函数:filter2函数用于数字数字图像滤波,如:i=imread('104_8.tif');


    h=[1,2,1;0,0,0;-1,-2,-1];


    j=filter2(h,i);


    ⑥线性滤波:利用二维卷积conv2滤波, 如:


    i=imread('104_8.tif');


    h=[1,1,1;1,1,1;1,1,1];


    h=h/9;


    j=conv2(i,h);


    ⑦中值滤波:medfilt2函数用于数字数字图像的中值滤波,如:


    i=imread('104_8.tif');


    j=medfilt2(i);


    ⑧锐化


    (1)利用Sobel算子锐化数字数字图像, 如:


    i=imread('104_8.tif');


    h=[1,2,1;0,0,0;-1,-2,-1];%Sobel算子


    j=filter2(h,i);


    (2)利用拉氏算子锐化数字数字图像, 如:


    i=imread('104_8.tif');


    j=double(i);


    h=[0,1,0;1,-4,0;0,1,0];%拉氏算子


    k=conv2(j,h,'same');


    m=j-k;


    3、数字数字图像边缘检测


    ①sobel算子 如:


    i=imread('104_8.tif');


    j =edge(i,'sobel',thresh)


     


    ②prewitt算子 如:


    i=imread('104_8.tif');


    j =edge(i,'prewitt',thresh)


    ③roberts算子  如:


    i=imread('104_8.tif');


    j =edge(i,'roberts',thresh)


    ④log算子  如:


    i=imread('104_8.tif');


    j =edge(i,'log',thresh)


    ⑤canny算子 如:


    i=imread('104_8.tif');


    j =edge(i,'canny',thresh)


    ⑥Zero-Cross算子 如:


    i=imread('104_8.tif');


    j =edge(i,'zerocross',thresh)


    4、形态学数字数字图像处理


    ①膨胀:是在二值化数字数字图像中“加长”或“变粗”的操作,函数imdilate执行膨胀运算,如:


    a=imread('104_7.tif');%输入二值数字数字图像


    b=[0 1 0;1 1 1;01 0];


    c=imdilate(a,b);


    ②腐蚀:函数imerode执行腐蚀,如:


    a=imread('104_7.tif');%输入二值数字数字图像


    b=strel('disk',1);


    c=imerode(a,b);


    ③开运算:先腐蚀后膨胀称为开运算,用imopen来实现,如:


     a=imread('104_8.tif');


    b=strel('square',2);


    c=imopen(a,b);


    ④闭运算:先膨胀后腐蚀称为闭运算,用imclose来实现,如:


     a=imread('104_8.tif');


    b=strel('square',2);


    c=imclose(a,b);


     


     


    数字数字图像增强
    1. 直方图均衡化的 Matlab 实现
    1.1 imhist 函数
    功能:计算和显示数字数字图像的色彩直方图
    格式:imhist(I,n)
            imhist(X,map)
    说明:imhist(I,n) 其中,n 为指定的灰度级数目,缺省值为256;imhist(X,map) 就算和显示索引色数字数字图像 X 的直方图,map为调色板。用stem(x,counts) 同样可以显示直方图。


    1.2 imcontour 函数
    功能:显示数字数字图像的等灰度值图
    格式:imcontour(I,n),imcontour(I,v)
    说明:n 为灰度级的个数,v 是有用户指定所选的等灰度级向量。


    1.3 imadjust 函数
    功能:通过直方图变换调整对比度
    格式:J=imadjust(I,[low high],[bottomtop],gamma)
            newmap=imadjust(map,[low high],[bottomtop],gamma)
    说明:J=imadjust(I,[low high],[bottomtop],gamma) 其中,gamma 为校正量r,[lowhigh] 为原数字数字图像中要变换的灰度范围,[bottom top]
    指定了变换后的灰度范围;newmap=imadjust(map,[lowhigh],[bottom top],gamma) 调整索引色数字数字图像的调色板 map 。此时若 [low high] 和
    [bottom top] 都为2×3的矩阵,则分别调整 R、G、B 3个分量。


    1.4 histeq 函数
    功能:直方图均衡化
    格式:J=histeq(I,hgram)
            J=histeq(I,n)
            [J,T]=histeq(I,...)
            newmap=histeq(X,map,hgram)
            newmap=histeq(X,map)
            [new,T]=histeq(X,...)
    说明:J=histeq(I,hgram) 实现了所谓“直方图规定化”,即将原是图象 I 的直方图变换成用户指定的向量 hgram 。hgram 中的每一个元素
    都在 [0,1] 中;J=histeq(I,n) 指定均衡化后的灰度级数 n ,缺省值为 64;[J,T]=histeq(I,...)返回从能将数字数字图像 I 的灰度直方图变换成
    数字数字图像 J 的直方图的变换 T ;newmap=histeq(X,map) 和 [new,T]=histeq(X,...) 是针对索引色数字数字图像调色板的直方图均衡。


    2. 噪声及其噪声的 Matlab 实现
            imnoise 函数
    格式:J=imnoise(I,type)
            J=imnoise(I,type,parameter)
    说明:J=imnoise(I,type) 返回对数字数字图像 I 添加典型噪声后的有噪数字数字图像 J ,参数type 和 parameter 用于确定噪声的类型和相应的参数。




    3. 数字数字图像滤波的 Matlab 实现


    3.1 conv2 函数
    功能:计算二维卷积
    格式:C=conv2(A,B)
            C=conv2(Hcol,Hrow,A)
            C=conv2(...,'shape')
    说明:对于 C=conv2(A,B) ,conv2 的算矩阵A 和 B 的卷积,若[Ma,Na]=size(A), [Mb,Nb]=size(B), 则 size(C)=[Ma+Mb-1,Na+Nb-1];
    C=conv2(Hcol,Hrow,A) 中,矩阵 A 分别与Hcol 向量在列方向和 Hrow 向量在行方向上进行卷积;C=conv2(...,'shape') 用来指定 conv2
    返回二维卷积结果部分,参数 shape 可取值如下:
            》full为缺省值,返回二维卷积的全部结果;
            》same返回二维卷积结果中与 A 大小相同的中间部分;
            valid 返回在卷积过程中,未使用边缘补 0 部分进行计算的卷积结果部分,当 size(A)>size(B) 时,size(C)=[Ma-Mb+1,Na-Nb+1]。


    3.2 conv 函数
    功能:计算多维卷积
    格式:与 conv2 函数相同


    3.3 filter2函数
    功能:计算二维线型数字滤波,它与函数 fspecial 连用
    格式:Y=filter2(B,X)
            Y=filter2(B,X,'shape')
    说明:对于 Y=filter2(B,X) ,filter2 使用矩阵B 中的二维 FIR 滤波器对数据 X 进行滤波,结果 Y 是通过二维互相关计算出来的,其大
    小与 X 一样;对于Y=filter2(B,X,'shape') ,filter2返回的 Y 是通过二维互相关计算出来的,其大小由参数 shape 确定,其取值如下

            》full返回二维相关的全部结果,size(Y)>size(X);
            》same返回二维互相关结果的中间部分,Y 与X 大小相同;
            》valid返回在二维互相关过程中,未使用边缘补 0 部分进行计算的结果部分,有 size(Y)<size(X) 。


    3.4 fspecial 函数
    功能:产生预定义滤波器
    格式:H=fspecial(type)
            H=fspecial('gaussian',n,sigma)        高斯低通滤波器
            H=fspecial('sobel')                        Sobel 水平边缘增强滤波器
            H=fspecial('prewitt')                     Prewitt 水平边缘增强滤波器
            H=fspecial('laplacian',alpha)            近似二维拉普拉斯运算滤波器
            H=fspecial('log',n,sigma)                高斯拉普拉斯(LoG)运算滤波器
            H=fspecial('average',n)                  均值滤波器
            H=fspecial('unsharp',alpha)            模糊对比增强滤波器
    说明:对于形式 H=fspecial(type) ,fspecial 函数产生一个由 type 指定的二维滤波器 H ,返回的H 常与其它滤波器搭配使用。




    4. 彩色增强的 Matlab 实现
    4.1 imfilter函数
    功能:真彩色增强
    格式:B=imfilter(A,h)
    说明:将原始数字数字图像 A 按指定的滤波器 h 进行滤波增强处理,增强后的数字数字图像 B 与A 的尺寸和类型相同


     


    数字数字图像的变换


    1. 离散傅立叶变换的Matlab 实现
          Matlab 函数 fft、fft2 和 fftn 分别可以实现一维、二维和 N 维 DFT 算法;而函数 ifft、ifft2 和 ifftn 则用来计算反 DFT 。
    这些函数的调用格式如下:
             A=fft(X,N,DIM)
          其中,X 表示输入数字数字图像;N 表示采样间隔点,如果 X 小于该数值,那么 Matlab 将会对 X 进行零填充,否则将进行截取,使之长度为
    N ;DIM 表示要进行离散傅立叶变换。
            A=fft2(X,MROWS,NCOLS) 
    其中,MROWS 和 NCOLS 指定对 X 进行零填充后的 X 大小。
            A=fftn(X,SIZE)
    其中,SIZE 是一个向量,它们每一个元素都将指定 X 相应维进行零填充后的长度。
          函数 ifft、ifft2 和 ifftn的调用格式于对应的离散傅立叶变换函数一致。
    例子:数字数字图像的二维傅立叶频谱
    % 读入原始数字数字图像
    I=imread('lena.bmp');
    imshow(I)
    % 求离散傅立叶频谱
    J=fftshift(fft2(I));
    figure;
    imshow(log(abs(J)),[8,10])


    2. 离散余弦变换的 Matlab实现
    2.1. dCT2 函数
    功能:二维 DCT 变换
    格式:B=dct2(A) 
            B=dct2(A,m,n) 
            B=dct2(A,[m,n]) 
    说明:B=dct2(A) 计算 A 的 DCT 变换 B ,A 与 B 的大小相同;B=dct2(A,m,n) 和 B=dct2(A,[m,n]) 通过对 A 补 0 或剪裁,使 B 的大小为 m×n。


    2.2. dict2 函数
    功能:DCT 反变换
    格式:B=idct2(A) 
            B=idct2(A,m,n) 
            B=idct2(A,[m,n]) 
    说明:B=idct2(A) 计算 A 的 DCT 反变换 B ,A 与 B 的大小相同;B=idct2(A,m,n) 和 B=idct2(A,[m,n]) 通过对 A 补 0 或剪裁,使 B的大小为 m×n。


    2.3. dctmtx函数
    功能:计算 DCT 变换矩阵
    格式:D=dctmtx(n)
    说明:D=dctmtx(n) 返回一个 n×n 的 DCT 变换矩阵,输出矩阵 D 为 double 类型。


    3. 数字数字图像小波变换的Matlab 实现
    3.1 一维小波变换的 Matlab实现
    (1) dwt 函数
    功能:一维离散小波变换
    格式:[cA,cD]=dwt(X,'wname')
            [cA,cD]=dwt(X,Lo_D,Hi_D)
    说明:[cA,cD]=dwt(X,'wname')使用指定的小波基函数'wname' 对信号 X 进行分解,cA、cD分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。


    (2) idwt 函数
    功能:一维离散小波反变换
    格式:X=idwt(cA,cD,'wname')
            X=idwt(cA,cD,Lo_R,Hi_R)
            X=idwt(cA,cD,'wname',L)
            X=idwt(cA,cD,Lo_R,Hi_R,L)
    说明:X=idwt(cA,cD,'wname')由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
            'wname' 为所选的小波函数
            X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。
            X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。


    3.2 二维小波变换的 Matlab实现
              二维小波变换的函数
    -------------------------------------------------
         函数名                函数功能
    ---------------------------------------------------
         dwt2           二维离散小波变换
       wavedec2       二维信号的多层小波分解
         idwt2          二维离散小波反变换
       waverec2        二维信号的多层小波重构
       wrcoef2          由多层小波分解重构某一层的分解信号
       upcoef2          由多层小波分解重构近似分量或细节分量
       detcoef2         提取二维信号小波分解的细节分量
       appcoef2        提取二维信号小波分解的近似分量
       upwlev2         二维小波分解的单层重构
       dwtpet2         二维周期小波变换
       idwtper2        二维周期小波反变换
    -------------------------------------------------------------
    (1) wcodemat 函数
    功能:对数据矩阵进行伪彩色编码
    格式:Y=wcodemat(X,NB,OPT,ABSOL)
            Y=wcodemat(X,NB,OPT)
            Y=wcodemat(X,NB)
            Y=wcodemat(X)
    说明:Y=wcodemat(X,NB,OPT,ABSOL)返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;
           OPT 指定了编码的方式(缺省值为 'mat'),即:
                    OPT='row' ,按行编码
                    OPT='col' ,按列编码
                    OPT='mat' ,按整个矩阵编码
           ABSOL 是函数的控制参数(缺省值为 '1'),即:
                    ABSOL=0 时,返回编码矩阵
                    ABSOL=1 时,返回数据矩阵的绝对值ABS(X)


    (2) dwt2 函数
    功能:二维离散小波变换
    格式:[cA,cH,cV,cD]=dwt2(X,'wname')
            [cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)
    说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数 'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分
    量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分
    解信号 X 。


    (3) wavedec2 函数
    功能:二维信号的多层小波分解
    格式:[C,S]=wavedec2(X,N,'wname')
            [C,S]=wavedec2(X,N,Lo_D,Hi_D)
    说明:[C,S]=wavedec2(X,N,'wname')使用小波基函数'wname' 对二维信号 X 进行 N 层分解;[C,S]=wavedec2(X,N,Lo_D,Hi_D) 使用指定
    的分解低通和高通滤波器Lo_D 和 Hi_D 分解信号 X 。


    (4) idwt2 函数
    功能:二维离散小波反变换
    格式:X=idwt2(cA,cH,cV,cD,'wname')
            X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R)
            X=idwt2(cA,cH,cV,cD,'wname',S)
            X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)
    说明:X=idwt2(cA,cH,cV,cD,'wname')由信号小波分解的近似信号cA 和细节信号 cH、cH、cV、cD 经小波反变换重构原信号 X
    ;X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R)使用指定的重构低通和高通滤波器 Lo_R 和 Hi_R 重构原信号 X ;X=idwt2(cA,cH,cV,cD,'wname',S)
    和X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S) 返回中心附近的 S 个数据点。


    (5) waverec2 函数
    说明:二维信号的多层小波重构
    格式:X=waverec2(C,S,'wname')
            X=waverec2(C,S,Lo_R,Hi_R)
    说明:X=waverec2(C,S,'wname')由多层二维小波分解的结果 C、S 重构原始信号 X ,'wname'为使用的小波基函数;X=waverec2(C,S,Lo_R,Hi_R) 使用重构低通和高通滤波器 Lo_R 和 Hi_R 重构原信号。


     


     


    数字数字图像处理工具箱
    1. 数字数字图像和数字数字图像数据
       缺省情况下,MATLAB将数字数字图像中的数据存储为双精度类型(double),64位浮点
    数,所需存储量很大;MATLAB还支持另一种类型无符号整型(uint8),即数字数字图像矩
    阵中每个数据占用1个字节。
       在使用MATLAB工具箱时,一定要注意函数所要求的参数类型。另外,uint8
    与double两种类型数据的值域不同,编程需注意值域转换。
              从uint8到double的转换
       ---------------------------------------------
           数字数字图像类型        MATLAB语句
       ---------------------------------------------
         索引色             B=double(A)+1
         索引色或真彩色 B=double(A)/255
         二值数字数字图像          B=double(A)
       ---------------------------------------------
             从double到uint8的转换
       ---------------------------------------------
           数字数字图像类型        MATLAB语句
       ---------------------------------------------
        索引色              B=uint8(round(A-1))
        索引色或真彩色   B=uint8(round(A*255))
        二值数字数字图像           B=logical(uint8(round(A)))
       ---------------------------------------------


    2. 数字数字图像处理工具箱所支持的数字数字图像类型
    2.1 真彩色数字数字图像
        R、G、B三个分量表示一个像素的颜色。如果要读取数字数字图像中(100,50)处的像素值,
    可查看三元数据(100,50,1:3)。
        真彩色数字数字图像可用双精度存储,亮度值范围是[0,1];比较符合习惯的存储方法是用无
    符号整型存储,亮度值范围[0,255]
       
    2.2 索引色数字数字图像
       包含两个结构,一个是调色板,另一个是数字数字图像数据矩阵。调色板是一个有3列和若干行
    的色彩映象矩阵,矩阵每行代表一种颜色,3列分别代表红、绿、蓝色强度的双精度数。
       
       注意:MATLAB中调色板色彩强度[0,1],0代表最暗,1代表最亮。
              常用颜色的RGB值
       --------------------------------------------
        颜色   R   G   B      颜色    R  G   B 
       --------------------------------------------
         黑     0   0   1     洋红    1   0   1
         白     1   1   1     青蓝    0   1   1
         红     1   0   0     天蓝 0.67 0   1
         绿     0   1   0     橘黄    1 0.5 0
         蓝     0   0   1     深红   0.5 0   0
         黄     1   1   0      灰    0.5 0.5 0.5       
       --------------------------------------------
             产生标准调色板的函数
       -------------------------------------------------
        函数名      调色板
       -------------------------------------------------
         Hsv       色彩饱和度,以红色开始,并以红色结束
         Hot       黑色-红色-黄色-白色
         Cool      青蓝和洋红的色度
         Pink      粉红的色度
         Gray      线型灰度
         Bone      带蓝色的灰度
         Jet        Hsv的一种变形,以蓝色开始,以蓝色结束
         Copper    线型铜色度
         Prim       三棱镜,交替为红、橘黄、黄、绿和天蓝
         Flag       交替为红、白、蓝和黑
    --------------------------------------------------
       缺省情况下,调用上述函数灰产生一个64×3的调色板,用户也可指定调色板大小。
       
       索引色数字数字图像数据也有double和uint8两种类型。
       当数字数字图像数据为double类型时,值1代表调色板中的第1行,值2代表第2行……
       如果数字数字图像数据为uint8类型,0代表调色板的第一行,,值1代表第2行……


    2.3 灰度数字数字图像
       存储灰度数字数字图像只需要一个数据矩阵。
       数据类型可以是double,[0,1];也可以是uint8,[0,255]


    2.4 二值数字数字图像
       二值数字数字图像只需一个数据矩阵,每个像素只有两个灰度值,可以采用uint8或double类型存储。
       MATLAB工具箱中以二值数字数字图像作为返回结果的函数都使用uint8类型。


    2.5 数字数字图像序列
       MATLAB工具箱支持将多帧数字数字图像连接成数字数字图像序列。
       数字数字图像序列是一个4维数组,数字数字图像帧的序号在数字数字图像的长、宽、颜色深度之后构成第4维。
       分散的数字数字图像也可以合并成数字数字图像序列,前提是各数字数字图像尺寸必须相同,若是索引色数字数字图像,
    调色板也必须相同。
       可参考cat()函数    A=cat(4,A1,A2,A3,A4,A5)


    3. MATLAB数字数字图像类型转换
             数字数字图像类型转换函数
      ---------------------------------------------------------------------------
         函数名                     函数功能
      ---------------------------------------------------------------------------
         dither       数字数字图像抖动,将灰度图变成二值图,或将真彩色数字数字图像抖动成索引色数字数字图像
        gray2ind    将灰度数字数字图像转换成索引数字数字图像
        grayslice    通过设定阈值将灰度数字数字图像转换成索引色数字数字图像
         im2bw      通过设定亮度阈值将真彩色、索引色、灰度图转换成二值图
        ind2gray    将索引色数字数字图像转换成灰度数字数字图像
        ind2rgb      将索引色数字数字图像转换成真彩色数字数字图像
        mat2gray   将一个数据矩阵转换成一副灰度图
        rgb2gray    将一副真彩色数字数字图像转换成灰度数字数字图像
        rgb2ind      将真彩色数字数字图像转换成索引色数字数字图像
       ------------------------------------------------------------------------


    4. 数字数字图像文件的读写和查询
    4.1 图形数字数字图像文件的读取
       利用函数imread()可完成图形数字数字图像文件的读取,语法:
         A=imread(filename,fmt)
         [X,map]=imread(filename,fmt)
         [...]=imread(filename)
         [...]=imread(filename,idx) (只对TIF格式的文件)
         [...]=imread(filename,ref) (只对HDF格式的文件)
       通常,读取的大多数数字图像均为8bit,当这些数字图像加载到内存中时,Matlab就将其存放
    在类uint8中。此为Matlab还支持16bit的PNG和TIF数字图像,当读取这类文件时,Matlab就将
    其存贮在uint16中。
       注意:对于索引数字图像,即使数字图像阵列的本身为类uint8或类uint16,imread函数仍将
    颜色映象表读取并存贮到一个双精度的浮点类型的阵列中。


    4.2 图形数字图像文件的写入
       使用imwrite函数,语法如下:
       imwrite(A,filename,fmt)
       imwrite(X,map,filename,fmt)
       imwrite(...,filename)
       imwrite(...,parameter,value)
       当利用imwrite函数保存数字图像时,Matlab缺省的方式是将其简化道uint8的数据格式。


    4.3 图形数字图像文件信息的查询  imfinfo()函数




    5. 数字图像文件的显示
    5.1 索引数字图像及其显示
       方法一:
              image(X)
              colormap(map)
       方法二: 
              imshow(X,map)


    5.2 灰度数字图像及其显示
       Matlab 7.0 中,要显示一副灰度数字图像,可以调用函数 imshow 或 imagesc (即 
    imagescale,数字图像缩放函数)
       (1) imshow 函数显示灰度数字图像
        使用imshow(I)    或 使用明确指定的灰度级书目:imshow(I,32)
        
        由于Matlab自动对灰度数字图像进行标度以适合调色板的范围,因而可以使用自定义
    大小的调色板。其调用格式如下:
               imshow(I,[low,high])
        其中,low 和 high 分别为数据数组的最小值和最大值。
       (2) imagesc 函数显示灰度数字图像
       下面的代码是具有两个输入参数的 imagesc 函数显示一副灰度数字图像
           imagesc(1,[0,1]);
           colormap(gray);
        imagesc 函数中的第二个参数确定灰度范围。灰度范围中的第一个值(通常是0),
    对应于颜色映象表中的第一个值(颜色),第二个值(通常是1)则对应与颜色映象表
    中的最后一个值(颜色)。灰度范围中间的值则线型对应与颜色映象表中剩余的值(颜色)。
        在调用 imagesc 函数时,若只使用一个参数,可以用任意灰度范围显示数字图像。在该
    调用方式下,数据矩阵中的最小值对应于颜色映象表中的第一个颜色值,数据矩阵中的最大
    值对应于颜色映象表中的最后一个颜色值。


    5.3 RGB 数字图像及其显示
       (1) image(RGB) 
       不管RGB数字图像的类型是double浮点型,还是 uint8 或 uint16 无符号整数型,Matlab都
    能通过 image 函数将其正确显示出来。
       RGB8 = uint8(round(RGB64×255)); %将 double 浮点型转换为 uint8 无符号整型
       RGB64 = double(RGB8)/255;           % 将 uint8 无符号整型转换为 double 浮点型
       RGB16 = uint16(round(RGB64×65535)); %将 double 浮点型转换为 uint16 无符号整型 
       RGB64 = double(RGB16)/65535;      % 将 uint16 无符号整型转换为 double 浮点型
       (2) imshow(RGB) 参数是一个 m×n×3 的数组


    5.4 二进制数字图像及其显示
       (1) imshow(BW)
       在 Matlab 7.0 中,二进制数字图像是一个逻辑类,仅包括 0 和 1 两个数值。像素 0 显示
    为黑色,像素 1 显示为白色。
       显示时,也可通过NOT(~)命令,对二进制图象进行取反,使数值 0 显示为白色;1 显示
    为黑色。 
       例如:imshow(~BW)
       (2) 此外,还可以使用一个调色板显示一副二进制数字图像。如果图形是 uint8 数据类型,
    则数值 0 显示为调色板的第一个颜色,数值 1 显示为第二个颜色。
       例如:imshow(BW,[1 0 0;0 0 1])  


    5.5 直接从磁盘显示数字图像
       可使用一下命令直接进行数字图像文件的显示: 
            imshow filename
       其中,filename 为要显示的数字图像文件的文件名。
       如果数字图像是多帧的,那么imshow 将仅显示第一帧。但需注意,在使用这种方式时,数字图像
    数据没有保存在Matlab7.0 工作平台。如果希望将数字图像装入工作台中,需使用 getimage 函数,从当前的句柄图形数字图像对象中获取数字图像数据,
       命令形式为: rgb = getimage;


    bwlabel 
    功能: 
    标注二进制数字图像中已连接的部分。 
    L = bwlabel(BW,n) 
    [L,num] = bwlabel(BW,n)
    isbw 
    功能: 
    判断是否为二进制数字图像。 
    语法: 
    flag = isbw(A) 
    相关命令: 
    isind, isgray, isrgb 
    74.isgray 
    功能: 
    判断是否为灰度数字图像。 
    语法: 
    flag = isgray(A) 
    相关命令: 
    isbw, isind, isrgb
    11.bwselect 
    功能: 
    在二进制数字图像中选择对象。
    语法: 
    BW2 = bwselect(BW1,c,r,n) 
    BW2 = bwselect(BW1,n) 
    [BW2,idx] = bwselect(...) 
    举例 
    BW1 = imread('text.tif'); 
    c = [16 90 144]; 
    r = [85 197 247]; 
    BW2 = bwselect(BW1,c,r,4); 
    imshow(BW1) 
    figure, imshow(BW2)
    47.im2bw 
    功能: 
    转换数字图像为二进制数字图像。 
    语法: 
    BW = im2bw(I,level) 
    BW = im2bw(X,map,level) 
    BW = im2bw(RGB,level) 
    举例 
    load trees 
    BW = im2bw(X,map,0.4); 
    imshow(X,map)
    展开全文
  • Matlab图像处理函数大全(建议收藏)

    千次阅读 多人点赞 2020-12-11 20:32:01
    图像去模糊第10章: 线性滤波和变换第11章: 形态学操作第12章: 图像的块和邻域处理第13章: 颜色映射表和色彩空间第14章: 其他常用函数 第1章: 图像显示与图像文件输入输出函数 1.1图像显示函数 1.1.1 immovie...
    展开全文
  • 本示例说明如何使用imresize函数调整图像大小。指定放大倍数将图像读入工作区。 I = imread('circuit.tif');使用imresize功能调整图像尺寸。在此示例,您指定放大倍数。要放大图像,请指定大于1的放大倍数。J 在...

    f710d935ad1e5d276d6f696ec6b1dd3d.png

    本示例说明如何使用imresize函数调整图像大小。

    指定放大倍数

    将图像读入工作区。

     I = imread('circuit.tif');

    使用imresize功能调整图像尺寸。在此示例中,您指定放大倍数。要放大图像,请指定大于1的放大倍数。

     J = imresize(I,1.25);

    在放大的版本旁边显示原始图像。

     figure
     imshowpair(I,J,'montage')
     axis off

    6c800a62f66c447c56bf7d11e2c53b8c.png

    指定输出图像的尺寸

    再次调整图像大小,这次指定输出图像的所需大小,而不是放大值。传递给imresize函数一个包含输出图像中的行数和列数的向量。如果指定的尺寸不能产生与输入图像相同的纵横比,则输出图像将失真。如果将向量中的元素之一指定为NaNimresize则将计算该尺寸的值以保留图像的纵横比。要执行多分辨率处理所需的调整大小操作,请使用impyramid

     K = imresize(I,[100 150]);
     figure, imshow(K)

    7cd08693651872795ff042f90c72e4cf.png

    指定插值方法

    再次调整图像大小,这次指定插值方法。放大图像时,输出图像比原始图像包含更多的像素。imresize使用插值法确定这些像素的值,计算像素位置附近某组像素的加权平均值。imresize权重基于每个像素距该点的距离。默认情况下,imresize使用双三次插值,但是您可以指定其他插值方法或插值内核。有关imresize完整列表,请参见参考页。您还可以指定自己的自定义插值内核。本示例使用双线性插值。

     L = imresize(I,1.5,'bilinear');
     figure, imshow(L)

    b868cb5b20d9b84c19405207ba8ad4ce.png

    缩小图像时防止混叠

    再次调整图像大小,这次缩小图像。减小图像尺寸时,会丢失一些原始像素,因为输出图像中的像素较少。这可能会引入缺陷,例如混叠。由于尺寸减小而发生的混叠通常显示为阶梯图案(特别是在高对比度图像中),或者在输出图像中显示为莫尔(波纹效果)图案。默认情况下,imresize对于所有插值类型(最近邻除外),都使用抗混叠来限制锯齿对输出图像的影响。要关闭抗混叠功能,请指定“抗混叠”参数并将其值设置为false。即使启用了抗混叠功能,调整大小也会引入伪影,因为当您减小图像尺寸时,信息总是会丢失。

     M = imresize(I,.75,'Antialiasing',false);
     figure, imshow(M)

    f01da005739a559bb363b3889f6d3dd6.png

    注:本文根据MATLAB官网内容修改而成。

    欢迎您进一步了解以下MATLAB系列文章:

    吃小羊:MATLAB作图实例:00:索引​zhuanlan.zhihu.com
    875956185bd213b5158dcd78cdfd5681.png
    吃小羊:MATLAB金融工具箱:00:索引​zhuanlan.zhihu.com
    d2ad1f104cf3bc514848df81f0eabce5.png
    展开全文
  • Matlab——图像缩放(插值法)

    万次阅读 多人点赞 2018-07-30 15:49:36
     输入原图像以及缩放图像的像素要求(宽度*高度),处理后输出新图像。  我是用matlab来实现scale(input_img,scale_size)函数的,输入图像路径以及要求实现的宽度scale_w和高度值scale_h即可。通过matlab把原...

    实验内容:

        用双线性内插法实现位深度为8的灰度图像的缩放。

     

    思路:

         输入原图像以及缩放后图像的像素要求(宽度*高度),处理后输出新图像。

        我是用matlab来实现scale(input_img,scale_size)函数的,输入图像路径以及要求实现的宽度scale_w和高度值scale_h即可。通过matlab把原图像转化为img矩阵,这样矩阵img(a, b)元素的值就是原图像高度为a,宽度为b处的像素值。

       设处理前后图像的宽度和高度分别为w、h,scale_w、scale_h。

        如上图所示,row对应的是高度,设为x轴;col对应的是宽度,设为y轴;value对应的是灰度值,设为z轴。

     

        通过缩放比例,可以求得新图像B在(i,j)处对应原图像的点为(x,y)(其中x= i*h/scale_h,y= j*w/scale_w)。

    但是这两个值可能为浮点数,而像素中的位置是整数,所以这个点在原图像中对应的可能是“虚”点。所以,我们需

    要根据找该“虚”点周围的四个点来进行双线性插值得到新图像的灰度值。我们应该取的是(x,y)邻近的四个像素

    (x0,y0) 、(x0,y1) 、(x1,y0) 、(x1,y1),它们对应的灰度值为f(x0,y0) 、f(x0,y1)、 f(x1,y0)、 f(x1,y1)。

      

        先对x方向进行插值,再对y方向进行插值,计算如下:

        

        

        

     

        反过来,先对y方向:

        

        

        

     

        显然,邻近像素的x1-x0 = y1-y0 = 1
        整理式子得到:

     

        这里u、v分别是x、y的小数部分,即u = x - x0; v = y - y0

           要注意的是:上述公式img(a,b)中的a和b不能小于1,所以当x和y小于1时需要将其重新赋值为1。

     

    代码:

    function output_img = scale(input_img, scale_size)
    %Input - input_img is a two-dimensional matrices storing image
    %      - scale_size is a tuple of [width, height] defining the spatial resolution of output
    %Output - output_img is the same as input_img
     
    img = imread(input_img); %读取输入图片的数据
    [h,w] = size(img); %获取行和列,即原图的高度和宽度
     
    scale_w = scale_size(1); %根据输入获得缩放后的新宽度
    scale_h = scale_size(2); %根据输入获得缩放后的新高度
    output_img = zeros(scale_h, scale_w); %初始化
     
    for i = 1 : scale_h         %缩放后的图像的(i,j)位置对应原图的(x,y)
        for j = 1 : scale_w
            x = i * h / scale_h;
            y = j * w / scale_w;
            u = x - floor(x);
            v = y - floor(y); %取小数部分
            
            if x < 1           %边界处理
                x = 1;
            end
            
            if y < 1
                y = 1;
            end
            
     
            %用原图的四个真实像素点来双线性插值获得“虚”像素的像素值
            output_img(i, j) = img(floor(x), floor(y)) * (1-u) * (1-v) + ...
                                   img(floor(x), ceil(y)) * (1-u) * v + ...
                                   img(ceil(x), floor(y)) * u * (1-v) + ...
                                   img(ceil(x), ceil(y)) * u * v;
        end
    end
     
    imwrite(uint8(output_img), '../output_img.png'); %保存处理后的图像
    imshow(input_img); %显示原图
    figure,imshow(uint8(output_img)) %显示处理后的图像
    

    运行时若图片在代码上一级目录,则输入scale('../a.png', [450,300]);

     

    效果图:

    原图为384*256:

    缩小成192*128:  

    放大成450*300:

    缩放成500*200:

     

    //

     转载:https://blog.csdn.net/Stella_Chan/article/details/78025020?locationNum=5&fps=1

    展开全文
  • Matlab图像的几何变换之图像缩放

    万次阅读 2017-12-13 13:07:37
    Matlab图像缩放 Matlab实现函数代码如下: clc I=rgb2gray(imread('Campus-scenery2sk.JPG')); figure,imshow(I); title('原图'); reduceI=imresize(I,0.5); %原图像I缩小0.5倍 figure,imshow(reduceI); title('...
  • colorbar 显示彩条 getimage 由坐标轴得到图像数据 ice(DIPUM) 交互彩色编辑 ...imagesc 缩放数据并显示为图像 immovie 由多帧图像制作电影 imshow 显示图像 imview 在Image Viewer显示图像 montag...
  • matlab实现图像缩放

    千次阅读 2019-07-03 19:07:09
    matlab实现图像缩放 缩放同样是仿射变换的一种特例,它接受水平和垂直两个方向的缩放值。 matlab 实现水平,垂直,水平垂直缩放: clear all close all clc img = imread('test.jpg'); %读取输入图片的...
  • matlab里的图像处理函数

    万次阅读 多人点赞 2019-02-19 15:56:54
    一、imfinfo函数——查看图像文件信息,注意参数是文件路径和文件名,不是图像对应的矩阵。 &gt;&gt; imfinfo('C:\Users\zhulf\Desktop\1.jpg') ans =   Filename: 'C:\Users\zhulf\Desktop\1.jpg'  ...
  • 将 RGB 图像读取到工作区。 RGB = imread('peppers.png'); 将 RGB 图像的大小调整为 64 行。imresize 会自动计算列数。 RGB2 = imresize(RGB, [64 NaN]);...imfinfo - 有关图形文件的信息, 此 MATLAB 函数
  • 对BMP图像进行放大及旋转的操作,实现图像成倍数的放大,并在水平面上进行任意角度的旋转。
  • 数字图像处理Matlab常用图像处理函数汇总

    万次阅读 多人点赞 2016-03-03 14:39:15
    原文地址:Matlab图像处理函数汇总 作者:mimi 图像的变换  ① fft2:fft2函数用于数字图像的二维傅立叶变换,如:i=imread('104_8.tif'); j=fft2(i); ②ifft2::ifft2函数用于数字图像的二维傅立叶反变换,如...
  • 使用matlab图像进行缩放

    千次阅读 2018-03-23 10:46:10
    参考:https://www.cnblogs.com/zangyu/p/5395504.html对图像进行固定大小的缩放clear; clc; %清除以前的数据 folderName = dir('train'); %显示train文件夹下的文件和文件夹 for i = 1 : length(folderNa...
  • MATLAB中图像处理函数

    千次阅读 2015-10-21 09:52:47
     MATLAB中图像处理的一些简单函数 A、 imread imread函数用于读入各种图像文件,其一般的用法为 [X,MAP]=imread(‘filename’,‘fmt’)其中,X,MAP分别为读出的图像数据和颜色表数据,fmt为图像的格式,...
  • 1. 离散傅立叶变换的 Matlab实现Matlab 函数 fft、fft2 和 fftn 分别可以实现一维、二维和 N 维 DFT 算法;而函数 ifft、ifft2 和 ifftn 则用来计算反 DFT 。这些函数的调用格式如下:A=fft(X,N,DIM)其中,X 表示...
  • matlab缩放函数图像代码单发MultiBox检测器 注意:此存储库不再维护。 对于主动维护的易于使用的物体检测器,我建议考虑使用PyTorch Mask R-CNN。 该目录包含用于训练和评估本文所述的SSD对象检测器的代码: SSD: ...
  • Matlab实现图像的比例缩放

    万次阅读 2018-05-10 22:35:49
    以灰度图像circuit.tif为例,利用Matlab图像处理工具箱的imresize函数对图像进行比例缩放变换。要求:创建4个figure窗口(不可以用subplot,显示不出来放大效果),分别用于显示原始图像、等比例放大1.5倍后的图像...
  • MATLAB图像处理工具箱提供了3种插值方法:第一种是最近邻插值(nearest neighbor interpolation),最近邻插值的输出像素值等于输入图像与其最临近的像素点的值;第二种是双线性插值(bilinear interpolation),...
  • 计算机图像处理 i=imread'D:\ 123.bmp; %读一幅图像 j=imrotate(i,30%图像旋转30度 k=imresize(i,2%图像放大两倍 t=imresize(i,2'bilinear%采用双线性插值法进行放大两倍 m=imresize(i,0.8%图像缩小到0.8倍 p=...
  • 处理图像过程一定要对图像类型进行转换,不然中间会出现很多操作错误,所以要把这部分的内容进行学习整理一下,有哪些函数可以更便捷的转换呢! 图像类型转换关系如下所示 RGB转灰度 rgb2gray() X = rgb2gray...
  • 图像缩放函数: J = imresize ( I , rate , method ) ; 1 其中,I为原图像矩阵;rate为缩放比例,大于1为放大,小于1为缩小;method为选择插值方法,默认为’nearest’(最近邻插值),还有’bilinear’...
  • 目录图像平移、旋转、缩放、镜像的MATLAB实现(仿照MATLAB内置函数实现)原理代码平移镜像...(《数字图像处理》课程实验3) 参考MATLAB内置im系列函数实现。本次实验结果上没有做到与内置函数100%一致,但相差无几...
  • ① fft2:fft2函数用于数字图像的二维傅立叶变换,如:i=imread('104_8.tif'); j=fft2(i); ②ifft2::ifft2函数用于数字图像的二维傅立叶反变换,如:  i=imread('104_8.tif');  j=...
  • MATLAB 图像处理命令1、 MATLAB中图像处理的一些简单函数A、 imread imread函数用于读入各种图像文件,其一般的用法为 [X,MAP]=imread(‘filename’,‘fmt’)其中,X,MAP分别为读出的图像数据和颜色表数据,fmt...
  • 经典图像/视频缩放算法原理及MATLAB\Simulink实现1 图像/视频缩放介绍2 图像缩放的经典算法2.1 最近邻插值法2.2 双线性插值法3 图像缩放算法的MATLAB实现3.1 最近邻算法实现3.2 双线性插值算法实现4 视频无极缩放的...
  • matlab实现图像缩放、旋转、金字塔建立,自己写的代码,没有用到MATLAB中的相关函数,可实现任意角度及任意级别的金字塔和影像缩放
  • matlab缩放函数图像代码超赞的超分辨率 精选的超高分辨率资源列表。 最近我们发布了对社区。 在本次调查,我们从不同方面回顾了该任务,包括问题陈述,数据集,评估指标,方法论和特定领域的应用程序。 具体来说,...
  • 实验一 MATLAB图像处理实验报告 实 验 报告 课程名称 何变换 数字图像处理 实验名称 图像的几 姓 名 吴征宇 学 号 3101110002 专业班级 实验日期 20XX 年10 月 18日 成绩 指导教师 实验目的 掌握图像平移缩放旋转与...
  • matlab缩放函数图像代码清除 评估多目标跟踪算法的标准度量标准是CLEAR MOT。 该度量标准在论文[1]进行了描述。 使用我们的代码的论文 [1] D. Karatzas,F。Shafait,S。Uchida,M。Iwamura,L。Gomez i Bigorda,...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 5,763
精华内容 2,305
关键字:

matlab中图像缩放的函数

matlab 订阅