精华内容
下载资源
问答
  • 各种电子元器件都有一个使用极限值要求,对于半导体三极管来讲,它的主要极限参数有以下几个。  (1)集电极最大允许电流ICM  半导体三极管允许通过的最大电流即为ICM。当集电极电流IC增大到一定程度时,β值便会...
  • 频率特性参数主要有以下几个。  (1)共基极截止频率fα  共基极截止频率又叫α截止频率。在共基极电路中,电流放大系数α值.在工作频率较低时基本上为一常数。  (2)共发射极截止频率fβ  fα和fβ有下列关系:...
  • AF型半导体应变片具有灵敏系数大、机械滞后小、阻值范围大以及横向效应小等特点,主要用于测量应力分布,以及作为各种传感器为一电转换元件,现已广泛用于机械、航空、船舶、铁路和桥梁等工程结构静态和动态测量...
  • 半导体器件失效分析

    2018-07-11 12:52:14
    电子元器件的主要失效模式包括但不限于开路、短路、烧毁、爆炸、漏电、功能失效、电参数漂移、非稳定失效等。对于硬件工程师来讲电子元器件失效是个非常麻烦的事情,比如某个半导体器件外表完好但实际上已经半失效...
  • BP型半导体应变片可用于应力测量和应力分析,还可以作为各种传感器的力一电转换元件。它们具有灵敏度高、机械滞后小、体积小及耗电少等...BP型半导体应变片的主要技术特性见表。 表:BP型半导体应变片主要技术参数  
  • 电子元器件的主要失效模式包括但不限于开路、短路、烧毁、爆炸、漏电、功能失效、电参数漂移、非稳定失效等。对于硬件工程师来讲电子元器件失效是个非常麻烦的事情,比如某个半导体器件外表完好但实际上已经半失效...
  • 内容提要 【了解】半导体的相关知识 【熟悉】二极管(即PN结)单向导电性及主要参数 【了解】三极管电流放大原理 【熟悉】三极管输出特性曲线三个工作区及条件和特点、主要参数 【了解】MOS管工作原理、相应...
  • 电子元器件的主要失效模式包括但不限于开路、短路、烧毁、爆炸、漏电、功能失效、电参数漂移、非稳定失效等。对于硬件工程师来讲电子元器件失效是个非常麻烦的事情,比如某个半导体器件外表完好但实际上已经半失效...

    本文转自《电源研发精英圈》

    引言

    电子元器件的主要失效模式包括但不限于开路、短路、烧毁、爆炸、漏电、功能失效、电参数漂移、非稳定失效等。对于硬件工程师来讲电子元器件失效是个非常麻烦的事情,比如某个半导体器件外表完好但实际上已经半失效或者全失效会在硬件电路调试上花费大把的时间,有时甚至炸机。
    所以掌握各类电子元器件的实效机理与特性是硬件工程师比不可少的知识。下面分类细叙一下各类电子元器件的失效模式与机理。

    电阻器失效模式与机理

    失效模式:各种失效的现象及其表现的形式。
    失效机理:是导致失效的物理、化学、热力学或其他过程。

    电阻器的主要失效模式与失效机理

    1) 开路:主要失效机理为电阻膜烧毁或大面积脱落,基体断裂,引线帽与电阻体脱落。
    2) 阻值漂移超规范:电阻膜有缺陷或退化,基体有可动钠离子,保护涂层不良。
    3) 引线断裂:电阻体焊接工艺缺陷,焊点污染,引线机械应力损伤。
    4) 短路:银的迁移,电晕放电。

    电阻器的主要失效模式与失效机理

    线绕电阻

    失效模式 占失效总比例
    开路 90%
    阻值漂移 2%
    引线断裂 7%
    其他 1%

    非线绕电阻

    失效模式 占失效总比例
    开路 49%
    阻值漂移 22%
    引线断裂 17%
    其他 7%

    失效机理分析

    电阻器失效机理是多方面的,工作条件或环境条件下所发生的各种理化过程是引起电阻器老化的原因。
    这里写图片描述

    导电材料的结构变化

    薄膜电阻器的导电膜层一般用汽相淀积方法获得,在一定程度上存在无定型结构。按热力学观点,无定型结构均有结晶化趋势。在工作条件或环境条件下,导电膜层中的无定型结构均以一定的速度趋向结晶化,也即导电材料内部结构趋于致密化,能常会引起电阻值的下降。结晶化速度随温度升高而加快。
    电阻线或电阻膜在制备过程中都会承受机械应力,使其内部结构发生畸变,线径愈小或膜层愈薄,应力影响愈显著。一般可采用热处理方法消除内应力,残余内应力则可能在长时间使用过程中逐步消除,电阻器的阻值则可能因此发生变化。

    结晶化过程和内应力清除过程均随时间推移而减缓,但不可能在电阻器使用期间终止。可以认为在电阻器工作期内这两个过程以近似恒定的速度进行。与它们有关的阻值变化约占原阻值的千分之几。

    电负荷高温老化:任何情况,电负荷均会加速电阻器老化进程,并且电负荷对加速电阻器老化的作用比升高温度的加速老化后果更显著,原因是电阻体与引线帽接触部分的温升超过了电阻体的平均温升。通常温度每升高10℃,寿命缩短一半。如果过负荷使电阻器温升超过额定负荷时温升50℃,则电阻器的寿命仅为正常情况下寿命的1/32。可通过不到四个月的加速寿命试验,即可考核电阻器在10年期间的工作稳定性。

    直流负荷—电解作用:直流负荷作用下,电解作用导致电阻器老化。电解发生在刻槽电阻器槽内,电阻基体所含的碱金属离子在槽间电场中位移,产生离子电流。湿气存在时,电解过程更为剧烈。如果电阻膜是碳膜或金属膜,则主要是电解氧化;如果电阻膜是金属氧化膜,则主要是电解还原。对于高阻薄膜电阻器,电解作用的后果可使阻值增大,沿槽螺旋的一侧可能出现薄膜破坏现象。在潮热环境下进行直流负荷试验,可全面考核电阻器基体材料与膜层的抗氧化或抗还原性能,以及保护层的防潮性能。

    这里写图片描述

    这里写图片描述

    硫化

    有一批现场仪表在某化工厂使用一年后,仪表纷纷出现故障。经分析发现仪表中使用的厚膜贴片电阻阻值变大了,甚至变成开路了。把失效的电阻放到显微镜下观察,可以发现电阻电极边缘出现了黑色结晶物质,进一步分析成分发现,黑色物质是硫化银晶体。原来电阻被来自空气中的硫给腐蚀了。

    这里写图片描述

    气体吸附与解吸

    膜式电阻器的电阻膜在晶粒边界上,或导电颗粒和黏结剂部分,总可能吸附非常少量的气体,它们构成了晶粒之间的中间层,阻碍了导电颗粒之间的接触,从而明显影响阻值。

    合成膜电阻器是在常压下制成,在真空或低气压工作时,将解吸部分附气体,改善了导电颗粒之间的接触,使阻值下降。同样,在真空中制成的热分解碳膜电阻器直接在正常环境条件下工作时,将因气压升高而吸附部分气体,使阻值增大。如果将未刻的半成品预置在常压下适当时间,则会提高电阻器成品的阻值稳定性。

    温度和气压是影响气体吸附与解吸的主要环境因素。对于物理吸附,降温可增加平衡吸附量,升温则反之。由于气体吸附与解吸发生在电阻体的表面。所以对膜式电阻器的影响较为显著。阻值变化可达1%~2%。

    氧化

    氧化是长期起作用的因素(与吸附不同),氧化过程是由电阻体表面开始,逐步向内部深入。除了贵金属与合金薄膜电阻外,其他材料的电阻体均会受到空气中氧的影响。氧化的结果是阻值增大。电阻膜层愈薄,氧化影响就更明显。

    防止氧化的根本措施是密封(金属、陶瓷、玻璃等无机材料)。采用有机材料(塑料、树脂等)涂覆或灌封,不能完全防止保护层透湿或透气,虽能起到延缓氧化或吸附气体的作用,但也会带来与有机保护层有关的些新的老化因素。

    有机保护层的影响

    有机保护层形成过程中,放出缩聚作用的挥发物或溶剂蒸气。热处理过程使部分挥发物扩散到电阻体中,引起阻值上升。此过程虽可持续1~2年,但显著影响阻值的时间约为2~8个月,为了保证成品的阻值稳定性,把产品在库房中搁置一段时间再出厂是比较适宜的。

    机械损伤

    电阻的可靠很大程度上取决于电阻器的机械性能。电阻体、引线帽和引出线等均应具有足够的机械强度,基体缺陷、引线帽损坏或引线断裂均可导致电阻器失效。

    电解电容失效模式

    耗尽失效

    耗尽失效(1)

    通常电解电容器寿命的终了评判依据是电容量下降到额定(初始值)的80%以下。由于早期铝电解电容器的电解液充盈,铝电解电容器的电容量在工作早期缓慢下降。随着负荷过程中工作电解液不断修补倍杂质损伤的阳极氧化膜所致电解液逐渐减少。到使用后期,由于电解液挥发而减少,粘稠度增大的电解液就难于充分接触经腐蚀处理的粗糙的铝箔表面上的氧化膜层,这样就使铝电解电容器的极板有效面积减小,即阳极、阴极铝箔容量减少,引起电容量急剧下降。因此,可以认为铝电解电容器的容量降低是由于电解液挥发造成。而造成电解液的挥发的最主要的原因就是高温环境或发热。

    耗尽失效(2)

    由于应用条件使铝电解电容器发热的原因是铝电解电容器在工作在整流滤波(包括开关电源输出的高频整流滤波)、功率电炉的电源旁路时的纹波(或称脉动)电流流过铝电解电容器,在铝电解电容器的ESR产生损耗并转变成热使其发热。

    当铝电解电容器电解液蒸发较多、溶液变稠时,电阻率因粘稠度增大而上升,使工作电解质的等效串联电阻增大,导致电容器损耗明显上升,损耗角增大。例如对于105度工作温度的电解电容器,其最大芯包温度高于125度时,电解液粘稠度骤增,电解液的ESR增加近十倍。.增大的等效串联电阻会产生更大热量,造成电解液的更大挥发。如此循环往复,铝电解电容器容量急剧下降,甚至会造成爆炸。

    耗尽失效(3)

    漏电流增加往往导致铝电解电容器失效。
    应用电压过高和温度过高都会引起漏电流的增加

    压力释放装置动作

    压力释放装置动作

    为了防止铝电解电容器中电解液由于内部高温沸腾的气体或电化学过程而产生的气体而引起内部高气压造成铝电解电容器的爆炸。为了消除铝电解电容器的爆炸,直径8毫米以上的铝电解电容器均设置了压力

    释放装置,这些压力释放装置在铝电解电容器内部的气压达到尚未使铝电解电容器爆炸的危险压力前动作,泄放出气体。随着铝电解电容器的压力释放装置的动作,铝电解电容器即宣告失效。

    铝电解电容器压力释放装置(中间的十字)

    电化学过程导致压力释放装置动作

    铝电解电容器的漏电流就是电化学过程,前面已经详尽论述,不再赘述。电化学过程将产生气体,这些气体的聚积将造成铝电解电容器的内部气压上升,最终达到压力释放装置动作泄压。

    温度过高导致压力释放装置动作

    铝电解电容器温度过高可能是环境温度过高,如铝电解电容器附近有发热元件或整个电子装置就出在高温环境;

    铝电解电容器温度过高的第二个原因是芯包温度过高。铝电解电容器芯包温度过高的根本原因是铝电解电容器流过过高的纹波电流。过高的纹波电流在铝电解电容器的ESR中产生过度的损耗而产生过度的发热使电解液沸腾产生大量气体使铝电解电容器内部压力及急剧升高时压力释放装置动作。

    瞬时超温

    通常铝电解电容器的芯包核心温度每降低10℃,其寿命将增大到原来的一倍。这个核心大致位于电容器的中心,是电容器内部最热的点。可是,当电容器升温接近其最大允许温度时,对于大多数型号电容器在125℃时,其电解液要受到电容器芯包的排挤(driven),导致电容器的ESR增大到原来的10倍。在这种作用下,瞬间超温或过电流可以使ESR永久性的增大,从而造成电容器失效。在高温和大纹波电流的应用中特别要警惕瞬时超温发生的可能,还要额外注意铝电解电容器的冷却。

    瞬时过电压的产生

    上电冲击

    上电过程中,由于滤波电感释放储能到滤波电容器中,导致滤波电容器的过瞬时过电压。
    这里写图片描述

    上电过电压示意

    电容过电压失效的防范

    电容器在过压状态下容易被击穿,而实际应用中的瞬时高电压是经常出现的。
    选择承受瞬时过电压性能好的铝电解电容器,RIFA有的铝电解电容器就给出了瞬时过电压值得参数。

    这里写图片描述

    这里写图片描述

    电解液干涸是铝电解电容器失效的最主要原因

    电解液干涸的原因

    电解液自然挥发
    电解液的消耗

    电解液自然挥发

    电解液的挥发速度随温度的升高
    电解液的挥发速度与电容器的密封质量有关,无论在高温还是在低温条件下都要有良好的密封性

    电解液的消耗

    漏电流所引起的电化学效应消耗电解液
    铝电解电容器的寿命随漏电流增加而减少
    漏电流随温度的升高而增加:25℃时漏电流仅仅是85℃时漏电流的不到十分之一漏电流随施加电压升高而增加:耐压为400V的铝电解电容器在额定电压下的漏电流大约是90%额定电压下的漏电流的5倍。

    电解液干涸的时间就是铝电解电容器的寿命

    影响铝电解电容器寿命的的因素(温度1)

    根据铝电解电容器的电解液的不同,铝电解电容器的最高工作温度可分为:
    1. 一般用途:85℃
    2. 一般高温用途:105℃
    3. 特殊高温用途:125℃
    4. 汽车发动机舱:140~150℃

    影响铝电解电容器寿命的的因素(额定寿命小时数)

    按寿命小时数铝电解电容器可以分为:
    1. 一般用途(常温,3年以内):1000小时
    2. 一般用途(常温,希望比较长的时间):2000小时以上
    工业级:更长的寿命小时数

    影响铝电解电容器寿命的的因素(温度2)

    温度每升高10℃,寿命小时数减半

    影响铝电解电容器寿命的的因素(电解液)

    电解液的多与寡决定铝电解电容器的寿命

    影响铝电解电容器寿命的的因素(应用条件)

    1. 高温缩短铝电解电容器寿命
    2. 高纹波电流缩短铝电解电容器寿命
    3. 工作电压过高缩短铝电解电容器寿命

    影响铝电解电容器寿命的参数与应用条件

    工作电压与漏电流的关系

    工作电压与漏电流的关系

    工作电压与漏电流的关系
    某公司生产的450V/4700μF/85℃铝电解电容器的漏电流与施加电压的关系

    这里写图片描述

    温度与漏电流的关系
    某公司生产的450V/4700μF/85℃铝电解电容器的漏电流与环境温度的关系

    这里写图片描述

    温度、电压、纹波电流共同作用对寿命的影响

    以某电子镇流器用铝电解电容器为例。
    在不同的电压与温度条件下的铝电解电容器寿命不同

    这里写图片描述

    某电子镇流器用铝电解电容器降额寿命特性

    这里写图片描述

    某电子镇流器用铝电解电容器的过电压寿命特性

    这里写图片描述

    铝电解电容器的寿命与温度、纹波电流的关系

    这里写图片描述

    电感失效分析

    电感器失效模式

    电感量和其他性能的超差、开路、短路

    模压绕线片式电感失效机理

    1. 磁芯在加工过程中产生的机械应力较大,未得到释放
    2. 磁芯内有杂质或空洞磁芯材料本身不均匀,影响磁芯的磁场状况,使磁芯的磁导率发生了偏差;
    3. 由于烧结后产生的烧结裂纹;
    4. 铜线与铜带浸焊连接时,线圈部分溅到锡液,融化了漆包线的绝缘层,造成短路;
    5. 铜线纤细,在与铜带连接时,造成假焊,开路失效

    耐焊性

    低频片感经回流焊后感量上升 < 20%
    由于回流焊的温度超过了低频片感材料的居里温度,出现退磁现象。片感退磁后,片感材料的磁导率恢复到最大值,感量上升。一般要求的控制范围是片感耐焊接热后,感量上升幅度小于20%。

    耐焊性可能造成的问题是有时小批量手工焊时,电路性能全部合格(此时片感未整体加热,感量上升小)。但大批量贴片时,发现有部分电路性能下降。这可能是由于过回流焊后,片感感量会上升,影响了线路的性能。在对片感感量精度要求较严格的地方(如信号接收发射电路),应加大对片感耐焊性的关注。

    检测方法:先测量片感在常温时的感量值,再将片感浸入熔化的焊锡罐里10秒钟左右,取出。待片感彻底冷却后,测量片感新的感量值。感量增大的百分比既为该片感的耐焊性大小

    可焊性

    电镀简介
    当达到回流焊的温度时,金属银(Ag)会跟金属锡(Sn)反应形成共熔物,因此不能在片感的银端头上直接镀锡。而是在银端头上先镀镍(2um 左右) ,形成隔绝层,然后再镀锡(4-8um )。

    可焊性检测
    将待检测的片感的端头用酒精清洗干净,将片感在熔化的焊锡罐中浸入4秒钟左右,取出。如果片感端头的焊锡覆盖率达到90%以上,则可焊性合格。

    可焊性不良
    1. 端头氧化:当片感受高温、潮湿、化学品、氧化性气体(SO2、NO2等)的影响, 或保存时间过长,造成片感端头上的金属Sn氧化成SnO2,片感端头变暗。由于SnO2不和Sn、 Ag、Cu等生成共熔物,导致片感可焊性下降。片感产品保质期:半年。如果片感端头被污染,比如油性物质,溶剂等,也会造成可焊性下降
    2. 镀镍层太薄,吃银:如果镀镍时,镍层太薄不能起隔离作用。回流焊时,片感端头上的Sn和自身的Ag首先反应,而影响了片感端头上的Sn和焊盘上的焊膏共熔,造成吃银现象,片感的可焊性下降。

    判断方法
    将片感浸入熔化的焊锡罐中几秒钟,取出。如发现端头出现坑洼情况,甚至出现瓷体外露,则可判断是出现吃银现象的。

    焊接不良

    内应力
    如果片感在制作过程中产生了较大的内部应力,且未采取措施消除应力,在回流焊过程中,贴好的片感会因为内应力的影响产生立片,俗称立碑效应。

    这里写图片描述

    判断片感是否存在较大的内应力,可采取一个较简便的方法
    取几百只的片感,放入一般的烤箱或低温炉中,升温至230℃左右,保温,观察炉内情况。如听见噼噼叭叭的响声,甚至有片子跳起来的声音,说明产品有较大的内应力。

    元件变形

    如果片感产品有弯曲变形,焊接时会有放大效应。

    焊接不良、虚焊
    焊接不良、虚焊

    焊接正常
    焊接正常

    要素

    1. 焊盘两端应对称设计,避免大小不一,否则两端的熔融时间和润湿力会不同
    2. 焊合的长度在0.3mm以上(即片感的金属端头和焊盘的重合长度)
    3. 焊盘余地的长度尽量小,一般不超过0.5mm。
    4. 焊盘的本身宽度不宜太宽,其合理宽度和MLCI宽度相比,不宜超过0.25mm

    贴片不良
    当贴片时,由于焊垫的不平或焊膏的滑动,造成片感偏移了θ角。由于焊垫熔融时产生的润湿力,可能形成以上三种情况,其中自行归正为主,但有时会出现拉的更斜,或者单点拉正的情况,片感被拉到一个焊盘上,甚至被拉起来,斜立或直立(立碑现象)。目前带θ角偏移视觉检测的贴片机可减少此类失效的发生  

    这里写图片描述

    这里写图片描述

    这里写图片描述

    焊接温度
    回流焊机的焊接温度曲线须根据焊料的要求设定,应该尽量保证片感两端的焊料同时熔融,以避免两端产生润湿力的时间不同,导致片感在焊接过程中出现移位。如出现焊接不良,可先确认一下,回流焊机温度是否出现异常,或者焊料有所变更。

    电感在急冷、急热或局部加热的情况下易破损,因此焊接时应特别注意焊接温度的控制,同时尽可能缩短焊接接触时间

    这里写图片描述

    这里写图片描述

    上机开路

    虚焊、焊接接触不良

    从线路板上取下片感测试,片感性能是否正常

    电流烧穿

    如选取的片感,磁珠的额定电流较小,或电路中存在大的冲击电流会造成电流烧穿,片感或磁珠 失效,导致电路开路。 从线路板上取下片感测试,片感失效,有时有烧坏的痕迹。如果出现电流烧穿,失效的产品数量会较多,同批次中失效产品一般达到百分级以上。

    焊接开路

    回流焊时急冷急热,使片感内部产生应力,导致有极少部分的内部存在开路隐患的片感的缺陷变大,造成片感开路。从线路板上取下片感测试,片感失效。如果出现焊接开路,失效的产品数量一般较少,同批次中失效产品一般小于千分级。

    磁体破损

    磁体强度

    片感烧结不好或其它原因,造成瓷体强度不够,脆性大,在贴片时,或产品受外力冲击造成瓷体破损

    附着力

    如果片感端头银层的附着力差,回流焊时,片感急冷急热,热胀冷缩产生应力,以及瓷体受外力冲击,均有可能会造成片感端头和瓷体分离、脱落;或者焊盘太大,回流焊时,焊膏熔融和端头反应时产生的润湿力大于端头附着力,造成端头破坏。

    片感过烧或生烧,或者制造过程中,内部产生微裂纹。回流焊时急冷急热,使片感内部产生应力,出现晶裂,或微裂纹扩大,造成瓷体破损。

    半导体器件失效分析

    半导体器件失效分析就是通过对失效器件进行各种测试和物理、化学、金相试验,确定器件失效的形式(失效模式),分析造成器件失效的物理和化学过程(失效机理),寻找器件失效原因,制订纠正和改进措施。加强半导体器件的失效分析,提高它的固有可靠性和使用可靠性,是改进电子产品质量最积极、最根本的办法,对提高整机可靠性有着十分重要的作用。

    半导体器件与使用有关的失效十分突出,占全部失效器件的绝大部分。进口器件与国产器件相比,器件固有缺陷引起器件失效的比例明显较低,说明进口器件工艺控制得较好,固有可靠性水平较高。

    与使用有关的失效

    与使用有关的失效原因主要有

    1. 过电应力损伤、静电损伤、器件选型不当、使用线路设计不当、机械过应力、操作失误等。

    2. 静电损伤。严格来说,器件静电损伤也属于过电应力损伤,但是由于静电型过电应力的特殊性以及静电敏感器件的广泛使用,该问题日渐突出。静电型过电应力的特点是:电压较高(几百伏至几万伏),能量较小,瞬间电流较大,但持续时间极短。与一般的过电应力相比,静电型损伤经常发生在器件运输、传送、安装等非加电过程中,它对器件的损伤过程是不知不觉的,危害性很大。从静电对器件损伤后的失效模式来看,不仅有PN结劣化击穿、表面击穿等高压小电流型的失效模式,也有金属化、多晶硅烧毁等大电流失效模式。

    3. 器件选型不当。器件选型不当也是经常发现的使用问题引起失效的原因之一,主要是设计人员对器件参数、性能了解不全面、考虑不周,选用的器件在某些方面不能满足所设计的电路要求。

    4. 操作失误。操作失误也是器件经常出现的失效原因之一,例如器件的极性接反引起的烧毁失效等。

    器件固有缺陷引起的失效

    与器件固有缺陷有关的失效原因主要有:表面问题、金属化问题、压焊丝键合问题、芯片键合问题、封装问题、体内缺陷等。在这几种原因中,对器件可靠性影响较大的是表面问题、键合问题和粘片问题引起的失效,它们均带有批次性,且经常重复出现。

    表面问题

    从可靠性方面考虑,对器件影响最大的是二氧化硅层内的可动正离子电荷,它会使器件的击穿电压下降,漏电流增大,并且随着加电时间的增加使器件性能逐渐劣化。有这种缺陷的器件用常规的筛选方法不能剔除,对可靠性危害很大。此外,芯片表面二氧化硅层中的针孔对器件可靠性的影响也较大。有这种缺陷的器件,针孔刚开始时往往还有一层极薄的氧化层,器件性能还是正常的,还可顺利通过老炼、筛选等试验,但长期使用后由于TDDB效应和电浪涌的冲击,针孔就会穿通短路,引起器件失效。

    金属化问题

    引起器件失效的常见的金属化问题是台阶断铝、铝腐蚀、金属膜划伤等。对于一次集成电路,台阶断铝、铝腐蚀较为常见:对于二次集成电路来说,内部金属膜电阻在清洗、擦拭时被划伤而引起开路失效也是常见的失效模式之一。

    压焊丝键合问题

    常见的压焊丝键合问题引起的失效有以下几类:
    1. 压焊丝端头或压焊点沾污腐蚀造成压焊点脱落或腐蚀开路。
    2. 外压焊点下的金层附着不牢或发生金铝合金,造成压焊点脱落。
    3. 压焊点过压焊,使压焊丝颈部断开造成开路失效。
    4. 压焊丝弧度不够,与芯片表面夹角太小,容易与硅片棱或与键合丝下的金属化铝线相碰,造成器件失效。

    芯片键合问题

    最常见的是芯片粘结的焊料太少、焊料氧化、烧结温度过低等引起的开路现象。芯片键合不好,焊料氧化发黑,导致芯片在”磁成形”时受到机械应力作用后从底座抬起分离,造成开路失效。

    封装问题

    封装问题引起的失效有以下几类。 ①封装不好,管壳漏气,使水汽或腐蚀性物质进入管壳内部,引起压焊丝和金属化腐蚀。 ②管壳存在缺陷,使管腿开路、短路失效。

    内涂料龟裂、折断键合铝丝,造成器件开路或瞬时开路失效。这种失效现象往往发生在器件进行高、低温试验时。

    体内缺陷

    半导体器件体内存在缺陷也可引起器件的结特性变差而失效,但这种失效形式并不多见,而经常出现的是体内缺陷引起器件二次击穿耐量和闩锁阈值电压降低而造成烧毁。

    展开全文
  • 半导体激光器又称为激光二极管(LD,Laser Diode),是采用半导体材料作为工作物质而产生受激发射一类激光器。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)。激励方式有电注入、电子束...
  • 1.2.3 二极管的主要参数 1.2.4 二极管的电容效应 1.2.5 稳压管 1.3 双极型三极管 1.3.1 三极管的结构 1.3.2 三极管的放大作用和载流子的运动 1.3.3 三极管的特性曲线 1.3.4 三极管的主要参数 1.3.5 PNP型三极管 1.4 ...
  • 半导体激光器又称为激光二极管(LD,Laser Diode),是采用半导体材料作为工作物质而产生受激发射一类激光器。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)。激励方式有电注入、电子束...
  • 本文主要讨论了半导体分立器件参数的脉冲测试技术,在这里我们能了解 脉冲测试必要性是什么,它相关标准又是什么,实现脉冲测试方法又是什么。 一、脉冲测试必要性 半导体分立器件通常包括二极管、三极管...
  • 随着半导体工艺技术的发展,可以把测温传感器与放大、控制电路制作在一个硅片上,形成集成温度传感器。集成温度传感器可向外... 表给出了一些集成温度传感器的主要特性参数。 表:一些集成温度传感器主要特性参数  
  • 了解半导体的特性和导电方式,理解PN结单向导电特性 了解半导体二极管、三极管结构 理解二极管工作原理、伏安特性和主要参数 ...了解MOS场效应管伏安特性、主要参数及其与双极型三极管性能比较
  •  (3)用于置换的三极管应与原三极管的特性相近,它们的主要参数和特性应相差不多。一般来说应注意以下主要参数:  ①一般要求用PCM与原三极管相等或大于原有值进行置换。  ②一般要求用ICM与原三极管相等或大于...
  •  特性——光敏电阻器是利用半导体光电导效应制成一种特殊电阻器,对光线十分敏感,它电阻值能随着外界光照强弱(明暗)变化而变化。它在无光照射时,呈高阻状态;当有光照射时,其电阻值迅速减小。  作用与...
  •  MQ211型气敏元件是 种通用性较强气敏元件,适用于 般可燃性气体(如氢气、煤气、液化石油汽、天然气、一氧化碳、烷烃类等气体)以及酒精、...自动开关、气体报警器、气体探漏仪以及防止环境污染理想气体传感器件...
  • GY-YZ-161型高精度压力传感器是利用半导体及微机械加工技术把固态集成工艺与隔离膜片技术结合在一起而制成的,其外形如图所示。...它的主要特性参数见表。 表:GY-YZ-161型高精度压力传感器主要特性参数  
  • 器件物理模型主要依赖器件的几何形状、掺杂分布、载流子输运方程(半导体方程)以及材料特性等预测器件各端的输出特性和输运状态。这类模型大多用于器件物理研究和设计,因为对于现代MOS VLSI,由于其尺寸很小对这些...

    711df74cf3ec5c275d10fb42790187b3.png
    • MOS器件模型分为器件物理模型等效电路模型两种。

    器件物理模型主要依赖器件的几何形状、掺杂分布、载流子输运方程(半导体方程)以及材料特性等预测器件各端的输出特性和输运状态。这类模型大多用于器件物理研究和设计,因为对于现代MOS VLSI,由于其尺寸很小对这些器件的半导体方程只能采用数值方法来进行二维或者三维求解,利用它可以详细了解器件工作的内在物理特性,而且这种模型不适用于电路模拟。

    等效电路模型的基本思想是将不同工作区的器件分别等效为一些基本单元组成电路,然后用这些等效电路的特性来描述器件特性。这类模型根据器件特性,将模型中的电路单位由收敛的解析函数或者经验公式导出。因为简单易行的特性,其被广泛应用于电路模拟器中。电路模拟器SPICE就全部采用等效电路进行模拟。

    BSIM模型是伯克利开发的,是等效电路模型,从第一代BSIM1模型到第二代BSIM2都是通过简单的DC模型来描述短沟道MOSFET传输特性的,二者都是基于半经验的模型,到了第三代重点涉及到器件在工作时的物理特性,而且考虑了工艺参数和器件尺寸的影响,但随着器件进入深亚微米BSIM3在射频和高速数字电路等方面的不足渐渐体现出来,BSIM4模型在其基础上考虑了更多尺寸缩小带来的影响,功能上有了很大的改进。在CD、CV以及RF部分都实现了优化。

    我们知道MOS管有不同的工作区间,如图1:

    110dcf49c0cc06eed3896b4dc7b10baa.png
    图1 NMOS器件I-V特性

    可变电阻区或三级管区(

    ):

    时,即
    很小时,表现为线性电阻,
    ,可以看做一个阻值由过驱动电压
    控制的电阻)

    饱和区(

    ):

    (工作在饱和区时,电流大小受过驱动电压控制,定义

    表示电压控制电流的能力,
    • 二级效应

    (一)体效应

    体效应也叫背栅效应即衬底电压会影响器件的阈值电压,当衬底电压接更负的电位时,形成反型层所需要的栅电压越大。导致真正的阈值电压是:

    式中

    是无体效应时的阈值电压,
    ,称为体效应系数,
    是源衬电势差
    的典型值在
    之间。

    (二)沟道长度调制效应

    当栅和漏之间的电压差增大时,实际的反型沟道长度逐渐减小,

    实际上是
    的函数,这种效应就是“沟道长度调制效应”。

    式中

    称为沟道长度调制系数,这种现象在MOS器件的I-V特性中表现为饱和区的出现电流出现上翘。所以当L越大时沟道长度调制效应越小,增大L有助于减小沟道长度效应,在需要更好的电流源时可以等比例增大L。

    (三)亚阈值特性

    时,MOS器件并不会突然关断,而是
    呈指数规律变化,这种效应被称为“亚阈值特性”。在亚阈值特性中也有饱和区的概念,当
    大于200mV左右时:

    式中

    ,是一个非理想因子,
    。此时的表现类似于双极型晶体管特性,但MOSFET的跨到特性比双极型晶体管差。

    看到上面这些参数,不知道大家会不会对很多MOS器件参数搞晕,这里列出了一些单位和物理参数值。其实如果在电路的设计中,确定工艺后,很多参数值都可以从工艺文件中查到,或者仿真得到。

    是电子的迁移率,一般是空穴的迁移率
    的1~2倍,所以PMOS器件具有较低的“电流驱动”能力。例如,
    的电子迁移率约为350,而空穴迁移率约为100.

    8822a2d7340b51d0f703b478431c964d.png
    图1 单位

    c5f88094e2469e2f83c022476719938d.png
    图2 MOS器件物理参数

    在器件的一级模型中我们可以得到相关参数(

    工艺为例):

    b3daf752286112134d227362760ae329.png

    表中:

    9302e64095f3ae3dd594c8e70fbdfe28.png
    展开全文
  • 二极管、三极管、场效应管 (掌握它们外特性与主要参数) 了解半导体物理结构 一、二极管 1. 特性曲线 单向导电性 正偏即正向导通,电流流向是从P型→N型 2. 主要参数(以2个具体二极管为例) ...

    总括

    1. 二极管、三极管、场效应管  (掌握它们的外特性与主要参数)
    2. 了解半导体物理结构

    一、二极管           

    1. 特性曲线

    单向导电性    正偏即正向导通,电流的流向是从P型→N型

    2. 主要参数(以2个具体的二极管为例)

     

     

    整流型1N4001

    开关型1N4148

    最大正向电流

    1.0A

    200mA

    反向击穿电压

    50V

    75V

    反向电流

    5μA

    25nA

    最高工资频率

    3KHz

    1MHz

    反向恢复时间

    4ns

    3. 应用举例

    ①   限幅电路  (把输入信号的负半轴限制掉)

    其中u1为输入电压波形,u2是输出电压波形,可见把输入信号的负半轴限制掉

    ②   动态特性

    其中:

    Us是输入电压,其频率为1000kHz;

    u2对应的二极管为1N4004(为整流型二极管),其频率为3kHz,说明1秒内能开关3000次;其波形不能正常跳变。

    u1对应的二极管为1N4148(为开关型二极管),其频率为1MHz,说明1秒内能开关1000000次;其波形能正常跳变。

    ③   稳压二极管电路       主要参数(稳定电压Uz   稳定电流Iz   最大稳定电流Izm)

      

    其中,U1=12V为输入电压,但有可能发生变化,即使发生变化,由于稳压二极管处于反向击穿区,所以具有稳压的作用,但是稳压是需要条件的。对于上面特定的稳压二极管,其稳压值是确定的,为5.6V,其稳压二极管的工作电流一般为5mA ,最大工作电流为82mA。

    上面三幅图正是计算当满足稳压情况时,电路中的电阻R以及RL的最小值。

     

    二、半导体三极管

    1. 三级管的结构

    ① 3个区:发射区、基区、集电区      由3个区引出3个极:集电极C 基极B 发射极E

    ② 2个PN结:发电结  集电结  

    ③  三极管的文字符号:VT

    ④ 三极管内部结构特点

      掺杂浓度 片区厚度 PN结面积
    基区  
    发射区 高:掺杂浓度比基区、集电区大得多  
    集电区  
    集电结    
    发射结    

    2. 三极管的分类(这里仅以内部基本结构来划分)

    3. 三极管的3种接入方式

    4. 三极管特性曲线:

    I  输入特性曲线

        反映输入电流IB与输入电压UBE之间关系的曲线,它以输出电压UCE一定值作为参考量

        通常把三极管电流开始明显增长的发射结电压称为导通电压。在室温下,硅管的导通电压约为0.6~0.7V,锗管的导通电压为0.2~0.3V。

    II 输出特性曲线

        它反映输出电流IC与输出电压UCE之间关系的曲线,它以输入电流IB一定值作为参考量,它分为3个区:

    ① 截止区:两个PN结均处于反向偏置,此时管压降输出电压UCE近乎为电源电压

    ② 放大区:发射结正偏,集电结反偏,具有电流放大作用,在放大区的三极管输出电流IC只受输入电流IB控制,与输出电压UCE几乎无关。

    ③ 饱和区:两个PN结均处于正向偏置状态,当输出电压UCE< 输入电压UBE时,此时输出电流IC已经不受输入电流IB控制了。三极管饱和时的输出电压UCE值称为饱和压降,记作UCES,小功率的硅管的饱和压降UCES为0.3V。

    5. 三极管的两大功能:

    ① “放大":当三极管处于放大区时,它有电流放大的作用,可应用于模拟电路中。

    ② “开关": 当三极管在饱和和截止区时,相当于电路的闭合与断开,既有开关特性,可应用于脉冲数字电路中。

    6.三极管的主要参数

      三极管的参数可作为设计电路、合理使用器件的参考,下面以图的方式给出2个参数:

                  

    三、场效应三极管

    1. 简介:三极管是用输入电流来控制输出电流的器件,称之为电流控制器件,而场效应管则是利用输入电压产生电场效应来控制输出电流的器件,称为电压控制器件。与三极管相比,它具有输入阻抗高、噪声低、热稳定性好、耗电省、制造工艺简单等优点,便于实现集成化

    2. 场效应管的分类

    结型场效应管

    绝缘栅型场效应管

    N沟道

    P沟道

    增强型

    耗尽型

     

     

    N沟道

    P沟道

    N沟道

    P沟道

    3. 场效应管的结构及图形(以N沟道增强型绝缘栅场效应管为例)

    说明:

    ① 它是一块杂质浓度较低的P型硅片作为衬底,在上面扩散两个相距很近、掺杂浓度高的N型区,分别引出两个电极,分别称为源极S和漏极D,在硅片表面生成一层薄薄的绝缘层,绝缘层上再制作一层铝金属膜作为栅极G。D极与S极之间是3段断续线,表示为增强型(若是连续线表示为耗尽型),B为衬底引线,一般与源极S相连,箭头向内表示为N沟道,反之为P沟道。

    ② 因为栅极与其他电极及硅片之间是绝缘的,所以称为绝缘栅型场效应管;又由于它是由金属(导体)、氧化物(绝缘体)、掺杂少量杂质的硅片(半导体)所组成的,简称为MOS场效应管。

    4. MOS管的工作原理图(以N沟道增强型绝缘栅场效应管为例)

    5. MOS管的特性曲线(以N沟道增强型绝缘栅场效应管为例)

    I  转移特性曲线

    ① 转移特性曲线是指在漏源电压UDS为一定值时,漏极电流ID与栅源电压UGS之间的关系曲线。

    ② 由于场效应管的输入电流IG几乎为0,所以不需要输入特性。

    ③ 转移特性曲线可以清楚地看出栅源电压对漏极电流的控制作用。

    II 输出特性曲线

    ① 输出特性曲线是指在UGS为一定值时,漏极电流ID与漏源电压UDS之间的关系曲线。

    ② 输出特性曲线是一族曲线,可分为三个区,如下图所示:

       

    6. 场效应管的主要参数(以N沟道增强型绝缘栅场效应管为例)

    ① 开启电压UTN(GS):是指漏源电压UDS为常数时,增强型MOS管开始产生漏极电流ID的栅源电压UGS。UGS是增强型场效应管的重要参数,对于N沟道场效应管,为正值,对于P沟道场效应管,为负值。

    ② 跨导gm,是指漏源电压UDS为定值时,栅源输入信号UGS与由它引起的漏极电流ID之比,它是表明栅源电压UGS对漏极电流ID控制作用大小的一个重要参数。

    ③ 漏极击穿电压U(BR)DS,是指漏源极之间允许加的最大电压,实际电压值超过该参数时会使PN结反向击穿。

    转载于:https://www.cnblogs.com/KingOfFreedom/archive/2011/12/14/2286889.html

    展开全文
  • GY-YZ-150型压阻式土壤压力传感器是利用半导体材料压效应原理制成专用于测量高大建筑物对土壤压力传感器,也可用于对建筑物长期稳定性检测。 GY-YZ-l11型压阻式土壤压力传感器具有以下特点: ①体积小,...
  • 文章目录A 晶体三极管A.a 晶体管结构和符号A.b 晶体管放大原理(内部)A.c 晶体管共射输入特性和输出特性(外部)A.c.a 输入特性A.c.b 输出特性A.d 温度对晶体管特性影响A.e 主要参数A.f 讨论 A 晶体三极管 ...

    [模电专栏]

    A 晶体三极管(BJT)

    A.a 晶体管的结构和符号

    在这里插入图片描述

    • 中大功率管为什么有孔?
      增大表面积,利于散热;还便于安装散热装置。

    • 晶体管有三个极、三个区、两个PN结。
      在这里插入图片描述

    箭头:发射结正偏时实际流过发射结的电流方向
    ps:正偏即两极间加的电压与PN结的导通方向一致,如NPN管,B、E结,B极电位高于E极电位,就叫正偏,相反则叫反偏!

    A.b 晶体管的放大原理

    表面上看两个PN结背靠背,不具备放大电流能力。

    在这里插入图片描述
    三极管若实现放大,必须从三极管外部结构所加电源的特性和内部结构来保证。

    • 三极管放大的内部结构要求:
      1 发射区高掺杂。
      2 基区做得很薄。通常只有几微米到几十微米,而且掺杂较少。
      3 集电结面积大。

    • 三极管放大的外部条件:

    发射结正偏 集电结反偏
    NPN UB>UEU_B>U_E UB<UCU_B<U_C
    PNP UB<UEU_B<U_E UB>UCU_B>U_C

    在这里插入图片描述
    上图左边为输入端口,右边为输出端口。发射极作为输入输出的公共端,所以称为共射放大电路。

    在这里插入图片描述
    VBBV_{BB}:为了使得发射结正偏,能够导通
    VCCV_{CC}:要比VBBV_{BB}大,是为了使得uCB>0u_{CB}\gt 0,使得集电结反偏。

    内部图:
    在这里插入图片描述
    外电场:白色大箭头。
    扩散运动形成发射极电流IEI_E
    复合运动形成基极电流IBI_B
    漂移运动(即使基区自由电子数比空穴多,少子依然是自由电子)形成集电极电流ICI_C
    在这里插入图片描述
    在这里插入图片描述


    定义1:共射极直流电流放大系数β\overline{\beta}

    β=ICNIB=ICICBOIB+ICBOIC=βIB+(1+β)ICBO=βIB+ICEO\overline{\beta}=\frac{I_{CN}}{I'_B}=\frac{I_{C}-I_{CBO}}{I_B+I_{CBO}} \rightarrow I_C=\overline{\beta}I_B+(1+\overline{\beta})I_{CBO}=\overline{\beta}I_B+I_{CEO}

    其中:ICEO=(1+β)ICBOI_{CEO}=(1+\overline{\beta})I_{CBO}

    ICEOI_{CEO}称为穿透电流,是基极开路时流过集电极和发射极的电流。ICBOI_{CBO}称为集电结的反向饱和电流,是发射极开路时流过集电极和基极的电流.硅管的这两个电流均很小,在计算中可忽略不计。
    一般情况下,IB>>ICBO,β>>1I_B>>I_{CBO},\overline{\beta}>>1, 故有:


    在这里插入图片描述

    βICIB(β>1)\overline{\beta}\approx\frac{I_C}{I_B}\qquad(\overline{\beta}>1)

    定义共射极交流电流放大系数:β=ΔiCΔiB\beta=\frac{\Delta i_C}{\Delta i_B}
    *** 在这里插入图片描述

    发射结回路为输入回路,集电结回路为输出回路。基极是两个回路的公共端,称这种接法为共基极放大电路
    定义2:ICNIEI_{CN}与I_{E}之比称为共基直流电流放大系数,即:α=ICNIE\overline{\alpha}=\frac{I_{CN}}{I_E}
    IC=ICN+ICBO=αIE+ICBOI_C=I_CN+I_{CBO}=\overline{\alpha}I_E+I_{CBO}
    ICBO<<ICI_{CBO}<<I_C时,可将其忽略,则:
    在这里插入图片描述
    共基交流放大倍数:
    α=ΔiCΔiE\overline{\alpha}=\frac{\Delta i_C}{\Delta i_E}

    共基电路没有电流放大作用。


    在这里插入图片描述
    在这里插入图片描述

    小结:
    在这里插入图片描述


    A.c 晶体管的共射输入特性和输出特性

    在这里插入图片描述

    A.c.a 输入特性

    C、E之间的电压不变时,B、E之间所加的电压与iBi_B之间的关系:iB=f(uBE)UCE= i_B = f(u_{BE})|_{U_{CE}=常数}

    在这里插入图片描述

    • 为什么像PN结的伏安特性?
      UCEU_{CE}等于0,即短路CE,相当于两个PN结并联。所以像PN结的伏安特性。

    • 为什么UCEU_{CE}增大曲线右移
      UCEU_{CE}增大,集电极C抢了基极B的电子,抑制iBi_B,所以要增大uBEu_{BE},来增大iBi_B

    • 为什么UCEU_{CE}增大到一定值曲线右移就不明显了?
      UCEU_{CE}增大,即C收集电子的能力增强,增大到一定程度就饱和了。因此,对于小功率晶体管,UCEU_{CE}大于1V的一条输入特性曲线可以取代UCEU_{CE}大于1V的所有输入特性曲线。

    A.c.b 输出特性

    iBi_B不变时,C、E之间所加的电压与I_C之间的关系:
    iC=f(uCE)ib=i_C=f(u_{CE})|_{i_b=常数}
    对应于一个IBI_B就有一条iCi_CuCEu_{CE}变化的曲线。
    在这里插入图片描述

    • 为什么uCEu_{CE}较小时iCi_CuCEu_{CE}变化很大,而进入放大状态曲线几乎是横轴的平行线?
      uCEu_{CE}从零逐渐增大,集电结电场也随着增强,C收集基区电子(非平衡少子)的能力增强,表现就是iCi_C增大,当C收集能力达到饱和时,iCi_C增大就不明显了。
    • β\beta是常数吗?什么是理想晶体管?什么情况下β=β\beta=\overline{\beta}?
      不是常量。理想:没有穿透电流,β\beta处处相等。理想情况下。

    晶体管的三个工作区域:
    在这里插入图片描述
    饱和:但UCE=UBEU_{CE}=U_{BE},称为临界饱和,UCE<UBEU_{CE}<U_{BE},称为过饱和。
    晶体管工作在放大状态时,输出回路的电流iCi_C几乎仅仅决定于输入回路的电流iBi_B,即可将输出回路等效为电流iBi_B控制的电流源iCi_C

    发射结 集电结 特点
    截止 反偏 反偏
    放大 正偏 反偏 各条输出特性曲线比较平坦,近似为水平线且等间隔。集电极和基电极电流体现放大作用,即ΔiC=βΔiB\Delta i_C=\beta\Delta i_B
    饱和 正偏 正偏 iCi_C不仅与iBi_B有关,而且随uCEu_{CE}增大而增大。在饱和区三极管失去放大作用iCβiBi_C \not=\beta i_B

    A.d 温度对晶体管特性的影响

    温度升高,集电极电流增大。
    在这里插入图片描述

    A.e 主要参数

    • 直流参数:βα=ICIEICBOICEO\overline{\beta}、\overline{\alpha}=\frac{I_C}{I_E}、I_{CBO}、I_{CEO}
    • 交流参数:βαfT\beta、\alpha、f_T(特征频率:使得β=1\beta=1的信号频率,使得晶体管丧失放大功能的频率)
    • 极限参数:ICMPCMPCM=iCuCEU(BR)CEOce穿I_{CM}(最大集电极电流)、P_{CM}(最大集电极耗散功率,P_{CM}=i_C u_{CE})、U_{(BR)CEO}(c-e间击穿电压)
    • 在这里插入图片描述

    图片来源:清华大学公开课 《模拟电子技术基础》 华成英

    展开全文
  • 压敏电阻的主要参数有:压敏电压、通流容量、结电容、响应时间等。 压敏电阻的响应时间为ns级,比气体放电管快,比TVS管稍慢一些,一般情况下用于电子电路的过电压保护其响应速度可以满足要求。压敏电阻的结电容...
  • 与双极型半导体三极管相比,场效应管具有输入阻抗高、噪声低、动态范围大以及交叉调制失真小等... 表给出了小信号用片状绝缘栅场效应管的主要特性参数。 表:小信号用片状绝缘栅场效应管主要性参数(SOT-23式封装)  
  • 器件特性,其主要的集成环境为 DeckBuild,工艺仿真组件、器件仿真组件以及可视化工 具等模块均可在 DeckBuild 界面灵活地调用。Silvaco TCAD 有 Linux 版本,也有 Windows 版本。在 Linux 版本下有更多图形...
  • 红外一般分为: 红外发射和红外接收两个不同...由于半导体器件受温度影响较大,在实际使用中还需要考虑温度对其实际应用影响,必要时选择合适散热方式。 对于接收管而言: 除了Peak wavelength 和 spe...
  • 三极管(全称:半导体三极管,也称双极型晶体管、晶体三极管),是一种控制电流的半导体器件其作用是把微弱信号放大成幅度值较大电信号, 也用作无触点开关。介绍三极管工作原理以及主要参数

空空如也

空空如也

1 2 3 4 5 ... 10
收藏数 186
精华内容 74
关键字:

半导体器件的主要参数