精华内容
下载资源
问答
  • 主要介绍了C语言用栈实现十进制转换为二进制的方法,结合实例形式分析了C语言栈的定义及进制转换使用技巧,需要的朋友可以参考下
  • 主要介绍了python十进制二进制转换方法(含浮点数),小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
  • 主要介绍了Python实现的十进制小数与二进制小数相互转换功能,结合具体实例形式详细分析了二进制十进制相互转换的原理及Python相关实现技巧,需要的朋友可以参考下
  • 适用于将二进制转换为十进制,A为十进制,B为二进制。{A,B}每次左移一位,判断A的每四位是否>4,若大于四则+3,否则保持不变;B多少位二进制数则左移多少次。最终A是B转换十进制的数。代码32位二进制转换...
  • 方便读者学习,本文小编给读者提供了用verilog将二进制转换为十进制BCD码的程序设计方法,供读者参考。
  • 我们看到所转换的2进制数按底位到高位的顺序产生的,而通常的输出是从高位到低位的,恰好与计算过程相反,因此转换过程中每得到一位2进制数则进栈保存,转换完毕后依次出栈则正好是转换结果。 请实现其算法。
  • 主要介绍了C# 进制转换的实现(二进制、十六进制、十进制互转),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
  • 主要介绍了十进制负数转换为二进制、八进制、十六进制的知识分享,需要的朋友可以参考下
  • 本文给大家介绍的是一则使用C++实现读入二进制数并转换为十进制输出的代码,实现起来其实非常简单,C++本身就提供了二进制类库的,大家看代码吧,简单又实用。
  • C语言-顺序栈实现十进制转换为二进制-八进制-十六进制
  • 二进制、八进制和十六进制向十进制转换都非常容易,就是“按权相加”。所谓“权”,也即“位权”。 假设当前数字是N进制,那么: 对于整数部分,从右往左看,第i位的位权等于Ni-1 对于小数部分,恰好相反,要从左...

    进制转换:二进制、八进制、十六进制、十进制之间的转换

    不同进制之间的转换在编程中经常会用到,尤其是C语言。

    将二进制、八进制、十六进制转换为十进制

    二进制、八进制和十六进制向十进制转换都非常容易,就是“按权相加”。所谓“权”,也即“位权”。

    假设当前数字是N进制,那么:

    对于整数部分,从右往左看,第i位的位权等于Ni-1

    对于小数部分,恰好相反,要从左往右看,第j位的位权为N-j

    更加通俗的理解是,假设一个多位数(由多个数字组成的数)某位上的数字是1,那么它所表示的数值大小就是该位的位权。

    1) 整数部分

    例如,将八进制数字53627转换成十进制:

    53627 = 5×84 + 3×83 + 6×82 + 2×81 + 7×80 = 22423(十进制)

    从右往左看,第1位的位权为 80=1,第2位的位权为 81=8,第3位的位权为 82=64,第4位的位权为 83=512,第5位的位权为 84=4096 …… n位的位权就为 8n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。

    注意,这里我们需要以十进制形式来表示位权。

    再如,将十六进制数字9FA8C转换成十进制:

    9FA8C = 9×164 + 15×163 + 10×162 + 8×161 + 12×160 = 653964(十进制)

    从右往左看,第1位的位权为160=1,第2位的位权为 161=16,第3位的位权为 162=256,第4位的位权为 163=4096,第5位的位权为 164=65536 …… n位的位权就为16n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。

    将二进制数字转换成十进制也是类似的道理:

    11010 = 1×24 + 1×23 + 0×22 + 1×21 + 0×20 = 26(十进制)

    从右往左看,第1位的位权为20=1,第2位的位权为21=2,第3位的位权为22=4,第4位的位权为23=8,第5位的位权为24=16 …… n位的位权就为2n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。

    2) 小数部分

    例如,将八进制数字423.5176转换成十进制:

    423.5176 = 4×82 + 2×81 + 3×80 + 5×8-1 + 1×8-2 + 7×8-3 + 6×8-4 = 275.65576171875(十进制)

    小数部分和整数部分相反,要从左往右看,第1位的位权为 8-1=1/8,第2位的位权为 8-2=1/64,第3位的位权为 8-3=1/512,第4位的位权为 8-4=1/4096 …… m位的位权就为 8-m

    再如,将二进制数字 1010.1101 转换成十进制:

    1010.1101 = 1×23 + 0×22 + 1×21 + 0×20 + 1×2-1 + 1×2-2 + 0×2-3 + 1×2-4 = 10.8125(十进制)

    小数部分和整数部分相反,要从左往右看,第1位的位权为 2-1=1/2,第2位的位权为 2-2=1/4,第3位的位权为 2-3=1/8,第4位的位权为 2-4=1/16 …… m位的位权就为 2-m

    更多转换成十进制的例子:

    二进制:1001 = 1×23 + 0×22 + 0×21 + 1×20 = 8 + 0 + 0 + 1 = 9(十进制)

    二进制:101.1001 = 1×22 + 0×21 + 1×20 + 1×2-1 + 0×2-2 + 0×2-3 + 1×2-4 = 4 + 0 + 1 + 0.5 + 0 + 0 + 0.0625 = 5.5625(十进制)

    八进制:302 = 3×82 + 0×81 + 2×80 = 192 + 0 + 2 = 194(十进制)

    八进制:302.46 = 3×82 + 0×81 + 2×80 + 4×8-1 + 6×8-2 = 192 + 0 + 2 + 0.5 + 0.09375= 194.59375(十进制)

    十六进制:EA7 = 14×162 + 10×161 + 7×160 = 3751(十进制)

    将十进制转换为二进制、八进制、十六进制

    将十进制转换为其它进制时比较复杂,整数部分和小数部分的算法不一样,下面我们分别讲解。

    1) 整数部分

    十进制整数转换为N进制整数采用“N取余,逆序排列”法。具体做法是:

    N作为除数,用十进制整数除以N,可以得到一个商和余数;

    保留余数,用商继续除以N,又得到一个新的商和余数;

    仍然保留余数,用商继续除以N,还会得到一个新的商和余数;

    ……

    如此反复进行,每次都保留余数,用商接着除以N,直到商为0时为止。

    把先得到的余数作为N进制数的低位数字,后得到的余数作为N进制数的高位数字,依次排列起来,就得到了N进制数字。

    下图演示了将十进制数字36926转换成八进制的过程:

    http://c.biancheng.net/cpp/uploads/allimg/170915/1-1F9151J30K46.png

    从图中得知,十进制数字36926转换成八进制的结果为110076

    下图演示了将十进制数字42转换成二进制的过程:

    http://c.biancheng.net/cpp/uploads/allimg/170915/1-1F9151K641Z0.png

    从图中得知,十进制数字42转换成二进制的结果为101010

    2) 小数部分

    十进制小数转换成N进制小数采用“N取整,顺序排列”法。具体做法是:

    N乘以十进制小数,可以得到一个积,这个积包含了整数部分和小数部分;

    将积的整数部分取出,再用N乘以余下的小数部分,又得到一个新的积;

    再将积的整数部分取出,继续用N乘以余下的小数部分;

    ……

    如此反复进行,每次都取出整数部分,用N接着乘以小数部分,直到积中的小数部分为0,或者达到所要求的精度为止。

    把取出的整数部分按顺序排列起来,先取出的整数作为N进制小数的高位数字,后取出的整数作为低位数字,这样就得到了N进制小数。

    下图演示了将十进制小数0.930908203125转换成八进制小数的过程:

    http://c.biancheng.net/cpp/uploads/allimg/170918/1-1F91Q20520335.png

    从图中得知,十进制小数0.930908203125转换成八进制小数的结果为0.7345

    下图演示了将十进制小数0.6875 转换成二进制小数的过程:

    http://c.biancheng.net/cpp/uploads/allimg/170918/1-1F91QHI2I2.png

    从图中得知,十进制小数 0.6875 转换成二进制小数的结果为 0.1011

    如果一个数字既包含了整数部分又包含了小数部分,那么将整数部分和小数部分开,分别按照上面的方法完成转换,然后再合并在一起即可。例如:

    十进制数字 36926.930908203125 转换成八进制的结果为 110076.7345

    十进制数字 42.6875 转换成二进制的结果为 101010.1011

    下表列出了前17个十进制整数与二进制、八进制、十六进制的对应关系:

    十进制

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    二进制

    0

    1

    10

    11

    100

    101

    110

    111

    1000

    1001

    1010

    1011

    1100

    1101

    1110

    1111

    10000

    八进制

    0

    1

    2

    3

    4

    5

    6

    7

    10

    11

    12

    13

    14

    15

    16

    17

    20

    十六进制

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    A

    B

    C

    D

    E

    F

    10

    注意,十进制小数转换成其他进制小数时,结果有可能是一个无限位的小数。请看下面的例子:

    十进制0.51对应的二进制为0.100000101000111101011100001010001111010111...,是一个循环小数;

    十进制0.72对应的二进制为0.1011100001010001111010111000010100011110...,是一个循环小数;

    十进制0.625对应的二进制为0.101,是一个有限小数。

    二进制和八进制、十六进制的转换

    其实,任何进制之间的转换都可以使用上面讲到的方法,只不过有时比较麻烦,所以一般针对不同的进制采取不同的方法。将二进制转换为八进制和十六进制时就有非常简洁的方法,反之亦然。

    1) 二进制整数和八进制整数之间的转换

    二进制整数转换为八进制整数时,每三位二进制数字转换为一位八进制数字,运算的顺序是从低位向高位依次进行,高位不足三位用零补齐。下图演示了如何将二进制整数 1110111100 转换为八进制:

    http://c.biancheng.net/cpp/uploads/allimg/170919/1-1F919102I0949.png

    从图中可以看出,二进制整数 1110111100 转换为八进制的结果为 1674

    八进制整数转换为二进制整数时,思路是相反的,每一位八进制数字转换为三位二进制数字,运算的顺序也是从低位向高位依次进行。下图演示了如何将八进制整数 2743 转换为二进制:

    http://c.biancheng.net/cpp/uploads/allimg/170919/1-1F919103A2R7.png

    从图中可以看出,八进制整数 2743 转换为二进制的结果为 10111100011

    2) 二进制整数和十六进制整数之间的转换

    二进制整数转换为十六进制整数时,每四位二进制数字转换为一位十六进制数字,运算的顺序是从低位向高位依次进行,高位不足四位用零补齐。下图演示了如何将二进制整数 10 1101 0101 1100 转换为十六进制:

    http://c.biancheng.net/cpp/uploads/allimg/170919/1-1F919104H9539.png

    从图中可以看出,二进制整数 10 1101 0101 1100 转换为十六进制的结果为 2D5C

    十六进制整数转换为二进制整数时,思路是相反的,每一位十六进制数字转换为四位二进制数字,运算的顺序也是从低位向高位依次进行。下图演示了如何将十六进制整数 A5D6 转换为二进制:

    http://c.biancheng.net/cpp/uploads/allimg/170919/1-1F91910553H50.png

    从图中可以看出,十六进制整数 A5D6 转换为二进制的结果为 1010 0101 1101 0110

    C语言编程中,二进制、八进制、十六进制之间几乎不会涉及小数的转换,所以这里我们只讲整数的转换,大家学以致用足以。另外,八进制和十六进制之间也极少直接转换,这里我们也不再讲解了。

    展开全文
  • 本文实例讲述了PHP实现十进制二进制、八进制和十六进制转换相关函数用法。分享给大家供大家参考,具体如下: 1.二进制: 1.1.二进制十进制: 函数:bindec(string $binary_string) @param $binary_string 参数...
  • C语言栈的方式实现十进制转换为二进制数,完整代码,DEVC中直接使用
  • python十进制二进制 python中十进制二进制使用 bin() 函数。 bin() 返回一个整数 int 或者长整数 long int 的二进制表示。 下面是使用示例: >>>bin(10) '0b1010' >>> bin(20) '0b10100' 补充:十进制转8进制和...
  • 介绍了C++ 十进制转换为二进制的实例代码,有需要的朋友可以参考一下
  • 实例007——将十进制转换为二进制输出 实例007——将十进制转换为二进制输出 实例007——将十进制转换为二进制输出 实例007——将十进制转换为二进制输出
  • 在Matlab中十进制转化为二进制矩阵,可以生成波形,比使用Matlab中自带的函数生成的char型结构更合理
  • 关于十进制二进制转换的讲解课件
  • 把任意一个十进制转换为二进制八进制十六进制数的c++源代码
  • 此文档十进制小数和二进制小数相互转换》,让C++初学者更好的理解进制转换【独家出版,未经允许,禁止侵权】
  • labview 十进制转换为二进制,比较简单的一种方法,还可以用在其他方面
  • 一个java二进制转换计算器应用程序,将二进制数转换为十进制数,将十进制数转换为二进制数。
  • 设计算法把一个十进制整数转换为二至九进制之间的任意进制数输出
  • 设计算法把一个十进制整数转换为二到九进制之间的任意进制数输出(链式栈)
  • labview2015版本,将二进制的字符串转换十进制数值,
  • 用c语言写的小程序,功能是将十进制转换为二进制数。
  • matlab开发-将二进制字符串转换为十进制值。它将二进制流转换为十进制值,每次8位,尽管您可以更改它。
  • 主要介绍了使用Python内置函数:bin()、oct()、int()、hex()可实现进制转换的一些用法,需要的朋友可以参考下
  • 十进制数转换为二进制数 C++前言一、十进制转换为二进制的数学算法二、代码实现1.设计转换函数transfer2.完整代码总结 前言 这篇文章和大家分享一下我个人对十进制数转换为二进制数的想法,目前暂时更新只整数十...
      
    


    前言

    这篇文章和大家分享一下我个人对十进制数转换为二进制数的想法,目前暂时更新只整数十进制的转换,后续会更新带有小数的进制转换。(代码使用c++实现)


    一、十进制转换为二进制的数学算法

    设目标十进制数为n,用短除法一直除以2,循环这个过程并记录余数,当商为0时结束循环,余数从后往前读就是转换为的二进制数

    eg:在这里插入图片描述

    二、代码实现

    1.设计转换函数transfer

    // flag是位数控制器,用remainder来暂时保存每一位余数,y是转换的二进制结果。我们的目标是把流程结束后的余数倒序输出 ,比如13的二进制数1101,但是每次除以2后得到的余数都是个位数,所以我选择使用一个位数控制器flag,从初始值1开始和remainder相乘,然后迭代(每次乘以十)进入下一次除以2的过程,然后每次迭代相加y就能得到二进制数1101(其实这个1101是用十进制显示的),而我们知道,当除数=0时就停止循环,所以我们设置If条件来控制结束
    演示一遍具体的循环流程:

     eg:13(10)----1101(2):
      1. remainder=n%2=1; n=n/2=6; y=y+remainder*flag=0+1*1=1;flag=flag*10=10;
      2. remainder=n%2=0; n=n/2=3; y=y+reminder*flag=1+0*10=1;
    flag=flag*10=100;
      4. remainder=n%2=1; n=n/2=1; y=y+reminder*flag=1+1*100=101;
    flag=flag*10=1000;
      5. remainder=n%2=1; n=n/2=0;y=y+reminder*flag=101+1*1000=1101;
    flag=flag*10=10000;
    此时n=0if(n==0)成立,停止循环,输出y。
    
    int transfer(int n)
    {
        int flag=1,y=0,remainder; 
        while(1)
        {
            remainder=n%2;
            n/=2;
            y+= remainder*flag;
           flag*=10;
            if(n==0)
            {
                break;
            }
        }
        return y;
    }
    

    2.完整代码

    代码如下(示例):

    #include <cstdio>
    #include<iostream>
    using namespace std;
    int a[1000001];
    int main()
    {
    
        int transfer(int n);
        int n,sum=0,y;
        scanf("%d",&n);
        y=transfer(n);
        
        printf("%d\n",y);
        return 0;
    }
    int transfer(int n)
    {
        int flag=1,y=0,remainder;
        while(1)
        {
            remainder=x%2;
            n/=2;
            y+=remainder*flag;
            flag*=10;
            if(n==0)
            {
                break;
            }
        }
        return y;
    }
    
    

    总结

    其实笼统来说,主要的思想就是从位数由低到高,把余数依次乘以1,10,100,1000再加起来就是用十进制的形式表示了转换后的二进制(1101=1乘1+0乘10+1乘100+1乘1000),需要注意的是位数控制器flag的使用。

    展开全文

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 246,346
精华内容 98,538
关键字:

十进制11转换为二进制