精华内容
下载资源
问答
  • MPEG-2运动图像压缩编码国际标准及MPEG的新进展,数字电视相关资料
  • 新一代视频压缩编码标准H.264(毕厚杰) ...关键词: 视频信号---频率压缩---图象编码---国际标准视频信号频率压缩图象编码 语种: Chinese 汉语 分类: 中图分类:TN941.1-65 载体形态: 287页 版本说明: 2版
  • MPEG-2运动图像压缩编码国际标准及MPEG的新进展 讲解MPEG2标准的本书,分为系统,音频和视频部分
  • 对学音视频编解码的同学很帮助。MPEG-2的标准,清华出版的经典书籍。
  • 讲座 关于图像压缩的算法 及其国际标准 Summarization of Image Compression Algorithms and the International Standards 一图像压缩的意义 二图象压缩的指标 三图像压缩的途径 四图像压缩算法综述 五图像编码标准 ...
  • 文章介绍了目前流行的静态、动态图像压缩编码标准.
  • 运动图像国际压缩标准-整理

    千次阅读 2020-05-29 21:06:34
    1. H.261,H.263,H.264压缩标准原理,框图,特点,应用 2. MPEG-1,MPEG-2,MPEG-4压缩标准原理,框图,特点,应用 3. H.264与MPEG-2两种压缩标准的区别与应用 1. H.261,H.263,H.264压缩标准原理,框图,特点,应用 ...

    1. H.261,H.263,H.264压缩标准原理,框图,特点,应用
    2. MPEG-1,MPEG-2,MPEG-4压缩标准原理,框图,特点,应用
    3. H.264与MPEG-2两种压缩标准的区别与应用

    1. H.261,H.263,H.264压缩标准原理,框图,特点,应用

    1.1 H.261

    1.1.1 介绍

    数字电视会议格式。
    解决不同厂商间的产品兼容性问题,推动电视会议系统的发展。

    1.1.2 原理

    在帧间编码时采用了基于 16x16的宏块和整像素精度的运动估计,帧间预测来消除空域冗余,并使用了运动矢量来进行运动补偿。而在帧内编码时采用了 8x8数据块的DCT离散余弦变换来消除空域的冗余。然后对变换后的系数进行阶梯量化,之后对量化后的变换系数进行Zig-zag扫描,并进行熵编码(使用Run-Level变长编码)来消除统计冗余。这些算法有效地压缩了视频序列在时间和空间上的冗余度,使得 H.261具有较高的压缩比,适用于P*64kbit/s码率(P 取1~30)。
    H.261编码时基本的操作单位称为宏块。H.261使用YCbCr颜色空间,并采用4:2:0色度抽样,每个宏块包括16x16的亮度抽样值和两个相应的8x8的色度抽样值.
    编码程序设计的码率是能够在40kbps到2Mbps之间工作,能够对CIF和QCIF分辨率的视频进行编码,即亮度分辨率分别是352x288和176x144,色度采用4:2:0采样,分辨率分别是176x144和88x72。

    1.1.3 框图

    在这里插入图片描述在这里插入图片描述

    1.1.4 特点

    1)实际的编码算法类似于MPEG算法,但不能与后者兼容。
    2)H.261在实时编码时比MPEG所占用的CPU运算量少得多,
    为优化带宽占用量,引进了在图像质量与运动幅度之间的平衡折中机制
    剧烈运动的图像比相对静止的图像质量要差。
    3)恒定码流可变质量编码而非恒定质量可变码流编码。

    1.1.5 应用

    可以用于ISDN。综合业务数字网(Integrated Services Digital Network,ISDN)是一个数字电话网络国际标准,是一种典型的电路交换网络系统。

    1.2 H.263

    1.2.1 介绍

    用于LAN/IP网络的数字电视会议格式
    应用程序视频会议和视频电信有很广泛使用

    1.2.2 原理

    H.263 视频编码标准是专为中高质量运动图像压缩所设计的低码率图像压缩标准。H.263 采用运动视频编码中常见的编码方法,将编码过程分为帧内编码和帧间编码两个部分。帧内用改进的DCT 变换并量化,在帧间采用1/2 像素运动矢量预测补偿技术,使运动补偿更加精确,量化后适用改进的变长编码表(VLC)地量化数据进行熵编码,得到最终的编码系数。图象被编码为一个亮度信号和两个色差成分(Y,CB和CR)。
    与H.261 的p×64K 的传输码率相比,H.263的码率更低,单位码率可以小于 64K,且支持的原始图像格式更多,包括了在视频和电视信号中常见的QCIF,CIF,EDTV,ITU-R 601,ITU-R 709 等等。
    H.263的编码速度快,其设计编码延时不超过150ms;码率低,在512 K 乃至 384K 带宽下仍可得到相当满意的图像效果,十分适用于需要双向编解码并传输的场合(如:可视电话)和网络条件不是很好的场合(如:远程监控)。

    1.2.3 特点

    H.263标准在低码率下能够提供比H.261更好的图像效果,两者的区别有:
    1、H.263的运动补偿使用半像素精度,而H.261则用全像素精度和环路滤波;
    2、数据流层次结构的某些部分在H.263中是可选的,使得编解码可以配置成更低的数据率或更好的纠错能力;
    3、H.263包含四个可协商的选项以改善性能;
    4、H.263采用无限制的运动向量以及基于语法的算术编码;
    5、采用事先预测和与MPEG中的P-B帧一样的帧预测方法;
    6、H.263支持5种分辨率,即除了支持H.261中所支持的QCIF和CIF外,还支持SQCIF、4CIF和16CIF,SQCIF相当于QCIF一半的分辨率,而4CIF和16CIF分别为CIF的4倍和16倍。

    1.2.4 应用

    桌面环境或室内环境下的会议系统通过Internet或电话线路实现的视频通信电子监视和操作运程医疗(在运程进行医学咨询和诊断)基于计算机的培训与教育在每种应用中,视频信息(也许与音频信息一块儿)被通过电信通讯联接传输,包括网络,电话线路,ISDN和广播的形式。视频有宽频的特征(比如说每秒很多字节)这些,这些应用就需要对视频进行压缩或是进行编码来在传输之前降低带宽值。

    1.3 H.264

    1.3.1 介绍

    高度压缩数字视频编解码器标准

    1.3.2 原理

    H.264的基本编码框架类似于H.261的编码框架,其中预测、变换、量化、熵编码等模块没有发生根本变化,但在每一个功能模块中都引入了新的技术,实现更高的压缩性能。算法结构上采用分层处理以适应不同的传输环境,提高传输效率。
    包含3个档次:
    基本:面向复杂度低、传输延迟小的应用对象
    主要:面向运动特性复杂、快速、传输延迟大的应用对象
    扩展:面向应用要求更高的对象
    主要技术:
    (1) 多帧多模式运动预测
    可以从当前帧的前几帧中选择一帧作为参考帧对宏块运动预测。
    将图像分成1组1616的亮度宏块和两组88的色度宏块,对16x16宏块分解为4种子块,8*8宏块子分解为4种子块。
    在这里插入图片描述
    多种宏块尺可以更灵活得与图像中物体的运动特性相匹配。尺寸大适用于变化小或平滑区域,尺寸小适用于变化大或细节较多区域。
    (2) 整数变换
    可分离整数变换,一方面计算比较简单(加法和位移),另一方面,整数变换的反变换还是整数变换,避免舍入误差。
    (3) 熵编码
    支持两种,上下文适应变长编码(CAVLC),上下文适应二值算术编码(CABAC)。CABAC编码性能好,但计算复杂度高。
    (4) 自适应环内消块效应滤波器
    消除基于块的编码导致的块状失真

    1.3.3 特点

    1.更高的编码效率:同H.263等标准的特率效率相比,能够平均节省大于50%的码率。
    2.高质量的视频画面:H.264能够在低码率情况下提供高质量的视频图像,在较低带宽上提供高质量的图像传输是H.264的应用亮点。
    3.提高网络适应能力:H.264可以工作在实时通信应用(如视频会议)低延时模式下,也可以工作在没有延时的视频存储或视频流服务器中。
    4.H.264的编码选项较少:在H.263中编码时往往需要设置相当多选项,增加了编码的难度,而H.264做到了力求简洁的“回归基本”,降低了编码时复杂度。
    5.H.264可以应用在不同场合:H.264可以根据不同的环境使用不同的传输和播放速率,并且提供了丰富的错误处理工具,可以很好的控制或消除丢包和误码。
    6.错误恢复功能:H.264提供了解决网络传输包丢失的问题的工具,适用于在高误码率传输的无线网络中传输视频数据。
    7.较高的复杂度:H.264性能的改进是以增加复杂性为代价而获得的。据估计,H.264编码的计算复杂度大约相当于H.263的3倍,解码复杂度大约相当于H.263的2倍。

    1.3.4 应用

    H.264能工作在低延时模式以适应实时通信的应用(如视频会议),同时又能很好地工作在没有延时限制的应用,如视频存储和以服务器为基础的视频流式应用。H.264提供包传输网中处理包丢失所需的工具,以及在易误码的无线网中处理比特误码的工具。

    2. MPEG-1,MPEG-2,MPEG-4压缩标准原理,框图,特点,应用

    2.1 MPEG-1

    2.1.1介绍

    数字运动视频压缩格式(低端娱乐视频和多媒体)
    MPEG-1是MPEG组织制定的第一个视频和音频有损压缩标准。

    2.1.2 原理

    使用的有关压缩编码技术与H.261基本相同。
    逐行扫描图像,H.261中为隔行扫描。
    将序列图像分成3种类型编码,I,B,P,多帧联合编码,压缩率达50:1~200:1。
    非对称,进行压缩的计算复杂度(硬件)比解压大很多,适用于信号从一个源产生,但需要分配给许多接收者。

    2.1.3 特点

    随机访问,灵活的帧率、可变的图像尺寸、定义了I-帧、P-帧和B-帧 、运动补偿可跨越多个帧 、半像素精度的运动向量 、量化矩阵、GOF结构 、slice结构 、技术细节、输入视频格式。

    2.1.4 应用

    主要用于数字媒体上压缩视频数据的存储和提取,在CD-ROM光盘视频(VCD)中得到广泛使用

    2.2 MPEG-2

    2.2.1 介绍

    数字运动视频压缩格式(高端分辨率)
    它的正式名称为“基于数字存储媒体运动图像和语音的压缩标准”。与MPEG-1标准相比,MPEG-2标准具有更高的图像质量、更多的图像格式和传输码率的图像压缩标准。MPEG-2标准不是MPEG-1的简单升级,而是在传输和系统方面做了更加详细的规定和进一步的完善。它是针对标准数字电视和高清晰电视在各种应用下的压缩方案,传输速率在3 Mbit/s~10 Mbit/s之间。

    2.2.2 原理

    不同档次:
    在这里插入图片描述
    利用了图像中的两种特性:空间相关性和时间相关性。
    可以用于电视播放,支持隔行扫描
    使用的有关压缩编码技术与H.261基本相同。
    主要用于场景变化很快的情况,规定每过15帧图编一次帧

    2.2.3 特点

    支持图像分辨率高,可用相对较少的存储空间来存储视、音频信息,并能较好的恢复。支持包括高速运动在内的活动图像。

    2.2.4 应用

    MPEG-2标准特别适用于广播质量的数字电视的编码和传送,被用于无线数字电视、DVB(Digital Video Broadcasting,数字视频广播)、数字卫星电视、DVD(Digital Video Disk,数字化视频光盘)等技术中。

    2.3 MPEG-4

    2.3.1 介绍

    稳健的运动视频低码率压缩格式
    MPEG-4与MPEG-1和MPEG-2有很大的不同。MPEG-4不只是具体压缩算法,它是针对数字电视、交互式绘图应用(影音合成内容)、交互式多媒体(WWW、资料撷取与分散)等整合及压缩技术的需求而制定的国际标准。
    MPEG-4标准将众多多媒体应用集成于一个完整框架内,旨在为多媒体通信及应用环境提供标准算法及工具,从而建立起一种能被多媒体传输、存储、检索等应用领域普遍采用的统一数据格式。

    2.3.2 原理

    MPEG-4的编码理念是:MPEG-4标准同以前标准的最显著的差别在于它是采用基于对象的编码理念,即在编码时将一幅景物分成若干在时间和空间上相互联系的视频音频对象,分别编码后,再经过复用传输到接收端,然后再对不同的对象分别解码,从而组合成所需要的视频和音频。这样既方便我们对不同的对象采用不同的编码方法和表示方法,又有利于不同数据类型间的融合,并且这样也可以方便的实现对于各种对象的操作及编辑。
    MPEG-4包含了MPEG-1及MPEG-2的绝大部分功能及其他格式的长处,并加入及扩充对虚拟现实模型语言(VRML,Virtual Reality Modeling Language)的支持,面向对象的合成文件(包括音效,视频及VRML对象),以及数字版权管理(DRM)及其他交互功能。而MPEG-4比MPEG-2更先进的其中一个特点,就是不再使用宏区块做视频分析,而是以视频上个体为变化记录,因此尽管视频变化速度很快、码率不足时,也不会出现方块画面。

    2.3.3 特点

    1.提供了基于内容的多媒体数据访问工具,如索引、超级链接、上下载、删除等。
    2.更高的编码效率
    3.提供了易出错环境的鲁棒性,来保证其在许多无线和有线网络以及存储介质中的应用
    4.引入视觉对象目标(分层目标区域)的概念

    2.3.4应用

    因特网视音频广播,无线通信,静止图像压缩,电视电话,计算机图形动画与仿真,电子游戏

    3. H.264与MPEG-2两种压缩标准的区别与应用

    H.264的压缩率为MPEG-2的2倍以上(3M的MPEG-2质量相当于1.4M的H.264的图像质量)。
    H.264与MPEG-2的不同还存在于纠错编码块中,H.264的纠错编码为内容自适应可变长度码(CAVLC)和内容自适应二进制算法编码(CABAC),能提高纠错能力。而MPEG-2为霍夫曼编码。
    H.264还加入了MPEG-2没有的环路滤波器,有降低噪声的效果。H.264的整数变换以4×4像素块为单位,已比原来的8×8像素块的块噪声少,画质得到了进一步提高。

    H.264与MPEG-2的主要技术对比如下表所述:
    在这里插入图片描述
    带宽的占用
    MPEG-2协议
    1.8.192Mbit/s:分辨力为720×576,每秒25帧,图像清晰,色彩鲜明,画面逼真,层次感强,图像剧烈运动时马赛克效应不可察觉(在一般会议室环境照度下),为数字地面广播级图像。
    2.6.144Mbit/s:分辨力为720×576,每秒25帧,图像清晰,色彩较鲜明,画面逼真,层次感较强,图像剧烈运动时马赛克效应偶可察觉(在一般会议室环境照度下)。
    3.4.096Mbit/s:分辨力为720×576,每秒25帧,图像清晰度和色彩鲜明度较以上两种速率略有下降,画面较逼真,层次感一般,图像剧烈运动时马赛克效应刚可察觉(在一般会议室环境照度下)。
    4.在2M以下的带宽下基本不可用。
    上面的结论就是:如果要达到比较好的效果,MPEG-2产品需要至少到6M。

    H.264协议
    H.264在低带宽下有了长足的进步,可以达到的效果是:256k即可基本商用,1M带宽即可达到高端商用客户需求,2M带宽可以达到支持动态4CIF图像效果,和MPEG-2协议8M带宽效果相当。

    展开全文
  • 数据压缩编码国际标准--MPEG-4及其校验模型 很好的MPEG4学习资料
  • 目前视频流传输中最为重要的编解码标准国际电联的H.261、H.263,运动静止图像专家组的M-JPEG和国际标准化组织运动图像专家组的MPEG系列标准,此外在互联网上被广泛应用的还有Real-Networks的RealVideo、微软公司的...
  • 图像的信息量和信息冗余 编码技术 静止图像压缩编码标准(JPEG) MPEG
  • 目前视频流传输中最为重要的编解码标准国际电联的H.261、H.263,运动静止图像专家组的M-JPEG和国际标准化组织运动图像专家组的MPEG系列标准,此外在互联网上被广泛应用的还有Real-Networks的RealVideo、微软公司的...
  • 数字图像处理——图像编码PPT,详细讲解:预测编码、统计编码、变换编码、位平面编码、静止图像压缩编码实例、图像压缩的国际标准简介
  • 它不仅重点论述了 H.264,而且首先介绍了数字视 频和视频编码的基础知识,介绍了已若干视频编码国际标准(特别是 MPEG-4) ,以便为 进一步学习 H.264 打下良好的基础。 全书共 9 章,在 H.264部分(第 6~9 章)...
  • jbig2二值图像压缩算法实现,C++实现,jbig2是二值图像压缩效果效率平衡最佳的国际标准
  • 科学出版社 / 2000-10-1 / 钟玉啄 王琪 贺玉文 经典的MPEG4方面的书籍,
  • 图像变换是图像处理的基础, 是图像压缩的第一步b在图像压缩中, D CT 变换因其变换效果好而被广泛采用,成为目前最常用的图像压缩变换方法, 而W alsh 变换还未被广泛采用b通过对这两种变换的算法分析以及M at lab 仿真...
  • 该版本为胡栋主编的静止图像编码的基本方法与国际标准的扫描版
  • H264视频压缩编码标准(一)

    万次阅读 2016-06-01 15:38:43
    1. H.264/AVC编码器: 1)H264 编码器特点: H264并不明确地规定一个编码器如何实现,而是规定了一个编码的视频比特流的句法,和该比特流的解码方法,各个厂家的编码器和解码器在此框架下应能够互通,在实现上具有较...

    1. H.264/AVC编码器:

    1)H264 编码器特点:

    H264并不明确地规定一个编码器如何实现,而是规定了一个编码的视频比特流的句法,和该比特流的解码方法,各个厂家的编码器和解码器在此框架下应能够互通,在实现上具有较大灵活性,而且有利于相互竞争。

    2)编码器:

    a)编码器采用的仍是变换和预测的混合编码法。输入的帧或场Fn以宏块单位被编码器处理。首先,按帧内或帧间预测编码的方法进行处理。

    b)如果采用帧内预测编码,其预测值PRED(图中用P表示)是由当前片中前面已编码的参考图像经运动补偿(MC)后得出,其中参考图像用F'n-1表示。为了提高预测精度,从而提高压缩比,实际的参考图像可在过去或未来(指显示次序上)已编码解码重建和滤波的帧中进行选择。

    c)预测值PRED和当前块相减后,产生一个残差块Dn,经块变换、量化后产生一组量化后的变换系数,再经熵编码,与解码所需的一些变信息(如预测模式量化参数、运动矢量等)一起组成一个压缩后的码流。

    d)正如上述,为了提高进一步预测用的参考图像,编码器必须有重建图像的功能。因此必须使残差图像经反量化、反变换后得到的Dn'与预测P相加,得到uFn’(未经滤波的帧)。为了去除编码解码环路中产生的噪声,为了提高参考帧的图像质量,从而提高压缩图像性能,设置了一个环路滤波器,滤波后的输出Fn'即重建图像可用作参考图像。


    图1H.264编码器


    3)H264解码器:
    a)由图1可知,由编码器的NAL输出一个压缩后的H264压缩比特流。由图2,经熵解码得到量化后的一组变换系数X,再经反量化、反变换、得到残差Dn’。利用从该比特流中解码出的头信息,解码器就产生一个预测块PRED,它和编码器中的原始PRED是相同的。当该解码器产生的PRED与残差Dn’相加后,就产生uFu’,在经滤波后,最后就得到滤波后的Fn’,这个Fn’就是最后的解码输出图像。


    图2H.264解码器


    2. H.264/AVC的结构:

    1)名词解释

    a) 场和帧

       视频的一场或一帧可用来产生一个编码图像。在电视中,为减少大面积闪烁现象,把一帧分成两个隔行的场。

    b)宏块、片 一个编码图像通常划分成若干宏块组成,一个宏块由一个16×16亮度像素和附加的一个8×8Cb和一个8×8Cr彩色像素块组成。每个图象中,若干宏块被排列成片的形式。
    –I片只包含I宏块,P片可包含P和I宏块,而B片可包含B和I宏块。
    –I宏块利用从当前片中已解码的像素作为参考进行帧内预测。
    –P宏块利用前面已编码图象作为参考图象进行帧内预测,
    –一个帧内编码的宏块可进一步作宏块的分割:即16×16、16×8、8×16或8×8亮度像素块(以及附带的彩色像素);如果选了8×8的子宏块,则可再分成各种子宏块的分割,其尺寸为8×8、8×4、4×8或4×4亮度像素块(以及附带的彩色像素)。
    –B宏块则利用双向的参考图象(当前和未来的已编码图象帧)进行帧内预测。。

    2)档次和级

    –H.264规定了三种档次,每个档次支持一组特定的编码功能,并支持一类特定的应用。
    –1)基本档次:利用I片和P片支持帧内和帧间编码,支持利用基于上下文的自适应的变长编码进行的熵编码(CAVLC)。主要用于可视电话、会议电视、无线通信等实时视频通信
    –2)主要档次:支持隔行视频,采用B片的帧间编码和采用加权预测的帧内编码;支持利用基于上下文的自适应的算术编码(CABAC)。主要用于数字广播电视与数字视频存储
    –3)扩展档次:支持码流之间有效的切换(SP和SI片)、改进误码性能(数据分割),但不支持隔行视频和CABAC。主要用于网络的视频流,如视频点播
    –图3为H.264各个档次具有的不同功能,可见扩展档次包括了基本档次的所有功能,而不能包括主要档次的。每一档次设置不同参数(如取样速率、图像尺寸、编码比特率等),得到编解码器性能不同的级。

    图3H.264档次

    3)编码数据格式

         –H.264支持4:2:0的逐行或隔行视频的编码和解码。

    4)参考图像 

    可从一组前面或后面已编码图像中选出一个或两个与当前最匹配的图像作为帧间编码间的参数图像,
    H.264中最多可从15个参考图像中进行选择,选出最佳的匹配图像。
    对于P片中帧间编码宏块可从表0中选择参数图像;对于B片中的帧间编码宏块和宏块分割的预测,可从表01中选择参考图像。

    5)片和片组  

    一个视频图像可编码成一个或更多个片,每片包含整数个宏块(MB),即每片至少一个MB,最多时每片包含整个图像的宏块。
    设片的目的是为了限制误码的扩散和传输,使编码片相互间是独立的。某片的预测不能以其它片中的宏块为参考图像,这样某一片中的预测误差才不会传播到其它片中去。
    编码片共有5种不同类型,I片、P片、B片外,还有SP片和SI片。其中SP(切换P)是用于不同编码流之间的切换。

    片的句法结构

    片组

       片组是一个编码图象中若干MB的一个子集,它可包含一个或若干个片。

    –在一个片组中,每片的MB按光栅扫描次序被编码,如果每幅图象仅取一个片组,则该图象中所有的MB均按光栅扫描次序被编码。
    –还有一种片组,叫灵活宏块次序(FMO),它可用灵活的方法,把编码MB序列映射到解码图象中MB的分配用MB到片组之间的映射来确定,它表示每一个MB属于哪个片组。表1为MB到片组的各种映射类型。

    表1MB到片组的映射




    展开全文
  • 结果 产生了数字视频图像压缩编码国际标准和中国的AVS编解码技术及其主要应用。结论 随着计算机技术和编码技术的发展,必将越来越多的新技术在保证数字视频质量的前提下而使码流减小,冗余度降低。单位频带内...
  • 科学出版社 / 2000-10-1 / 钟玉啄 王琪 贺玉文 经典的MPEG4方面的书籍,
  • 频和视频编码的基础知识,介绍了已若干视频编码国际标准(特别是 MPEG-4) ,以便为 进一步学习 H.264 打下良好的基础。 全书共 9 章,在 H.264 部分(第 6~9 章)详尽地论述了 H.264 特点、编码器原理、解码 器原理、编...
  • 图像压缩编码原理

    千次阅读 2018-01-10 17:23:12
    为什么要进行图像压缩编码? 1) 在数字分量编码中,按照4:2:2格式对电视信号进行取样、量化、编码后,数据率达27MW/S。 2) 在数字高清晰度电视格式中,取样、量化、编码后的数据率会更大。 3) 电视信号...

    一. 为什么要进行图像压缩编码?

    1) 在数字分量编码中,按照4:2:2格式对电视信号进行取样、量化、编码后,数据率达27MW/S。
    2) 在数字高清晰度电视格式中,取样、量化、编码后的数据率会更大。
    3) 电视信号经过数字编码后,数据量极大,给数字电视信号的存储和传输带来了巨大挑战。
    4) 虽然CCIR601建议早在1980年已经制定,但直到九十年代一系列有效的图像数码压缩技术及相应的国际标准出现以后,数字电视才得到了迅速的发展。
    二. 图像压缩方法的应用
    1)几乎所有涉及数字图像存储和传输的应用中,都需要进行数据压缩。
    2)图像的压缩方法可以分为两类:
              无损压缩,在图像无任何失真的前提下使数据率达到最小,这种方式是可逆的。
              有损压缩,在给定的失真度下使数据率达到最小,这种方式是不可逆的。
    3) 在数字电视的信源压缩编码中,由于要求的压缩率较高,普遍采用有损压缩的方法。
    三. 图像信号压缩的机理
    1) 利用图像中存在的大量冗余度可供压缩。
    2) 利用人眼的视觉特性。
    四. 图像信号的空间冗余度
    1)  空间冗余度 ,一幅视频图像相邻各点的取值往往相近或相同,具有空间相关性,这就是空间冗余度
    2) 图像的空间相关性表示相邻象素点取值变化缓慢。从频域看,意味着图像信号的能量主要集中在低频附近,高频信号的能量随频率的增加而迅速衰减。
    3) 视频图像中经常出现连续的象素点具有相同值的情况,典型的如彩条,彩场信号等。只传送起始象素点的值及随后取相同值的象素点的个数,也能有效地压缩码率。
    五. 图像信号的时间冗余度
    1)  时间冗余度 表现在电视画面中相继各帧对应象素点的值往往相近或相同,具有时间相关性。
    2) 在知道了一个象素点的值后,利用此象素点的值及其与后一象素点的值的差值就可求出后一象素点的值。因此,不传送象素点本身的值而传送其与前一帧对应象素点的差值,也能有效地压缩码率,这就是 差分编 码。
    3) 由差分编码进一步发展起来的预测编码,是根据一定的规则先预测出下一个象素点或图像子块的值,然后将此 预测值与实际值的差值传送给接收端。目前图像压缩中的预测编码主要用于帧间压缩编码。
    六. 图像信号的结构冗余和知识冗余度
    1) 图像从大面积看常常存在纹理结构,我们称之为 结构冗余。
    2) 人们对于许多图像的理解是根据某些已知知识,例如人脸的图像有固定结构,这些规律性的结构可由先验知识和背景知识得到,称之为 知识冗余。
    七.  图像信号的视觉冗余度
    1)  视觉冗余度 是相对于人眼的视觉特性而言的。人眼对于图像的视觉特性包括:对亮度信号比对色度信号敏感,对低频信号比对高频信号敏感,对静止图像比对运动图像敏感,以及对图像水平线条和垂直线条比对斜线敏感等。因此,包含在色度信号, 图像高频信号和运动图像中的一些数据并不能对 增加图像相对于人眼的清晰度作出贡献,而被认为是多余 的,这就是视觉冗余度
    2) 压缩视觉冗余度的核心思想是去掉那些相对人眼而言是看不到的或可有可无的图像数据。对视觉冗余度的压缩通常已反映在各种具体的压缩编码过程中。
    八.  人眼的视觉特征
    1) 亮度辨别阈值 :只有当亮度在背景基础上变化达到一定程度时,人眼才能感觉到,人眼刚刚能察觉到的亮度变化值称为亮度辨别阈值。
    2) 视觉阈值 :干扰或失真刚好可以被察觉的门限值,低于它就察觉不出来。
    3) 空间分辨力 :对一幅图像相邻像素的灰度和细节的分辨力。对于静止或缓慢变化的图像,视觉具有较高的空间分辨力;对于活动图像,空间分辨力降低。
    4) 掩盖效应 :人眼对图像中量化误差的敏感程度,与图像信号变化的剧烈程度有关。变化越剧烈,量化误差越容易被掩盖。







    展开全文
  • MPEG4视频压缩编码技术详解

    千次阅读 2019-01-18 14:20:25
    MPEG全称是Moving Pictures Experts Group,它是“动态图象专家组”的英文缩写,该专家组成立于1988年,致力于运动图像及其伴音的压缩编码标准化工作,原先他们打算开发MPEG1、 MPEG2、MPEG3和MPEG4四个版本,以适用...

    MPEG全称是Moving Pictures Experts Group,它是“动态图象专家组”的英文缩写,该专家组成立于1988年,致力于运动图像及其伴音的压缩编码标准化工作,原先他们打算开发MPEG1、 MPEG2、MPEG3和MPEG4四个版本,以适用于不同带宽和数字影像质量的要求。
    目前,MPEG1技术被广泛的应用于VCD,而MPEG2 标准则用于广播电视和DVD等。MPEG3最初是为HDTV开发的编码和压缩标准,但由于MPEG2的出色性能表现, MPEG3只能是死于襁褓了。而我们今天要谈论的主角——MPEG4于1999年初正式成为国际标准。它是一个适用于低传输速率应用的方案。与MPEG1 和MPEG2相比,MPEG4更加注重多媒体系统的交互性和灵活性。下面就让我们一起进入多彩的MPEG4世界。

    MPEG4 的技术特点

    MPEG1、MPEG2技术当初制定时,它们定位的标准均为高层媒体表示与结构,但随着计算机软件及网络技术 的快速发展,MPEG1.MPEG2技术的弊端就显示出来了:交互性及灵活性较低,压缩的多媒体文件体积过于庞大,难以实现网络的实时传播。而MPEG4 技术的标准是对运动图像中的内容进行编码,其具体的编码对象就是图像中的音频和视频,术语称为“AV对象”,而连续的AV对象组合在一起又可以形成AV场 景。因此,MPEG4标准就是围绕着AV对象的编码、存储、传输和组合而制定的,高效率地编码、组织、存储、传输AV对象是MPEG4标准的基本内容。
    在 视频编码方面,MPEG4支持对自然和合成的视觉对象的编码。(合成的视觉对象包括2D、3D动画和人面部表情动画等)。在音频编码上,MPEG4可以在 一组编码工具支持下,对语音、音乐等自然声音对象和具有回响、空间方位感的合成声音对象进行音频编码。
    由于MPEG4只处理图像帧与帧之间有差异 的元素,而舍弃相同的元素,因此大大减少了合成多媒体文件的体积。应用MPEG4技术的影音文件最显著特点就是压缩率高且成像清晰,一般来说,一小时的影 像可以被压缩为350M左右的数据,而一部高清晰度的DVD电影, 可以压缩成两张甚至一张650M CD光碟来存储。对广大的“平民”计算机用户来说, 这就意味着, 您不需要购置 DVD-ROM就可以欣赏近似DVD质量的高品质影像。而且采用MPEG4编码技术的影片,对机器硬件配置的要求非常之低,300MHZ 以上CPU,64M的内存和一个 8M显存的显卡就可以流畅的播放。在播放软件方面,它要求也非常宽松,你只需要安装一个 500K左右的 MPEG4 编码驱动后,用 WINDOWS 自带的媒体播放器就可以流畅的播放了(下面我们会具体讲到)。

    视频编码研究与MPEG标 准演进

    人类获取的信息中70%来自于视觉,视频信息在多媒体信息中占有重要地位;同时视频数据冗余度最大,经压缩处理 后的视频质量高低是决定多媒体服务质量的关键因素。因此数字视频技术是多媒体应用的核心技术,对视频编码的研究已成为信息技术领域的热门话题。

    视 频编码的研究课题主要有数据压缩比、压缩/解压速度及快速实现算法三方面内容。以压缩/解压后数据与压缩前原始数据是否完全一致作为衡量标准,可将数据压 缩划分为无失真压缩(即可逆压缩)和有失真压缩(即不可逆压缩)两类。

    传统压缩编码建立在仙农信息论基础之上的,以经典集合论为工具,用 概率统计模型来描述信源,其压缩思想基于数据统计,因此只能去除数据冗余,属于低层压缩编码的范畴。

    伴随着视频编码相关学科及新兴学科的 迅速发展,新一代数据压缩技术不断诞生并日益成熟,其编码思想由基于像素和像素块转变为基于内容 (content-based)。它突破了仙农信息论框架的束缚,充分考虑了人眼视觉特性及信源特性,通过去除内容冗余来实现数据压缩,可分为基于对象 (object-based)和基于语义(semantics-based)两种,前者属于中层压缩编码,后者属于高层压缩编码。

    与此同 时,视频编码相关标准的制定也日臻完善。视频编码标准主要由ITU-T和ISO/IEC开发。ITU-T发布的视频标准有H.261、 H.262、 H.263、 H.263+、H.263++,ISO/IEC公布的MPEG系列标准有MPEG-1、MPEG-2 、MPEG-4 和MPEG-7,并且计划公布MPEG-21。

    MPEG即Moving Picture Expert Group(运动图像专家组),它是专门从事制定多媒体视音频压缩编码标准的国际组织。MPEG系列标准已成为国际上影响最大的多媒体技术标准,其中 MPEG-1和MPEG-2是采用以仙农信息论为基础的预测编码、变换编码、熵编码及运动补偿等第一代数据压缩编码技术;MPEG-4(ISO/IEC 14496)则是基于第二代压缩编码技术制定的国际标准,它以视听媒体对象为基本单元,采用基于内容的压缩编码,以实现数字视音频、图形合成应用及交互式 多媒体的集成。MPEG系列标准对VCD、DVD等视听消费电子及数字电视和高清晰度电视(DTV&&HDTV)、多媒体通信等信息产业 的发展产生了巨大而深远的影响。

    MPEG-4视频编码核心思想及关键技术

    核心思 想

    在MPEG-4制定之前,MPEG-1、MPEG-2、H.261、H.263都是采用第一代压缩编码技术,着眼于图像信号的统计特性 来设计编码器,属于波形编码的范畴。第一代压缩编码方案把视频序列按时间先后分为一系列帧,每一帧图像又分成宏块以进行运动补偿和编码,这种编码方案存在 以下缺陷:

    · 将图像固定地分成相同大小的块,在高压缩比的情况下会出现严重的块效应,即马赛克效应; 
    · 不能对图像内容进行访问、编辑和回放等*作; 
    · 未充分利用人类视觉系统(HVS,Human Visual System)的特性。

    MPEG- 4则代表了基于模型/对象的第二代压缩编码技术,它充分利用了人眼视觉特性,抓住了图像信息传输的本质,从轮廓、纹理思路出发,支持基于视觉内容的交互功 能,这适应了多媒体信息的应用由播放型转向基于内容的访问、检索及*作的发展趋势。

    AV对象(AVO,Audio Visual Object)是MPEG-4为支持基于内容编码而提出的重要概念。对象是指在一个场景中能够访问和*纵的实体,对象的划分可根据其独特的纹理、运动、形 状、模型和高层语义为依据。在MPEG-4中所见的视音频已不再是过去MPEG-1、MPEG-2中图像帧的概念,而是一个个视听场景(AV场景),这些 不同的AV场景由不同的AV对象组成。AV对象是听觉、视觉、或者视听内容的表示单元,其基本单位是原始AV对象,它可以是自然的或合成的声音、图像。原 始AV对象具有高效编码、高效存储与传输以及可交互*作的特性,它又可进一步组成复合AV对象。因此MPEG-4标准的基本内容就是对AV对象进行高效编 码、组织、存储与传输。AV对象的提出,使多媒体通信具有高度交互及高效编码的能力,AV对象编码就是MPEG-4的核心编码技术。

    MPEG- 4不仅可提供高压缩率,同时也可实现更好的多媒体内容互动性及全方位的存取性,它采用开放的编码系统,可随时加入新的编码算法模块,同时也可根据不同应用 需求现场配置解码器,以支持多种多媒体应用。

    MPEG-4 采用了新一代视频编码技术,它在视频编码发展史上第一次把编码对象从图像帧拓展到具有实际意义的任意形状视频对象,从而实现了从基于像素的传统编码向基于 对象和内容的现代编码的转变,因而引领着新一代智能图像编码的发展潮流。

    关键技术

    MPEG-4除采用第一代视频编码的核心 技术,如变换编码、运动估计与运动补偿、量化、熵编码外,还提出了一些新的有创见性的关键技术,并在第一代视频编码技术基础上进行了卓有成效的完善和改 进。下面重点介绍其中的一些关键技术。

    A. 视频对象提取技术

    MPEG-4实现基于内容交互的首要任务就是把视频/图像 分割成不同对象或者把运动对象从背景中分离出来,然后针对不同对象采用相应编码方法,以实现高效压缩。因此视频对象提取即视频对象分割,是MPEG-4视 频编码的关键技术,也是新一代视频编码的研究热点和难点。

    视频对象分割涉及对视频内容的分析和理解,这与人工智能、图像理解、模式识别和神 经网络等学科有密切联系。目前人工智能的发展还不够完善,计算机还不具有观察、识别、理解图像的能力;同时关于计算机视觉的研究也表明要实现正确的图像分 割需要在更高层次上对视频内容进行理解。因此,尽管MPEG-4 框架已经制定,但至今仍没有通用的有效方法去根本解决视频对象分割问题,视频对象分割被认为是一个具有挑战性的难题,基于语义的分割则更加困难。

    目 前进行视频对象分割的一般步骤是:先对原始视频/图像数据进行简化以利于分割,这可通过低通滤波、中值滤波、形态滤波来完成;然后对视频/图像数据进行特 征提取,可以是颜色、纹理、运动、帧差、位移帧差乃至语义等特征;再基于某种均匀性标准来确定分割决策,根据所提取特征将视频数据归类;最后是进行相关后 处理,以实现滤除噪声及准确提取边界。

    在视频分割中基于数学形态理论的分水岭(watershed)算法被广泛使用,它又称水线算法,其 基本过程是连续腐蚀二值图像,由图像简化、标记提取、决策、后处理四个阶段构成。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到 运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感,且未利用帧间信息,通常会产生图像过度分割。

    B. VOP视频编码技术

    视 频对象平面(VOP,Video Object Plane)是视频对象(VO)在某一时刻的采样,VOP是MPEG-4视频编码的核心概念。MPEG-4在编码过程中针对不同VO采用不同的编码策略, 即对前景VO的压缩编码尽可能保留细节和平滑;对背景VO则采用高压缩率的编码策略,甚至不予传输而在解码端由其他背景拼接而成。这种基于对象的视频编码 不仅克服了第一代视频编码中高压缩率编码所产生的方块效应,而且使用户可与场景交互,从而既提高了压缩比,又实现了基于内容的交互,为视频编码提供了广阔 的发展空间。

    MPEG-4支持任意形状图像与视频的编解码。对于任意形状视频对象。对于极低比特率实时应用,如可视电话、会议电 视,MPEG-4则采用VLBV(Very Low Bit-rate Video,极低比特率视频)核进行编码。

    传统的矩形图在 MPEG-4中被看作是VO的一种特例,这正体现了传统编码与基于内容编码在MPEG-4中的统一。VO概念的引入,更加符合人脑对视觉信息的处理方式, 并使视频信号的处理方式从数字化进展到智能化,从而提高了视频信号的交互性和灵活性,使得更广泛的视频应用及更多的内容交互成为可能。因此VOP视频编码 技术被誉为视频信号处理技术从数字化进入智能化的初步探索。

    C. 视频编码可分级性技术

    随着因特网业务的巨大增长,在速 率起伏很大的IP(Internet Protocol)网络及具有不同传输特性的异构网络上进行视频传输的要求和应用越来越多。在这种背景下,视频分级编码的重要性日益突出,其应用非常广 泛,且具有很高的理论研究及实际应用价值,因此受到人们的极大关注。

    视频编码的可分级性(scalability)是指码率的可调整性,即 视频数据只压缩一次,却能以多个帧率、空间分辨率或视频质量进行解码,从而可支持多种类型用户的各种不同应用要求。

    MPEG-4通过视频 对象层(VOL,Video Object Layer)数据结构来实现分级编码。MPEG-4提供了两种基本分级工具,即时域分级(Temporal Scalability)和空域分级(Spatial Scalability),此外还支持时域和空域的混合分级。每一种分级编码都至少有两层VOL,低层称为基本层,高层称为增强层。基本层提供了视频序列 的基本信息,增强层提供了视频序列更高的分辨率和细节。

    在随后增补的视频流应用框架中,MPEG-4提出了FGS(Fine Granularity Scalable,精细可伸缩性)视频编码算法以及PFGS(Progressive Fine Granularity Scalable,渐进精细可伸缩性)视频编码算法。

    FGS编码实现简单,可在编码速率、显示分辨率、内容、解码复杂度等方面提供灵活的 自适应和可扩展性,且具有很强的带宽自适应能力和抗误码性能。但还存在编码效率低于非可扩展编码及接收端视频质量非最优两个不足。

    PFGS 则是为改善FGS编码效率而提出的视频编码算法,其基本思想是在增强层图像编码时使用前一帧重建的某个增强层图像为参考进行运动补偿,以使运动补偿更加有 效,从而提高编码效率。

    D. 运动估计与运动补偿技术

    MPEG-4采用I-VOP、P-VOP、B-VOP三种帧格式来 表征不同的运动补偿类型。它采用了H.263中的半像素搜索(half pixel searching)技术和重叠运动补偿(overlapped motion compensation)技术,同时又引入重复填充(repetitive padding)技术和修改的块(多边形)匹配(modified block (polygon)matching)技术以支持任意形状的VOP区域。

    此 外,为提高运动估计算法精度,MPEG-4采用了MVFAST(Motion Vector Field Adaptive Search Technique)和改进的PMVFAST(Predictive MVFAST)方法用于运动估计。对于全局运动估计,则采用了基于特征的快速顽健的FFRGMET(Feature-based Fast and Robust Global Motion Estimation Technique)方法。

    在MPEG-4视频编码中,运动估计相当 耗时,对编码的实时性影响很大。因此这里特别强调快速算法。运动估计方法主要有像素递归法和块匹配法两大类,前者复杂度很高,实际中应用较少,后者则在 H.263和MPEG中广泛采用。在块匹配法中,重点研究块匹配准则及搜索方法。目前有三种常用的匹配准则:

    (1)绝对误差和(SAD, Sum of Absolute Difference)准则; 
    (2)均方误差(MSE, Mean Square Error)准则; 
    (3) 归一化互相关函数(NCCF, Normalized Cross Correlation Function)准则。

    在上述三种准则 中,SAD准则具有不需乘法运算、实现简单方便的优点而使用最多,但应清楚匹配准则的选用对匹配结果影响不大。

    在选取匹配准则后就应进行 寻找最优匹配点的搜索工作。最简单、最可靠的方法是全搜索法(FS, Full Search),但计算量太大,不便于实时实现。因此快速搜索法应运而生,主要有交叉搜索法、二维对数法和钻石搜索法,其中钻石搜索法被MPEG-4校验 模型(VM, Verification Model)所采纳,下面详细介绍。

    钻石搜索(DS, Diamond Search)法以搜索模板形状而得名,具有简单、鲁棒、高效的特点,是现有性能最优的快速搜索算法之一。其基本思想是利用搜索模板的形状和大小对运动估 计算法速度及精度产生重要影响的特性。在搜索最优匹配点时,选择小的搜索模板可能会陷入局部最优,选择大的搜索模板则可能无法找到最优点。因此DS算法针 对视频图像中运动矢量的基本规律,选用了两种形状大小的搜索模板。

    · 大钻石搜索模板(LDSP, Large Diamond Search Pattern),包含9个候选位置; 
    · 小钻石搜索模板(SDSP, Small Diamond Search Pattern),包含5个候选位置。

    DS算法搜索过程如下:开始阶段先重复使用大钻石搜索模板,直到最佳匹配块落在大钻石中心。由于 LDSP步长大,因而搜索范围广,可实现粗定位,使搜索不会陷于局部最小,当粗定位结束后,可认为最优点就在LDSP 周围8 个点所围菱形区域中。然后再使用小钻石搜索模板来实现最佳匹配块的准确定位,以不产生较大起伏,从而提高运动估计精度。

    此外Sprite 视频编码技术也在MPEG-4中应用广泛,作为其核心技术之一。Sprite又称镶嵌图或背景全景图,是指一个视频对象在视频序列中所有出现部分经拼接而 成的一幅图像。利用Sprite可以直接重构该视频对象或对其进行预测补偿编码。

    Sprite视频编码可视为一种更为先进的运动估计和补 偿技术,它能够克服基于固定分块的传统运动估计和补偿技术的不足,MPEG-4正是采用了将传统分块编码技术与Sprite编码技术相结合的策略。

    MPEG4 的应用领域

    凭借着出色的性能,MPEG4技术目前在多媒体传输、多媒体存储等领域得到了广泛的应用,下面我们就来看看目 前在那些领域MPEG4技术得到了大显伸手的机会。
    1、精彩的视频世界
    精彩的视频世界是MPEG4技术应用最多也是最为广大朋友所熟悉的 的形式。目前它主要以两种形式出现,一种是DIVX-MPEG4影碟(国内市面上已出现,且D版居多),另一种是网上MPEG4电影。
    (1)、我 们先来说说DIVX-MPEG4影碟,DIVX视频编码技术实际上就是MPEG4压缩技术,它由微软MPEG4V3修改而来,使用的是MPEG4压缩算 法,并同时分离视频和音频。它的核心部分便是由DivX对DVD音视频进行压缩,生成Mpeg4视频格式文件(也就是AVI格式)。
    小提示:笔者 也是经常被朋友所问到:“我看到的MPEG4电影片段明明是avi(扩展名)格式文件,并且Windows的媒体播放器也与之关联,但就是无法播放”。其 实, MPEG4并没有确定必须用什么扩展名,它只是一种编码方法而已。使用avi作为扩展名,是一种习惯性的沿用。
    在计算机上播放MPEG4影 音文件的方法目前有两种:第一种是用诸如DivxPlayer等专门的播放软件来播放;第二种播放方法是安装MPEG4(Divx)插件后,用 Windows自带的媒体播放机来播放。
    (2)、随着网络技术的不断发展,互联网上的视频流应用也成为了近几年的热门话题。目前,在互联网上比较 流行的几种影像格式包括Quicktime、RealPlay以及微软的MediaPlayer等。MPEG4技术出现之后,互联网上又出现了MPEG4 格式的电影,不过在观看前,系统会提示你下载最新的MPEG4解码软件。
    小提示:大家平时在网上可能经常会看见ASF格式的电影,其实它也是微软 公司开发出的一种可以直接在网上观看视频节目的压缩格式。使用的也是MPEG4的压缩算法,但因为它是以网上即时观看电影的视频流格式存在的,所以它的图 像质量相对要差一些。
    2、低比特率下的多媒体通信,
    目前,MPEG4技术已经广泛的应用在如视频电话、视频电子邮件、移动通信、电子新闻 等多媒体通信领域。由于这些应用对传输速率要求较低,一般在4.8~64kbit/s之间,分辨率为176×144左右。因此MPEG4技术完全可以充分 的利用网络带宽,通过帧重建技术压缩和传输数据,以最少的数据量获得最佳的图像质量。
    3、实时多媒体监控。
    多媒体监控领域原来一直是 MPEG1技术担当重任,但近些年来,它们也是“城头变换大王旗”了。由于MPEG4压缩技术原本是一种适用在低带宽下进行信息交换的音视频处理技术,它 的特点是可以动态的侦测图像各个区域变化,基于对象的调整压缩方法可以获得比MPEG1更大的压缩比,使压缩码流更低。因此,尽管MPEG4技术一开始并 不是专为视频监控压缩领域而开发的,但它高清晰度的视频压缩,在实时多媒体监控上,无能是存储量,传输的速率,清晰度都比MPEG1具有更大的优势。
    4、 基于内容存储和检索的多媒体系统。
    由于MPEG4在压缩方法上远远优于MPEG1技术,更是MJPEG技术所不能比拟的。 经过专家的测试表明,在相同清晰度对应MPEG1(500Kbits/sec)码流情况下, MPEG4比MPEG1节省了2/3的硬盘空间,在一般活动场景下也节省近一般的容量。因此无论是从内容存储量,还是从多媒体文件的检索速度来 说,MPEG4技术都是多媒体系统应用的不二之选。
    5、硬件产品上面的应用
    目前,MPEG4技术在硬件产品上也已开始逐步得到应用。特别 是在视频监控、播放上,这项高清晰度,高压缩的技术得到了众多硬件厂商的钟爱,而市场上支持MPEG4技术的产品也是种类繁多。下面笔者就列举一些代表性 的产品,旨在让读者了解MPEG4技术在今天应用范围之广。
    (1)、摄像机:日本夏普公司推出过应用在互联网上的数字摄像机VN-EZ1。这台网 络摄像机利用MPEG4格式,可把影像文件压缩为ASF(高级流格式),用户只要利用微软公司的MediaPlayer播放程序,就可以直接在电脑上进行 播放。
    (2)、播放机:飞利浦公司于今年八月份推出了一款支持DivX的DVD播放机DVD737。它可以支持DivX 3.11、4.xx、5.xx等MPEG4标准,而对于新标准的支持则可以通过升级固件来实现。
    (3)、数码相机:日本京瓷公司在11月中旬发售 其最新款数码相机Finecam L30,这款是采用300万像素、3倍光学变焦设计的数码相机产品, L30采用了MPEG4格式动态视频录制,可以让动态视频录制画面效果比传统数码相机更出色。
    (4)、手机:在手机领域,MPEG4技术更是得到 了广泛的应用,各大手机厂商也都推出了可拍摄MPEG4动态视频的手机型号,如西门子ST55、索尼爱立信P900/P908、LG 彩屏G8000等。
    (5)、 MPEG4数字硬盘:在今年深圳举行的安防展览会上,开发数字录像监控产品的厂家纷纷推出了他们的最新产品,而支持MPEG4的DVR压缩技术也成为改展 会上的亮点。
    如北京华青紫博科技推出的“E眼神MPEG4数字视频王”便是一款基于网络环境的高清晰数字化监控报警系统。内置多画面处理器,集现 场监控、监听、多路同时数字录像与回放等多种功能为一体。
    其实,市场上还有许多基于MPEG4技术的硬件产品,笔者这里就不一一列举了,不过笔者 相信,随着视频压缩技术的不断发展,MPEG4技术的产品会越来越多的出现在我们生活,工作中。

     

     

     

    https://blog.csdn.net/ustcxiangchun/article/details/5697475

    展开全文
  • 本书取材新颖、内容全面,重点论述了H.264,还介绍了已的若干视频编码国际标准。本书可作为高等院校通信、广播电视专业本科生教材或教学参考书,也可供该领域的硕士生、博士生深入研究用,还可作为视频技术、...
  • 视频编码压缩的类型: 1.无损压缩 无损压缩利用数据的统计冗余(数据之间的相关性和可...有损压缩主要压缩措施是量化处理,合并和丢弃一些不重要的信息,在实际编码中,往往是有损压缩和无损压缩的综合使用,...
  • 上一篇主要讲了H.264,接下来我们看一下其他编解码标准。 参看:目前主流的几种数字视频压缩编解码标准 ... 联合图片专家组(JPEG,Joint Photographic Experts Group)是作为国际标准化组织(ISO)...
  • WAV格式中常见的压缩编码

    千次阅读 2016-07-29 10:07:20
    WAV格式中常见的压缩编码(compression code)WAV为微软公司(Microsoft)开发的一种声音文件格式,它符合RIFF(Resource Interchange File Format)文件规范,用于保存Windows平台的音频信息资源,被Windows平台及其应用...
  • 图像压缩解压JPEG编码

    2013-12-19 16:40:30
    JPEG是用于灰度图与真彩图的静态图像压缩国际标准,它采用的是以DCT(Discrete Cosine Transform,离散余弦变换)为基础的有损压缩算法。因为视频的帧内编码就是静态图像编码,所以JPEG的编码算法也用于MPEG视频...
  • H.264压缩编码算法介绍

    千次阅读 2016-09-23 11:32:46
    在这里我总结了许多博客专家对H.264压缩编码算法的理解,得出了我个人的一些见解。现在本人正在研究Android视频直播这一方面的知识,只是设备是定制的Android设备,不是很正规的Android系统。所以这一套的算法放在...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 22,733
精华内容 9,093
关键字:

压缩编码国际标准主要有