精华内容
下载资源
问答
  • 结果表明:由光场诱导的双模原子激光呈现周期性的压缩,原子间的相互作用和光场初始压缩因子对原子的压缩性质具有重要影响。原子间的相互作用影响原子激光压缩的振荡频率而不会影响其压缩深度,而初始光场的压缩因子则...
  • 在 x86-64 机器上,int64 的读写操作是否具有原子性? 假设变量 val 是 int64, 现在有两个线程,线程 writer 只负责向 val 写入数据,线程 reader 只负从 val 读取数据 假设 val 当前值为 0x0102030405060708 writer...

    x86-64 机器上,int64 的读写操作是否具有原子性?

    假设变量 valint64, 现在有两个线程,线程 writer 只负责向 val 写入数据,线程 reader 只负从 val 读取数据

    假设 val 当前值为 0x0102030405060708

    writer 线程正在执行写操作,将数据 0x0000111100002222 写入 val

    reader 线程正在执行读操作,从 val 读取数据

    那么 reader 线程得到的 val 只能是 0x01020304050607080x0000111100002222 还是某个不确定的中间状态?

    如果 int64 的读写操作具有原子性,那么 reader 线程得到的只能是 0x01020304050607080x0000111100002222

    如果 int64 的读写操作不具有原子性,那么 reader 线程得到可能是中间某个不确定的状态,比如前一半是 writer 正在写入的数据,后一半是旧的数据 0x0000111105060708

    测试程序如下:

    1. 写入 val 的值一定是符合奇偶校验的
    2. 开启 10 个线程同时向 val 输入数据
    3. 读线程连续的从 val 读取数据,并检查是否符合奇偶校验
    4. 如果 int64 的读写操作具备原子性,读线程得到的数据一定是符合奇偶校验的

    测试发现,在 x86 64 机器上, int64 的读写操作确实具备原子性

    package main
    
    import (
    	"log"
    	"math/rand"
    	"sync"
    )
    
    func check(v int64) bool {
    	var num int = 0
    	for i := 0; i < 64; i++ {
    		if v&0x01 != 0 {
    			num++
    		}
    		v = v >> 1
    	}
    	return num%2 == 0
    }
    
    func write(p *int64) {
    	v := rand.Int63()
    	if check(v) {
    		v = v ^ 0x01
    	}
    	*p = v
    }
    func main() {
    	var wg sync.WaitGroup
    	var val int64
    	write(&val)
    
    	for i := 0; i < 10; i++ {
    		wg.Add(1)
    		go func() {
    			defer wg.Done()
    			for i := 0; i < 10000000; i++ {
    				write(&val)
    			}
    		}()
    	}
    
    	go func() {
    		for {
    			v := val
    			if check(v) {
    				log.Fatalf("atomic test faile, val = %d", v)
    			}
    		}
    	}()
    
    	wg.Wait()
    	log.Printf("test finished")
    
    }
    
    展开全文
  • 具有蜂窝结构的原子铅膜的拓扑性质
  • 具有被磷和氢原子钝化的各种边缘结构的石墨烯纳米带的磁电子性质
  • 结果表明,与用超冷二能级原子或用热的二能级和三能级原子注入的微脉塞的光谱相比,用超冷V型三能级原子注入的微脉塞具有新的光谱性质,对某些腔长,线宽可被突然加宽,腔场也发生大的频移.不同的原子相干性甚至可以使腔...
  • 什么是数据结构?

    千次阅读 2019-06-19 20:25:39
    数据对象是性质相同的数据元素的集合,是数据的一个子集。数据对象可以是有限的,也可以是无限的。 数据处理是指对数据进行查找、插入、删除、合并、排序、统计以及简单计算等的操作过程。在早期,计算机主要用于...

    什么是数据结构?数据结构是什么?

     

    数据结构是计算机存储、组织数据的方式。数据结构是指相互之间存在一种或多种特定关系的数据元素的集合。通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。

     

    定义

    名词定义

    数据结构是指相互之间存在着一种或多种关系的数据元素的集合和该集合中数据元素之间的关系组成。也就是说,数组结构指的是数据集合及数据之间关系的集合,是两个集合。

    记为:Data_Structure=(D,R)

    其中D是数据元素的集合,R是该集合中所有元素之间的关系的有限集合。 

    数据结构是指相互之间存在着一种或多种关系的数据元素的集合和该集合中数据元素之间的关系组成。

     

    其它定义

    Sartaj Sahni在他的《数据结构、算法与应用》一书中称:“数据结构是数据对象,以及存在于该对象的实例和组成实 例的数据元素之间的各种联系。这些联系可以通过定义相关的函数来给出。”他将数据对象(data object)定义为“一个数据对象是实例或值的集合”。
    Clifford A.Shaffer在《数据结构与算法分析》一书中的定义是:“数据结构是ADT(抽象数据类型Abstract Data Type) 的物理实现。”
    Robert L.Kruse在《数据结构与程序设计》一书中,将一个数据结构的设计过程分成抽象层、数据结构层和实现层。其中,抽象层是指抽象数据类型层,它讨论数据的逻辑结构及其运算,数据结构层和实现层讨论一个数据结构的表示和在计算机内的存储细节以及运算的实现。
    数据结构具体指同一类数据元素中,各元素之间的相互关系,包括三个组成成分,数据的逻辑结构,数据的存储结构和数据运算结构。

     

    研究对象

    一、数据的逻辑结构:指反映数据元素之间的逻辑关系的数据结构,其中的逻辑关系是指数据元素之间的前后件关系,而与他们在计算机中的存储位置无关。逻辑结构包括:
    集合
    数据结构中的元素之间除了“同属一个集合” 的相互关系外,别无其他关系;
    2.线性结构
    数据结构中的元素存在一对一的相互关系;
    3.树形结构
    数据结构中的元素存在一对多的相互关系;
    4.图形结构
    数据结构中的元素存在多对多的相互关系。
    二、数据的物理结构:指数据的逻辑结构在计算机存储空间的存放形式。 
    数据的物理结构是数据结构在计算机中的表示(又称映像),它包括数据元素的机内表示和关系的机内表示。由于具体实现的方法有顺序、链接、索引、散列等多种,所以,一种数据结构可表示成一种或多种存储结构。
    数据元素的机内表示(映像方法): 用二进制位(bit)的位串表示数据元素。通常称这种位串为节点(node)。当数据元素有若干个数据项组成时,位串中与个数据项对应的子位串称为数据域(data field)。因此,节点是数据元素的机内表示(或机内映像)。
    关系的机内表示(映像方法):数据元素之间的关系的机内表示可以分为顺序映像和非顺序映像,常用两种存储结构:顺序存储结构和链式存储结构。顺序映像借助元素在存储器中的相对位置来表示数据元素之间的逻辑关系。非顺序映像借助指示元素存储位置的指针(pointer)来表示数据元素之间的逻辑关系。
    三、数据结构的运算。

     

    重要意义

              一般认为,一个数据结构是由数据元素依据某种逻辑联系组织起来的。对数据元素间逻辑关系的描述称为数据的逻辑结构;数据必须在计算机内存储,数据的存储结构是数据结构的实现形式,是其在计算机内的表示;此外讨论一个数据结构必须同时讨论在该类数据上执行的运算才有意义。一个逻辑数据结构可以有多种存储结构,且各种存储结构影响数据处理的效率。

             在许多类型的程序的设计中,数据结构的选择是一个基本的设计考虑因素。许多大型系统的构造经验表明,系统实现的困难程度和系统构造的质量都严重的依赖于是否选择了最优的数据结构。许多时候,确定了数据结构后,算法就容易得到了。有些时候事情也会反过来,我们根据特定算法来选择数据结构与之适应。不论哪种情况,选择合适的数据结构都是非常重要的。

             选择了数据结构,算法也随之确定,是数据而不是算法是系统构造的关键因素。这种洞见导致了许多种软件设计方法和程序设计语言的出现,面向对象的程序设计语言就是其中之一。

     

    研究内容

             在计算机科学中,数据结构是一门研究非数值计算的程序设计问题中计算机的操作对象(数据元素)以及它们之间的关系和运算等的学科,而且确保经过这些运算后所得到的新结构仍然是原来的结构类型。

             “数据结构”作为一门独立的课程在国外是从1968年才开始设立的。 1968年美国唐纳德·克努特(Donald Ervin Knuth)教授开创了数据结构的最初体系,他所著的《计算机程序设计艺术》第一卷《基本算法》是第一本较系统地阐述数据的逻辑结构和存储结构及其操作的著作。“数据结构”在计算机科学中是一门综合性的专业基础课,数据结构是介于数学、计算机硬件和计算机软件三者之间的一门核心课程。数据结构这一门课的内容不仅是一般程序设计(特别是非数值性程序设计)的基础,而且是设计和实现编译程序、操作系统、数据库系统及其他系统程序的重要基础。

             计算机科学是一门研究用计算机进行信息表示和处理的科学。这里面涉及到两个问题:信息的表示,信息的处理 。

             而信息的表示和组织又直接关系到处理信息的程序的效率。随着计算机的普及,信息量的增加,信息范围的拓宽,使许多系统程序和应用程序的规模很大,结构又相当复杂。因此,为了编写出一个“好”的程序,必须分析待处理的对象的特征及各对象之间存在的关系,这就是数据结构这门课所要研究的问题。众所周知,计算机的程序是对信息进行加工处理。在大多数情况下,这些信息并不是没有组织,信息(数据)之间往往具有重要的结构关系,这就是数据结构的内容。数据的结构,直接影响算法的选择和效率。

             计算机解决一个具体问题时,大致需要经过下列几个步骤:首先要从具体问题中抽象出一个适当的数学模型,然后设计一个解此数学模型的算法(Algorithm),最后编出程序、进行测试、调整直至得到最终解答。

             寻求数学模型的实质是分析问题,从中提取操作的对象,并找出这些操作对象之间含有的关系,然后用数学的语言加以描述。当人们用计算机处理数值计算问题时,所用的数学模型是用数学方程描述。所涉及的运算对象一般是简单的整形、实型和逻辑型数据,因此程序设计者的主要精力集中于程序设计技巧上,而不是数据的存储和组织上。然而,计算机应用的更多领域是“非数值型计算问题”,它们的数学模型无法用数学方程描述,而是用数据结构描述,解决此类问题的关键是设计出合适的数据结构,描述非数值型问题的数学模型是用线性表、树、图等结构来描述的。

             计算机算法与数据的结构密切相关,算法无不依附于具体的数据结构,数据结构直接关系到算法的选择和效率。运算是由计算机来完成,这就要设计相应的插入、删除和修改的算法 。也就是说,数据结构还需要给出每种结构类型所定义的各种运算的算法。

             数据是信息的载体,是可以被计算机识别存储并加工处理的描述客观事物的信息符号的总称。所有能被输入计算机中,且能被计算机处理的符号的集合,它是计算机程序加工处理的对象。客观事物包括数值、字符、声音、图形、图像等,它们本身并不是数据,只有通过编码变成能被计算机识别、存储和处理的符号形式后才是数据。

             数据元素是数据的基本单位,在计算机程序中通常作为一个整体考虑。一个数据元素由若干个数据项组成。数据项是数据结构中讨论的最小单位。有两类数据元素:若数据元素可再分,则每一个独立的处理单元就是数据项,数据元素是数据项的集合;若数据元素不可再分,则数据元素和数据项是同一概念,如:整数"5",字符 "N" 等。例如描述一个学生的信息的数据元素可由下列6个数据项组成。其中的出生日期又可以由三个数据项:"年"、"月"和"日"组成,则称"出生日期"为组合项,而其它不可分割的数据项为原子项。

             关键字指的是能识别一个或多个数据元素的数据项。若能起唯一识别作用,则称之为 "主" 关键字,否则称之为 "次" 关键字。

             数据对象是性质相同的数据元素的集合,是数据的一个子集。数据对象可以是有限的,也可以是无限的。

             数据处理是指对数据进行查找、插入、删除、合并、排序、统计以及简单计算等的操作过程。在早期,计算机主要用于科学和工程计算,进入八十年代以后,计算机主要用于数据处理。据有关统计资料表明,计算机用于数据处理的时间比例达到80%以上,随着时间的推移和计算机应用的进一步普及,计算机用于数据处理的时间比例必将进一步增大。

     

    结构分类

             数据结构是指同一数据元素类中各数据元素之间存在的关系。数据结构分别为逻辑结构、存储结构(物理结构)和数据的运算。数据的逻辑结构是从具体问题抽象出来的数学模型,是描述数据元素及其关系的数学特性的,有时就把逻辑结构简称为数据结构。逻辑结构是在计算机存储中的映像,形式地定义为(K,R)(或(D,S)),其中,K是数据元素的有限集,R是K上的关系的有限集。

             根据数据元素间关系的不同特性,通常有下列四类基本的结构: ⑴集合结构。该结构的数据元素间的关系是“属于同一个集合”。 ⑵线性结构。该结构的数据元素之间存在着一对一的关系。 ⑶树型结构。该结构的数据元素之间存在着一对多的关系。 ⑷图形结构。该结构的数据元素之间存在着多对多的关系,也称网状结构。 从上面所介绍的数据结构的概念中可以知道,一个数据结构有两个要素。一个是数据元素的集合,另一个是关系的集合。在形式上,数据结构通常可以采用一个二元组来表示。

             数据结构的形式定义为:数据结构是一个二元组 :Data_Structure=(D,R),其中,D是数据元素的有限集,R是D上关系的有限集。线性结构的特点是数据元素之间是一种线性关系,数据元素“一个接一个的排列”。在一个线性表中数据元素的类型是相同的,或者说线性表是由同一类型的数据元素构成的线性结构。在实际问题中线性表的例子是很多的,如学生情况信息表是一个线性表:表中数据元素的类型为学生类型; 一个字符串也是一个线性表:表中数据元素的类型为字符型,等等。

             线性表是最简单、最基本、也是最常用的一种线性结构。 线性表是具有相同数据类型的n(n>=0)个数据元素的有限序列,通常记为: (a1,a2,… ai-1,ai,ai+1,…an) ,其中n为表长, n=0 时称为空表。 它有两种存储方法:顺序存储和链式存储,它的主要基本操作是插入、删除和检索等。

             数据结构在计算机中的表示(映像)称为数据的物理(存储)结构。它包括数据元素的表示和关系的表示。数据元素之间的关系有两种不同的表示方法:顺序映象和非顺序映象,并由此得到两种不同的存储结构:顺序存储结构和链式存储结构。

             顺序存储方法:它是把逻辑上相邻的结点存储在物理位置相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现,由此得到的存储表示称为顺序存储结构。顺序存储结构是一种最基本的存储表示方法,通常借助于程序设计语言中的数组来实现。

             链接存储方法:它不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系是由附加的指针字段表示的。由此得到的存储表示称为链式存储结构,链式存储结构通常借助于程序设计语言中的指针类型来实现

             索引存储方法:除建立存储结点信息外,还建立附加的索引表来标识结点的地址。

             散列存储方法:就是根据结点的关键字直接计算出该结点的存储地址。

             数据结构中,逻辑上(逻辑结构:数据元素之间的逻辑关系)可以把数据结构分成线性结构和非线性结构。线性结构的顺序存储结构是一种顺序存取的存储结构,线性表的链式存储结构是一种随机存取的存储结构。线性表若采用链式存储表示时所有结点之间的存储单元地址可连续可不连续。逻辑结构与数据元素本身的形式、内容、相对位置、所含结点个数都无关。

     

    结构算法

             算法的设计取决于数据(逻辑)结构,而算法的实现依赖于采用的存储结构。数据的存储结构实质上是它的逻辑结构在计算机存储器中的实现,为了全面的反映一个数据的逻辑结构,它在存储器中的映象包括两方面内容,即数据元素之间的信息和数据元素之间的关系。不同数据结构有其相应的若干运算。数据的运算是在数据的逻辑结构上定义的操作算法,如检索、插入、删除、更新和排序等。

             数据的运算是数据结构的一个重要方面,讨论任一种数据结构时都离不开对该结构上的数据运算及其实现算法的讨论。
    数据结构不同于数据类型,也不同于数据对象,它不仅要描述数据类型的数据对象,而且要描述数据对象各元素之间的相互关系。

             数据类型是一个值的集合和定义在这个值集上的一组操作的总称。数据类型可分为两类:原子类型、结构类型。一方面,在程序设计语言中,每一个数据都属于某种数据类型。类型明显或隐含地规定了数据的取值范围、存储方式以及允许进行的运算。可以认为,数据类型是在程序设计中已经实现了的数据结构。另一方面,在程序设计过程中,当需要引入某种新的数据结构时,总是借助编程语言所提供的数据类型来描述数据的存储结构。

             计算机中表示数据的最小单位是二进制数的一位,叫做位。我们用一个由若干位组合起来形成的一个位串表示一个数据元素,通常称这个位串为元素或结点。当数据元素由若干数据项组成时,位串中对应于各个数据项的子位串称为数据域。元素或结点可看成是数据元素在计算机中的映象。

             一个软件系统框架应建立在数据之上,而不是建立在操作之上。一个含抽象数据类型的软件模块应包含定义、表示、实现三个部分。
    对每一个数据结构而言,必定存在与它密切相关的一组操作。若操作的种类和数目不同,即使逻辑结构相同,数据结构能起的作用也不同。

             不同的数据结构其操作集不同,但下列操作必不可缺:
             1,结构的生成;
             2.结构的销毁;
             3,在结构中查找满足规定条件的数据元素;
             4,在结构中插入新的数据元素;
             5,删除结构中已经存在的数据元素;
             6,遍历。

             抽象数据类型:一个数学模型以及定义在该模型上的一组操作。抽象数据类型实际上就是对该数据结构的定义。因为它定义了一个数据的逻辑结构以及在此结构上的一组算法。抽象数据类型可用以下三元组表示:(D,S,P)。D是数据对象,S是D上的关系集,P是对D的基本操作集。ADT的定义为:

             ADT 抽象数据类型名:{数据对象:(数据元素集合),数据关系:(数据关系二元组结合),基本操作:(操作函数的罗列)}; ADT抽象数据类型名;抽象数据类型有两个重要特性:

             数据抽象

             用ADT描述程序处理的实体时,强调的是其本质的特征、其所能完成的功能以及它和外部用户的接口(即外界使用它的方法)。

             数据封装

             将实体的外部特性和其内部实现细节分离,并且对外部用户隐藏其内部实现细节。

             数据(Data)是信息的载体,它能够被计算机识别、存储和加工处理。它是计算机程序加工的原料,应用程序处理各种各样的数据。计算机科学中,所谓数据就是计算机加工处理的对象,它可以是数值数据,也可以是非数值数据。数值数据是一些整数、实数或复数,主要用于工程计算、科学计算和商务处理等;非数值数据包括字符、文字、图形、图像、语音等。数据元素(Data Element)是数据的基本单位。在不同的条件下,数据元素又可称为元素、结点、顶点、记录等。例如,学生信息检索系统中学生信息表中的一个记录等,都被称为一个数据元素。
    有时,一个数据元素可由若干个数据项(Data Item)组成,例如,学籍管理系统中学生信息表的每一个数据元素就是一个学生记录。它包括学生的学号、姓名、性别、籍贯、出生年月、成绩等数据项。这些数据项可以分为两种:一种叫做初等项,如学生的性别、籍贯等,这些数据项是在数据处理时不能再分割的最小单位;另一种叫做组合项,如学生的成绩,它可以再划分为数学、物理、化学等更小的项。通常,在解决实际应用问题时是把每个学生记录当作一个基本单位进行访问和处理的。

             数据对象(Data Object)或数据元素类(Data Element Class)是具有相同性质的数据元素的集合。在某个具体问题中,数据元素都具有相同的性质(元素值不一定相等),属于同一数据对象(数据元素类),数据元素是数据元素类的一个实例。例如,在交通咨询系统的交通网中,所有的顶点是一个数据元素类,顶点A和顶点B各自代表一个城市,是该数据元素类中的两个实例,其数据元素的值分别为A和B。 数据结构(Data Structure)是指互相之间存在着一种或多种关系的数据元素的集合。在任何问题中,数据元素之间都不会是孤立的,在它们之间都存在着这样或那样的关系,这种数据元素之间的关系称为结构。

     

    常用结构

    数组
             在程序设计中,为了处理方便, 把具有相同类型的若干变量按有序的形式组织起来。这些按序排列的同类数据元素的集合称为数组。在C语言中, 数组属于构造数据类型。一个数组可以分解为多个数组元素,这些数组元素可以是基本数据类型或是构造类型。因此按数组元素的类型不同,数组又可分为数值数组、字符数组、指针数组、结构数组等各种类别。


             是只能在某一端插入和删除的特殊线性表。它按照先进后出的原则存储数据,先进入的数据被压入栈底,最后的数据在栈顶,需要读数据的时候从栈顶开始弹出数据(最后一个数据被第一个读出来)。

    队列
             一种特殊的线性表,它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作。进行插入操作的端称为队尾,进行删除操作的端称为队头。队列是按照“先进先出”或“后进后出”的原则组织数据的。队列中没有元素时,称为空队列。

    链表
             是一种物理存储单元上非连续、非顺序的存储结构,它既可以表示线性结构,也可以用于表示非线性结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列结点(链表中每一个元素称为结点)组成,结点可以在运行时动态生成。每个结点包括两个部分:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域。


             是包含n(n>0)个结点的有穷集合K,且在K中定义了一个关系N,N满足 以下条件:
             (1)有且仅有一个结点 K0,他对于关系N来说没有前驱,称K0为树的根结点。简称为根(root)。  
             (2)除K0外,K中的每个结点,对于关系N来说有且仅有一个前驱。
             (3)K中各结点,对关系N来说可以有m个后继(m>=0)。


             图是由结点的有穷集合V和边的集合E组成。其中,为了与树形结构加以区别,在图结构中常常将结点称为顶点,边是顶点的有序偶对,若两个顶点之间存在一条边,就表示这两个顶点具有相邻关系。


             在计算机科学中,堆是一种特殊的树形数据结构,每个结点都有一个值。通常我们所说的堆的数据结构,是指二叉堆。堆的特点是根结点的值最小(或最大),且根结点的两个子树也是一个堆。

    散列表
             若结构中存在关键字和K相等的记录,则必定在f(K)的存储位置上。由此,不需比较便可直接取得所查记录。称这个对应关系f为散列函数(Hash function),按这个思想建立的表为散列表。

     

    简而言之,数据结构说的是:计算机组织数据和存储数据的方式。

    展开全文
  • 在并发编程中分析线程安全的问题时往往需要切入点,那就是两大核心:JMM抽象内存模型以及happens-before规则(在这篇文章中已经经过了),三条性质原子性,有序性和可见性。关于synchronized和volatile已经讨论过...

     

    转载自:https://www.jianshu.com/p/cf57726e77f2

     

     

    1. 三大性质简介

    在并发编程中分析线程安全的问题时往往需要切入点,那就是两大核心:JMM抽象内存模型以及happens-before规则(在这篇文章中已经经过了),三条性质:原子性,有序性和可见性。关于synchronizedvolatile已经讨论过了,就想着将并发编程中这两大神器在 原子性,有序性和可见性上做一个比较,当然这也是面试中的高频考点,值得注意。

    2. 原子性

    原子性是指一个操作是不可中断的,要么全部执行成功要么全部执行失败,有着“同生共死”的感觉。及时在多个线程一起执行的时候,一个操作一旦开始,就不会被其他线程所干扰。我们先来看看哪些是原子操作,哪些不是原子操作,有一个直观的印象:

    int a = 10; //1
    a++; //2
    int b=a; //3
    a = a+1; //4

    上面这四个语句中只有第1个语句是原子操作,将10赋值给线程工作内存的变量a,而语句2(a++),实际上包含了三个操作:1. 读取变量a的值;2:对a进行加一的操作;3.将计算后的值再赋值给变量a,而这三个操作无法构成原子操作。对语句3,4的分析同理可得这两条语句不具备原子性。当然,java内存模型中定义了8中操作都是原子的,不可再分的。

    1. lock(锁定):作用于主内存中的变量,它把一个变量标识为一个线程独占的状态;
    2. unlock(解锁):作用于主内存中的变量,它把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定
    3. read(读取):作用于主内存的变量,它把一个变量的值从主内存传输到线程的工作内存中,以便后面的load动作使用;
    4. load(载入):作用于工作内存中的变量,它把read操作从主内存中得到的变量值放入工作内存中的变量副本
    5. use(使用):作用于工作内存中的变量,它把工作内存中一个变量的值传递给执行引擎,每当虚拟机遇到一个需要使用到变量的值的字节码指令时将会执行这个操作;
    6. assign(赋值):作用于工作内存中的变量,它把一个从执行引擎接收到的值赋给工作内存的变量,每当虚拟机遇到一个给变量赋值的字节码指令时执行这个操作;
    7. store(存储):作用于工作内存的变量,它把工作内存中一个变量的值传送给主内存中以便随后的write操作使用;
    8. write(操作):作用于主内存的变量,它把store操作从工作内存中得到的变量的值放入主内存的变量中。

    上面的这些指令操作是相当底层的,可以作为扩展知识面掌握下。那么如何理解这些指令了?比如,把一个变量从主内存中复制到工作内存中就需要执行read,load操作,将工作内存同步到主内存中就需要执行store,write操作。注意的是:java内存模型只是要求上述两个操作是顺序执行的并不是连续执行的。也就是说read和load之间可以插入其他指令,store和writer可以插入其他指令。比如对主内存中的a,b进行访问就可以出现这样的操作顺序:read a,read b, load b,load a

    由原子性变量操作read,load,use,assign,store,write,可以大致认为基本数据类型的访问读写具备原子性(例外就是long和double的非原子性协定)

    synchronized

    上面一共有八条原子操作,其中六条可以满足基本数据类型的访问读写具备原子性,还剩下lock和unlock两条原子操作。如果我们需要更大范围的原子性操作就可以使用lock和unlock原子操作。尽管jvm没有把lock和unlock开放给我们使用,但jvm以更高层次的指令monitorenter和monitorexit指令开放给我们使用,反应到java代码中就是---synchronized关键字,也就是说synchronized满足原子性

    volatile
    我们先来看这样一个例子:

    public class VolatileExample {
        private static volatile int counter = 0;
    
        public static void main(String[] args) {
            for (int i = 0; i < 10; i++) {
                Thread thread = new Thread(new Runnable() {
                    @Override
                    public void run() {
                        for (int i = 0; i < 10000; i++)
                            counter++;
                    }
                });
                thread.start();
            }
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(counter);
        }
    }
    

    开启10个线程,每个线程都自加10000次,如果不出现线程安全的问题最终的结果应该就是:10*10000 = 100000;可是运行多次都是小于100000的结果,问题在于 volatile并不能保证原子性,在前面说过counter++这并不是一个原子操作,包含了三个步骤:1.读取变量counter的值;2.对counter加一;3.将新值赋值给变量counter。如果线程A读取counter到工作内存后,其他线程对这个值已经做了自增操作后,那么线程A的这个值自然而然就是一个过期的值,因此,总结果必然会是小于100000的。

    如果让volatile保证原子性,必须符合以下两条规则:

    1. 运算结果并不依赖于变量的当前值,或者能够确保只有一个线程修改变量的值;
    2. 变量不需要与其他的状态变量共同参与不变约束

    3. 有序性

    synchronized

    synchronized语义表示锁在同一时刻只能由一个线程进行获取,当锁被占用后,其他线程只能等待。因此,synchronized语义就要求线程在访问读写共享变量时只能“串行”执行,因此synchronized具有有序性

    volatile

    在java内存模型中说过,为了性能优化,编译器和处理器会进行指令重排序;也就是说java程序天然的有序性可以总结为:如果在本线程内观察,所有的操作都是有序的;如果在一个线程观察另一个线程,所有的操作都是无序的。在单例模式的实现上有一种双重检验锁定的方式(Double-checked Locking)。代码如下:

    public class Singleton {
        private Singleton() { }
        private volatile static Singleton instance;
        public Singleton getInstance(){
            if(instance==null){
                synchronized (Singleton.class){
                    if(instance==null){
                        instance = new Singleton();
                    }
                }
            }
            return instance;
        }
    }
    

    这里为什么要加volatile了?我们先来分析一下不加volatile的情况,有问题的语句是这条:

    instance = new Singleton();

    这条语句实际上包含了三个操作:1.分配对象的内存空间;2.初始化对象;3.设置instance指向刚分配的内存地址。但由于存在重排序的问题,可能有以下的执行顺序:

    不加volatile可能的执行时序

    如果2和3进行了重排序的话,线程B进行判断if(instance==null)时就会为true,而实际上这个instance并没有初始化成功,显而易见对线程B来说之后的操作就会是错得。而用volatile修饰的话就可以禁止2和3操作重排序,从而避免这种情况。volatile包含禁止指令重排序的语义,其具有有序性

    4. 可见性

    可见性是指当一个线程修改了共享变量后,其他线程能够立即得知这个修改。通过之前对synchronzed内存语义进行了分析,当线程获取锁时会从主内存中获取共享变量的最新值,释放锁的时候会将共享变量同步到主内存中。从而,synchronized具有可见性。同样的在volatile分析中,会通过在指令中添加lock指令,以实现内存可见性。因此, volatile具有可见性

    5. 总结

    通过这篇文章,主要是比较了synchronized和volatile在三条性质:原子性,可见性,以及有序性的情况,归纳如下:

    synchronized: 具有原子性,有序性和可见性
    volatile:具有有序性和可见性



    作者:你听___
    链接:https://www.jianshu.com/p/cf57726e77f2
    来源:简书
    简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

    展开全文
  • 利用分离变分局域自旋密度泛函方法,对正二十面体MCo12原子簇的电子结构和磁性性质进行了研究,结果表明:原子簇的中心原子与表面原子之间具有键长收缩效应,其相互作用得到了加强;用Ti、V、Cr、Mn、Fe和Ni原子替代...
  • 在并发编程中分析线程安全的问题时往往需要切入点,那就是两大核心:JMM抽象内存模型以及happens-before规则(在这篇文章中已经经过了),三条性质原子性,有序性和可见性。关于synchronized和volatile已经讨论过...

    原创文章&经验总结&从校招到A厂一路阳光一路沧桑

    详情请戳www.coderccc.com

    # 1. 三大性质简介 #
    在并发编程中分析线程安全的问题时往往需要切入点,那就是两大核心:JMM抽象内存模型以及happens-before规则(在这篇文章中已经经过了),三条性质:原子性,有序性和可见性。关于synchronizedvolatile已经讨论过了,就想着将并发编程中这两大神器在 原子性,有序性和可见性上做一个比较,当然这也是面试中的高频考点,值得注意。

    2. 原子性

    原子性是指一个操作是不可中断的,要么全部执行成功要么全部执行失败,有着“同生共死”的感觉。及时在多个线程一起执行的时候,一个操作一旦开始,就不会被其他线程所干扰。我们先来看看哪些是原子操作,哪些不是原子操作,有一个直观的印象:

    int a = 10; //1

    a++; //2

    int b=a; //3

    a = a+1; //4

    上面这四个语句中只有第1个语句是原子操作,将10赋值给线程工作内存的变量a,而语句2(a++),实际上包含了三个操作:1. 读取变量a的值;2:对a进行加一的操作;3.将计算后的值再赋值给变量a,而这三个操作无法构成原子操作。对语句3,4的分析同理可得这两条语句不具备原子性。当然,java内存模型中定义了8中操作都是原子的,不可再分的。

    1. lock(锁定):作用于主内存中的变量,它把一个变量标识为一个线程独占的状态;
    2. unlock(解锁):作用于主内存中的变量,它把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定
    3. read(读取):作用于主内存的变量,它把一个变量的值从主内存传输到线程的工作内存中,以便后面的load动作使用;
    4. load(载入):作用于工作内存中的变量,它把read操作从主内存中得到的变量值放入工作内存中的变量副本
    5. use(使用):作用于工作内存中的变量,它把工作内存中一个变量的值传递给执行引擎,每当虚拟机遇到一个需要使用到变量的值的字节码指令时将会执行这个操作;
    6. assign(赋值):作用于工作内存中的变量,它把一个从执行引擎接收到的值赋给工作内存的变量,每当虚拟机遇到一个给变量赋值的字节码指令时执行这个操作;
    7. store(存储):作用于工作内存的变量,它把工作内存中一个变量的值传送给主内存中以便随后的write操作使用;
    8. write(操作):作用于主内存的变量,它把store操作从工作内存中得到的变量的值放入主内存的变量中。

    上面的这些指令操作是相当底层的,可以作为扩展知识面掌握下。那么如何理解这些指令了?比如,把一个变量从主内存中复制到工作内存中就需要执行read,load操作,将工作内存同步到主内存中就需要执行store,write操作。注意的是:java内存模型只是要求上述两个操作是顺序执行的并不是连续执行的。也就是说read和load之间可以插入其他指令,store和writer可以插入其他指令。比如对主内存中的a,b进行访问就可以出现这样的操作顺序:read a,read b, load b,load a

    由原子性变量操作read,load,use,assign,store,write,可以大致认为基本数据类型的访问读写具备原子性(例外就是long和double的非原子性协定)

    synchronized

    上面一共有八条原子操作,其中六条可以满足基本数据类型的访问读写具备原子性,还剩下lock和unlock两条原子操作。如果我们需要更大范围的原子性操作就可以使用lock和unlock原子操作。尽管jvm没有把lock和unlock开放给我们使用,但jvm以更高层次的指令monitorenter和monitorexit指令开放给我们使用,反应到java代码中就是—synchronized关键字,也就是说synchronized满足原子性

    volatile
    我们先来看这样一个例子:

    public class VolatileExample {
        private static volatile int counter = 0;
    
        public static void main(String[] args) {
            for (int i = 0; i < 10; i++) {
                Thread thread = new Thread(new Runnable() {
                    @Override
                    public void run() {
                        for (int i = 0; i < 10000; i++)
                            counter++;
                    }
                });
                thread.start();
            }
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(counter);
        }
    }
    

    开启10个线程,每个线程都自加10000次,如果不出现线程安全的问题最终的结果应该就是:10*10000 = 100000;可是运行多次都是小于100000的结果,问题在于 volatile并不能保证原子性,在前面说过counter++这并不是一个原子操作,包含了三个步骤:1.读取变量counter的值;2.对counter加一;3.将新值赋值给变量counter。如果线程A读取counter到工作内存后,其他线程对这个值已经做了自增操作后,那么线程A的这个值自然而然就是一个过期的值,因此,总结果必然会是小于100000的。

    如果让volatile保证原子性,必须符合以下两条规则:

    1. 运算结果并不依赖于变量的当前值,或者能够确保只有一个线程修改变量的值;
    2. 变量不需要与其他的状态变量共同参与不变约束

    3. 有序性

    synchronized

    synchronized语义表示锁在同一时刻只能由一个线程进行获取,当锁被占用后,其他线程只能等待。因此,synchronized语义就要求线程在访问读写共享变量时只能“串行”执行,因此synchronized具有有序性

    volatile

    在java内存模型中说过,为了性能优化,编译器和处理器会进行指令重排序;也就是说java程序天然的有序性可以总结为:如果在本线程内观察,所有的操作都是有序的;如果在一个线程观察另一个线程,所有的操作都是无序的。在单例模式的实现上有一种双重检验锁定的方式(Double-checked Locking)。代码如下:

    public class Singleton {
        private Singleton() { }
        private volatile static Singleton instance;
        public Singleton getInstance(){
            if(instance==null){
                synchronized (Singleton.class){
                    if(instance==null){
                        instance = new Singleton();
                    }
                }
            }
            return instance;
        }
    }
    

    这里为什么要加volatile了?我们先来分析一下不加volatile的情况,有问题的语句是这条:

    instance = new Singleton();

    这条语句实际上包含了三个操作:1.分配对象的内存空间;2.初始化对象;3.设置instance指向刚分配的内存地址。但由于存在重排序的问题,可能有以下的执行顺序:

    不加volatile可能的执行时序

    如果2和3进行了重排序的话,线程B进行判断if(instance==null)时就会为true,而实际上这个instance并没有初始化成功,显而易见对线程B来说之后的操作就会是错得。而用volatile修饰的话就可以禁止2和3操作重排序,从而避免这种情况。volatile包含禁止指令重排序的语义,其具有有序性

    4. 可见性

    可见性是指当一个线程修改了共享变量后,其他线程能够立即得知这个修改。通过之前对synchronzed内存语义进行了分析,当线程获取锁时会从主内存中获取共享变量的最新值,释放锁的时候会将共享变量同步到主内存中。从而,synchronized具有可见性。同样的在volatile分析中,会通过在指令中添加lock指令,以实现内存可见性。因此, volatile具有可见性

    5. 总结

    通过这篇文章,主要是比较了synchronized和volatile在三条性质:原子性,可见性,以及有序性的情况,归纳如下:

    synchronized: 具有原子性,有序性和可见性
    volatile:具有有序性和可见性

    参考文献

    《java并发编程的艺术》
    《深入理解java虚拟机》

    展开全文
  • 结合纯金属单原子(OA)理论和Debyu-Grtineisen模型,采用CALPHAD方法确定的晶格稳定参数,研究了SGTE纯单质数据库中fcc,h叩和bcc结构Au的原子状态、原子势能、原子动能、原子体积、体弹性模量和热膨胀系数等物理性质随...
  • 在并发编程中分析线程安全的问题时往往需要切入点,那就是两大核心:JMM抽象内存模型以及happens-before规则(在这篇文章中已经经过了),三条性质原子性,有序性和可见性。关于synchronized和volatile已经讨论过...
  • 本文利用分子动力学模拟方法,研究了CuN(N=80、140、216、312、408、500、628和736)纳米团簇在热化和冷凝过程中结构和热力学性质的变化,模型采用的是Johnson的EAM作用势.模拟结果表明:铜团簇的熔点和凝固点随其尺寸...
  • MySQL 面试题

    万次阅读 多人点赞 2019-09-02 16:03:33
    2、唯一索引:与普通索引类似,但具有唯一性约束。 3、主键索引:特殊的唯一索引,不允许有空值。 4、复合索引:将多个列组合在一起创建索引,可以覆盖多个列。 5、外键索引:只有InnoDB类型的表...
  • 在并发编程中分析线程安全的问题时往往需要切入点,那就是**两大核心**:JMM抽象内存模型以及happens-before规则(,三条性质:**原子性,有序性和可见性**。关于[synchronized]和[volatile]已经讨论过了,就想着将...
  • 采用络合沉淀法制备了纳米四方相Sn0z颗粒,并对制备机理和颗粒结构和性质进行了实验研究。结果表明,反应过程中由于加入和释放出的有机物在纳米颗粒形核时起到了空间位阻的作用,避免了颗粒的迅速长大和团聚,而且在纳米...
  • Hi~这里是橙阳说!本期内容「我问我答」核磁...核磁共振的研究对象是具有磁矩的原子核。原子核是带正电荷的粒子,其自旋运动将产生磁矩。但并不是所有同位素的原子核都有自旋运动,自旋量子数I =0的原子核没有自旋...
  • 通过基于非平衡格林函数(NEGF)方法进行第一性原理计算,研究了夹在两个Z形石墨烯-纳米碳(zGNR)电极之间的单碳原子链(SCAC)的自旋依赖性电子传输性质。自旋密度泛函理论(DFT)。 我们的计算结果表明,将具有不...
  • 采用基于密度泛函理论(DFT)的第一性原理方法研究了掺钴氧化锌稀磁半导体中氢原子结构稳定性和振动性质。给出了氢各种可能存在的位置,并分析了其稳态及...基于氢原子具有轻的质量,在振动频率计算中考虑了非谐项的影响。
  • 事务是指对系统进行的一组操作,为了保证系统的完整性,事务需要具有ACID特性,具体如下: 1. 原子性(Atomic)  一个事务包含多个操作,这些操作要么全部执行,要么全都不执行。实现事务的原子性,要支持回滚...
  • 采用密度泛函理论(DFT)方法系统研究了碱金属Li原子吸附亚苯基-1,2-亚乙烯基(Phenylenevinylene)聚合物(PPV)及其衍生物(具有给受体基团修饰的)体系的结构和非线性光学性质.Li原子能稳定地吸附在PPV及其衍生物的表面,...
  • 离散数学学习笔记【第三篇】

    千次阅读 多人点赞 2019-06-14 23:07:32
    5-2 运算及其性质 5-3 半群 5-4 群与子群 5-5 阿贝尔群和循环群 *5-6 置换群与伯恩赛德定理 5-7 陪集与拉格朗日定理 5-8 同态与同构 5-9 环与域 第六章 格和布尔代数 6-1 格的概念 6-2 分配格 6-3 有补格 6-4 布尔...
  • 量子性质预测 几何优化 分子动力学 ... 关于文件/文件夹的注意事项 包含SMILES字符串的文件(由OEChem规范化) gdb17-zinc-comm.can :由gdb17和zinc共享的SMILES串氨 gdb17.can :gdb17独有的微笑字符串 zinc.can ...
  • 【数据库学习】数据库总结

    万次阅读 多人点赞 2018-07-26 13:26:41
    2)范式 各个范式联系: 5NF⊂4NF⊂BCNF⊂3NF⊂2NF⊂1NF ①1NF(满足最低要求的范式:字段不可再分,原子性) 如果一个关系模式R的所有属性都是不可分的基本数据项,则R∈1NF。 自我理解1NF就是无重复的列。 如:...
  • 数据库面试题

    千次阅读 多人点赞 2018-05-24 10:46:20
    原子性:原子性。即不可分割性,事务要么全部被执行,要么就全部不被执行。   一致性:事务的执行使得数据库从一种正确状态转换成另一种正确状态   隔离性:在事务正确提交之前,不允许把该事务对数据的任何...
  • 本文介绍了具有各种特征的杂质原子纳米簇的硅的独特功能。 结果表明,根据团簇的性质,有可能扩大对IR区域... 在半导体材料的晶格中形成具有不同性质和浓度的杂质原子簇是获得具有独特物理性质的体纳米结构硅的新方法。
  • 《数据库原理》— 数据库系统概论第五版习题解析

    万次阅读 多人点赞 2017-05-29 14:57:48
    实体型:具有相同属性的实体具有相同的特征和性质,用实体名及其属性名集合来抽象和刻画同类实体,称为实体型。实体集:同型实体的集合称为实体集;实体之间的联系:通常是指不同实体型的实体集之间的联系,实体之间...
  • 新人大礼包,30G Java架构资料,免费领取 1. 三大性质简介 在并发编程中分析线程安全的问题时往往需要切入点,那... ,三条性质原子性,有序性和可见性。关于synchronized和volatile已经讨论过了,就想着将并发...
  • 多线程面试题(值得收藏)

    万次阅读 多人点赞 2019-08-16 09:41:18
    史上最强多线程面试47题(含...原子性指的是一个或者多个操作,要么全部执行并且在执行的过程中不被其他操作打断,要么就全部都不执行。 2)可见性 可见性指多个线程操作一个共享变量时,其中一个线程对变量进行修...
  • 使用基于第一性原理的密度泛函理论(DFT)对X@Al12:(X=Al-,C,Si,P+)等幻数团簇吸附氮原子和碳原子性质进行研究.分析氮原子和碳原子在X@Al12表面的吸附位置,还分析了Al-N和 Al-C键长,最高占据分子轨道与最低未...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 18,605
精华内容 7,442
关键字:

原子具有的性质是