精华内容
下载资源
问答
  • 游程编码matlab tu1=imread'f*jpg; %读入图像 imshow(tu1; %显示原图像 % 以下程序是将原图像转换为二值图像 tu2=tu1(1:72900; %将原始图像写成一维的数据并设为 tu2 tu2length=length(tu2; % 计算tu2的长度 for i=1...
  • 在制定数字音视频压缩编码标准的过程中,联合图像专家组(Joint Photographic Experts Group, JPEG)、动态图像专家组(Moving Pictures Experts Group,...下面介绍下数字音视频压缩编码有哪些标准。 1、MJPEG和...

    在制定数字音视频压缩编码标准的过程中,联合图像专家组(Joint Photographic Experts Group, JPEG)、动态图像专家组(Moving Pictures Experts Group, MPEG)和视频编码专家组(Video Coding ExpertGroup, VCEG)发挥了至关重要的推动作用。下面介绍下数字音视频压缩编码都有哪些标准。

     

    数字音视频压缩编码标准及H.265的编码优势

    1、MJPEG和MJPEG2000系列

    JPEG是在国际标准化组织(International Organization for Standardization, ISO)和国际电话电报咨询委员会(Consultation Committee of the International Telephone and Telegraph,CCITT)内运作的一个工作组。在视频压缩方面,JPEG先后编制了MJPEG和MJPEG2000。MJPEG是在JPEG基础发展起来的动态图像压缩技术,它只单独地对某一帧进行压缩。而基本不考虑视频流中不同帧之间的变化。使用该技术可获取清晰度很高的视频图像,而且可灵活设置每路的视频清晰度和压缩帧数。其压缩后的画面还可被任意剪接。同样格式的MJPEG视频压缩不同于帧间压缩,因为压缩比特率比较低,所以编码与解码相对比较容易,并不需要过多的运算能力,也使得软件或者芯片可以十分容易地对MJPEG进行编辑。正因为此,一些移动设备,如数码相机使用MJPEG来进行短片的编码。但其缺陷也非常明显:其一,丢帧现象严重、实时性差,在保证每路都必须是高清晰的前提下,很难完成实时压缩;其二,压缩效率低,占用存储空间较大。

    MJPEG 2000是JPEG 2000标准中的第三部分,它是在标准中第一部分的基础上对运动图像进行编解码的压缩标准。MJPEG 2000是一种针对图像序列的标准,在一个单独编解码器中同时支持无损和有损压缩。它允许一个或多个JPEG 2000压缩图像序列与声音、元数据同步后,存储为MJ2的文件格式。

     

    数字音视频压缩编码标准及H.265的编码优势

    2.MPEG系列

    MPEG-1是MPEG制定的第一个视频和音频有损压缩标准,也是最早推出及应用在市场上的MPEG技术,其原来的主要目标是在CD光盘上记录影像,后来被广泛应用在VCD光盘中。1992年年底,MPEG-1正式被批准成为国际标准。MPEG-1可针对标准图像格式(Standard Image Format,SIF)的标准分辨率(对于NTSC制式为352x240;对于PAL制式为352x288)的图像进行压缩,传输速率为1.5Mb/s,每秒播放30帧,具有CD音质,质量级别基本与家用录像系统(Video Home System,VHS)相当。MPEG-1的编码速率最高可达4~5Mb/s,但随着速率的提高,其解码后的图像质量有所降低。

    MPEG-2制定于1994年,其设计目标是提供高级工业标准的图像以及更高的传输率。它是为HDTV和DVD等制定的3~10Mb/s的运动图像及其伴音的编码标准。MPEG-2技术的主要特点包括:同时支持隔行扫描输入和逐行扫描输入;提供一个较广的范围改变压缩比,以适应不同画面质量、存储容量以及带宽的要求。MPEG-2根据视频编码技术的复杂度,将各类应用划分为不同的档次(profile)和级别(level),档次和级别的概念解决了比特流的可交换性和国际性。MPEG-2增加了可分级编码特性,允许从一个编码数据流中得到不同质量等级或不同时空分辨率的视频信号。

    MPEG-4于2000年年初正式成为国际标准。MPEG-4的设计目标就是提供低比特率下的多媒体通信。MPEG-4与之前的标准相比更适于交互AVS服务以及远程监控,更加注重多媒体系统的交互性和灵活性。MPEG-4的压缩方法可以根据应用需求选取合适的算法进行系统裁剪。

     

    数字音视频压缩编码标准及H.265的编码优势

    MPEG-7设计的目的就是解决海量的图像和声音信息与快速检索之间的矛盾。MPEG-7被称为多媒体内容描述接口,其目标就是产生一种描述多媒体内容数据的标准,满足实时、非实时以及推拉应用的需求。MPEG-7扩展了现有标识内容的专用方案及相关功能,包含了更多的多媒体数据类型。

    MPEG-21设计的目标是将不同的协议、标准和技术等有机地融合在一起,同时制定新的标准。MPEG-21致力于为多媒体传输和使用定义一个标准化的、可互操作的和高度自动化的开放框架。MPEG-21的基本框架要素包括数字项目的识别和描述、内容表示、数字项目说明、内容管理与使用、知识产权管理和保护、终端、网络和事件报告等部分。

    3.H.26x系列

    H.261是VCEG制定的一个视频编码标准,属于视频编解码器部分。H.261是第一个实用的数字视频编码标准。其设计的目的是在带宽为64Kb/s的综合业务数字网上传输质量可靠的视频信号。H.261使用了混合编码框架。H.261仅对与兼容性有关的码元语法、码元复用、解码过程等做了严格的限制性规定,而对复原图像质量指标有重要影响但不影响兼容性的部分未做限制性规定,给开发者、厂商和用户提供了很大的应用空间。

    H.263是VCEG的一个标准草案,是为低码流通信而设计的。它提供了4种可选的编码算法:无限制的运动矢量模式、先进预测模式、PB帧模式和基于语义的算术预测模式。H.263+是H.263的第二个版本。H.263+提供了12个新的可协商模式和其他功能,如高级帧内编码、去块效应滤波、参考帧选择、SNR/时域/空域可分级性等,进一步提高了压缩编码性能。H.263+允许使用更多的源格式,对于图像时钟频率也有多种选择,拓宽了应用范围;另-重要的改进是可扩展性,它允许多设置速率及多分辨率,增强了视频信息在易误码、易包异构网络环境下的传输,并且还允许在码流内加入许多附加的信息,大大方便了用户的操作。H.263C++是H.263的第三版本,H.263C++在视频流的抗误码方面增加了不少功能,增加了可逆VLC编码和基于数据分类的抗误码组合,同时扩展了参考帧选择模式;增强了抗误码系统的健壮性。

    H.26L设计目的是对多种图像信源实现低比特率、实时和低延迟的视频编码。H.26L是H.264的雏形。H.264同时也是MPEG-4中的第十部分。H.264作为新一代视频压缩算法,吸收了以往各种编码方案特别是MPEG-2和H.263C++的优点,并在语法结构、编码预测算法、数据变换输出方式等方面进行了很多改进,其性能得到了很大的提高。其编解码流程主要包括5个部分:帧间和帧内预测、变换和反交换、量化和反量化、环路滤波、熵编码。H.264具有低码流、高质量的图像、容错能力强、网络适应性强等特点。

    作为新一代视频编码标准,HEVC(H.265)仍然属于 "预测加变换"的混合编码框架。然而,相对于H.264, H.265 在很多方面有了革命性的变化。

     

    数字音视频压缩编码标准及H.265的编码优势

    灵活的编码结构

    在H.265中,将宏块的大小从H.264的16X16扩展到了64X64,以便于对高分辨率视频格式的压缩。同时,采用了更加灵活的编码结构来提高编码效率,包括编码单元、预测单元何变换单元。

    灵活的块结构—RQT

    RQT(Residual Quad-tree Transform)是一种自适应的变换技术,这种思想是对H.264/AVC中ABT(Adaptive Block-size Transform)技术的延伸和扩展。对于帧间编码来说,它允许变换块的大小根据运动补偿块的大小进行自适应的调整;对于帧内编码来说,它允许变换块的大小根据帧内预测残差的特性进行自适应地调整。

    大块的变换相对于小块的变换,一方面能够提供更好的能量集中效果,并能在量化后保存更多的图像细节,但是另一方面在量化后却会带来更多的振铃效应。 因此,根据当前块信号的特性,自适应地选择变换块大小。

     

    数字音视频压缩编码标准及H.265的编码优势

    采样点自适应偏移

    SAO(Sample Adaptive Offset)在编解码环路内,位于Deblock 之后,通过对重建图像的分类,对每一类图像像素值加减一个偏移, 达到减少失真的目的,从而提高压缩率、减少码流。采用SAO后,平均可以减少2%~6%的码流,而编码器和解码器的性能消耗仅增加了约2%。

    自适应环路滤波

    ALF(Adaptive Loop Filter)在编解码环路内,位于Deblock和SAO之后,用于恢复重建图像以达到重建图像与原始图像之间的均方差(MSE)最小。ALF 的系数是在帧级计算和传输的,可以整帧应用ALF,也可以对于基于块或基于量化树(Quadtree)的部分区域进行ALF,如果是基于部分区域的ALF,还必须传递指示区域信息的附加信息。

    并行化设计

    当前芯片架构已经从单核性能逐渐往多核并行方向发展,因此为了适应并行化程度非常高的芯片实现,HEVC/H265引入了很多并行运算的优化思路,克服了H.264的缺陷。

    (文章图片及内容来源于网络)

    展开全文
  • 音频编码有哪些

    2011-05-10 23:35:00
    在利用acm控件进行音频编码,查找编码解码时需要设定我们所要查找的音频编码器的标志,我知道speech的设置是wFormatTag := Wave_FORMAT_...那么如果是压缩成MP3格式的话,我该选什么样的编码器呢?标志是什么啊?

    在利用acm控件进行音频编码,查找编码解码时需要设定我们所要查找的音频编码器的标志,我知道speech的设置是wFormatTag := Wave_FORMAT_DSPGROUP_TRUESPEECH;那么如果是压缩成MP3格式的话,我该选什么样的编码器呢?标志是什么啊?

    展开全文
  • 但现代通信应用中常见的信源编码方式:Huffman编码、算术编码、L-Z编码,这三种都是无损编码,另外还有一些有损的编码方式。信源编码的目标就是使信源减少冗余,更加有效、经济地传输,最常见的应用形式就是压缩。...

    一.信源编码和信道编码的发展历程

    信源编码:

        最原始的信院编码就是莫尔斯电码,另外还有ASCII码和电报码都是信源编码。但现代通信应用中常见的信源编码方式有:Huffman编码、算术编码、L-Z编码,这三种都是无损编码,另外还有一些有损的编码方式。信源编码的目标就是使信源减少冗余,更加有效、经济地传输,最常见的应用形式就是压缩。

    相对地,信道编码是为了对抗信道中的噪音和衰减,通过增加冗余,如校验码等,来提高抗干扰能力以及纠错能力。

    信道编码:

    1948年Shannon极限理论

    →1950年Hamming码

    →1955年Elias卷积码

    →1960年 BCH码、RS码、PGZ译码算法

    →1962年Gallager LDPC(Low Density Parity Check,低密度奇偶校验)码

    →1965年B-M译码算法

    →1967年RRNS码、Viterbi算法

    →1972年Chase氏译码算法

    →1974年Bahl MAP算法

    →1977年IMaiBCM分组编码调制

    →1978年Wolf 格状分组码

    →1986年Padovani恒包络相位/频率编码调制

    →1987年Ungerboeck TCM格状编码调制、SiMonMTCM多重格状编码调制、WeiL.F.多维星座TCM

    →1989年Hagenauer SOVA算法

    →1990年Koch Max-Lg-MAP算法

    →1993年Berrou Turbo码

    →1994年Pyndiah 乘积码准最佳译码

    →1995年 Robertson Log-MAP算法

    →1996年 Hagenauer TurboBCH码

    →1996MACKay-Neal重新发掘出LDPC码

    →1997年 Nick Turbo Hamming码

    →1998年Tarokh 空-时卷格状码、AlaMouti空-时分组码

    →1999年删除型Turbo码

         虽然经过这些创新努力,已很接近Shannon极限,例如1997年Nickle的TurboHamming码对高斯信道传输时已与Shannon极限仅有0.27dB相差,但人们依然不会满意,因为时延、装备复杂性与可行性都是实际应用的严峻要求,而如果不考虑时延因素及复杂性本来就没有意义,因为50多年前的Shannon理论本身就已预示以接近无限的时延总容易找到一些方法逼近Shannon极限。因此,信道编码和/或编码调制理论与技术在向Shannon极限逼近的创新过程中,其难点是要同时兼顾考虑好编码及交织等处理时延、比特误码率门限要求、系统带宽、码率、编码增益、有效吞吐量、信道特征、抗衰落色散及不同类别干扰能力以及装备复杂性等要求。从而,尽管人们普遍公认Turbo码确是快速逼近Shannon极限的一种有跃变性改进的码类,但其时延、复杂性依然为其最严峻的挑战因素,看来,沿AlaMouti的STB方式是一种看好的折衷方向。同样,实际性能可比Turbo码性能更优良的LDPC码,从1962年Gallager提出, 当时并未为人们充分理解与重视,至1996年为MACKay—Neal重新发现后掀起的另一股推进其研究、应用热潮, 此又为另一明显示例。LDPC码是一类可由非常稀疏的奇偶校验矩阵或二分图(Bi-PartiteGrapg)定义的线性分组前向纠错码,它具有更简单的结构描述与硬件复杂度,可实现完全并行操作,有利高速、大吞吐能力译码,且译码复杂度亦比Turbo码低,并具更优良的基底(Floor)残余误码性能,研究表明,最好的非正则(Irregular)LDPC码,其长度为106时可获得BER=10-6时与Shannon极限仅相差0.13dB;当码长为107、码率为1/2,与Shannon极限仅差0.04dB;与Turbo码结构不同,这是由另一种途径向“Shannon极限条件”的更有效与更逼真的模拟,从而取得比Turbo码更好的性能。因此,“学习、思考、创新、发展”这一永恒主题中持续“创新”最为关键,MIMO-STC及Turbo/LDPC码的发展历程亦充分证实了这一发展哲理。

     

    二.信源编码和信道编码远离的简要介绍

    信源编码:

    一种以提高通信有效性为目的而对信源符号进行的变换;为了减少或消除信源剩余度而进行的信源符号变换。为了减少信源输出符号序列中的剩余度、提高符号的平均信息量,对信源输出的符号序列所施行的变换。具体说,就是针对信源输出符号序列的统计特性来寻找某种方法,把信源输出符号序列变换为最短的码字序列,使后者的各码元所载荷的平均信息量最大,同时又能保证无失真地恢复原来的符号序列。

      数字信号在传输中往往由于各种原因,使得在传送的数据流中产生误码,从而使接收端产生图象跳跃、不连续、出现马赛克等现象。所以通过信道编码这一环节,对数码流进行相应的处理,使系统具有一定的纠错能力和抗干扰能力,可极大地避免码流传送中误码的发生。误码的处理技术有纠错、交织、线性内插等。

      提高数据传输效率,降低误码率是信道编码的任务。信道编码的本质是增加通信的可靠性。但信道编码会使有用的信息数据传输减少,信道编码的过程是在源数据码流中加插一些码元,从而达到在接收端进行判错和纠错的目的,这就是我们常常说的开销。这就好象我们运送一批玻璃杯一样,为了保证运送途中不出现打烂玻璃杯的情况,我们通常都用一些泡沫或海棉等物将玻璃杯包装起来,这种包装使玻璃杯所占的容积变大,原来一部车能装5000各玻璃杯的,包装后就只能装4000个了,显然包装的代价使运送玻璃杯的有效个数减少了。同样,在带宽固定的信道中,总的传送码率也是固定的,由于信道编码增加了数据量,其结果只能是以降低传送有用信息码率为代价了。将有用比特数除以总比特数就等于编码效率了,不同的编码方式,其编码效率有所不同。

        基于层次树的集分割(SPIHT)信源编码方法是基于EZW而改进的算法,它是有效利用了图像小波分解后的多分辨率特性,根据重要性生成比特流的一个渐进式编码。这种编码方法,编码器能够在任意位置终止编码,因此能够精确实现一定目标速率或目标失真度。同样,对于给定的比特流,解码器可以在任意位置停止解码,而仍然能够恢复由截断的比特流编码的图像。而实现这一优越性能并不需要事先的训练和预存表或码本,也不需要任何关于图像源的先验知识。

      数字电视中常用的纠错编码,通常采用两次附加纠错码的前向纠错(FEC)编码。RS编码属于第一个FEC,188字节后附加16字节RS码,构成(204,188)RS码,这也可以称为外编码。第二个附加纠错码的FEC一般采用卷积编码,又称为内编码。外编码和内编码结合一起,称之为级联编码。级联编码后得到的数据流再按规定的调制方式对载频进行调制。  

      前向纠错码(FEC)的码字是具有一定纠错能力的码型,它在接收端解码后,不仅可以发现错误,而且能够判断错误码元所在的位置,并自动纠错。这种纠错码信息不需要储存,不需要反馈,实时性好。所以在广播系统(单向传输系统)都采用这种信道编码方式。以下是纠错码的各种类型:

     

        既然信源编码的基本目的是提高码字序列中码元的平均信息量,那么,一切旨在减少剩余度而对信源输出符号序列所施行的变换或处理,都可以在这种意义下归入信源编码的范畴,例如过滤、预测、域变换和数据压缩等。当然,这些都是广义的信源编码。  

    一般来说,减少信源输出符号序列中的剩余度、提高符号平均信息量的基本途径有两个:①使序列中的各个符号尽可能地互相独立;②使序列中各个符号的出现概率尽可能地相等。前者称为解除相关性,后者称为概率均匀化。

    第三代移动通信中的信源编码包括语音压缩编码、各类图像压缩编码及多媒体数据压缩编码。

     

    信道编码:

        数字信号在传输中往往由于各种原因,使得在传送的数据流中产生误码,从而使接收端产生图象跳跃、不连续、出现马赛克等现象。所以通过信道编码这一环节,对数码流进行相应的处理,使系统具有一定的纠错能力和抗干扰能力,可极大地避免码流传送中误码的发生。误码的处理技术有纠错、交织、线性内插等。

    提高数据传输效率,降低误码率是信道编码的任务。信道编码的本质是增加通信的可靠性。但信道编码会使有用的信息数据传输减少,信道编码的过程是在源数据码流中加插一些码元,从而达到在接收端进行判错和纠错的目的,这就是我们常常说的开销。

    码率兼容截短卷积(RCPC)信道编码,就是一类采用周期性删除比特的方法来获得高码率的卷积码,它具有以下几个特点:

    (1)截短卷积码也可以用生成矩阵表示,它是一种特殊的卷积码;

    (2)截短卷积码的限制长度与原码相同,具有与原码同等级别的纠错能力;                                            (3)截短卷积码具有原码的隐含结构,译码复杂度降低;

       (4)改变比特删除模式,可以实现变码率的编码和译码。

     

    三.信源编码和信道编码的区别

        信源编码信源编码的作用之一是设法减少码元数目和降低码元速率,即通常所说的数据压缩。码元速率将直接影响传输所占的带宽,而传输带宽又直接反映了通信的有效性。作用之二是,当信息源给出的是模拟语音信号时,信源编码器将其转换成数字信号,以实现模拟信号的数字化传输。模拟信号数字化传输的两种方式:脉冲编码调制(PCM)和增量调制(ΔM)。信源译码是信源编码的逆过程。1.脉冲编码调制(PCM)简称脉码调制:一种用一组二进制数字代码来代替连续信号的抽样值,从而实现通信的方式。由于这种通信方式抗干扰能力强,它在光纤通信、数字微波通信、卫星通信中均获得了极为广泛的应用。增量调制(ΔM):将差值编码传输,同样可传输模拟信号所含的信息。此差值又称“增量”,其值可正可负。这种用差值编码进行通信的方式,就称为“增量调制”,缩写为DM或ΔM,主要用于军方通信中。信源编码为了减少信源输出符号序列中的剩余度、提高符号的平均信息量,对信源输出的符号序列所施行的变换。具体说,就是针对信源输出符号序列的统计特性来寻找某种方法,把信源输出符号序列变换为最短的码字序列,使后者的各码元所载荷的平均信息量最大,同时又能保证无失真地恢复原来的符号序列.信道编码的目的:信道编码是为了保证信息传输的可靠性、提高传输质量而设计的一种编码。它是在信息码中增加一定数量的多余码元,使码字具有一定的抗干扰能力。信道编码的实质:信道编码的实质就是在信息码中增加一定数量的多余码元(称为监督码元),使它们满足一定的约束关系,这样由信息码元和监督码元共同组成一个由信道传输的码字。信源编码很好理解,比如你要发送一个图形,必须把这个图像转成0101的编码,这就是信源编码。

        信道编码数字信号在信道传输时,由于噪声、衰落以及人为干扰等,将会引起差错。为了减少差错,信道编码器对传输的信息码元按一定的规则加入保护成分(监督元),组成所谓“抗干扰编码”。接收端的信道译码器按一定规则进行解码,从解码过程中发现错误或纠正错误,从而提高通信系统抗干扰能力,实现可靠通信。信道编码是针对无线信道的干扰太多,把你要传送的数据加上些信息,来纠正信道的干扰。信道编码数字信号在信道传输时,由于噪声、衰落以及人为干扰等,将会引起差错。为了减少差错,信道编码器对传输的信息码元按一定的规则加入保护成分(监督元),组成所谓“抗干扰编码”。接收端的信道译码器按一定规则进行解码,从解码过程中发现错误或纠正错误,从而提高通信系统抗干扰能力,实现可靠通信。

    信源编码信号:例如语音信号(频率范围300-3400Hz)、图象信号(频率范围0-6MHz)……基带信号(基带:信号的频率从零频附近开始)。在发送端把连续消息变换成原始电信号,这种变换由信源来完成。

    信道编码信号:例如二进制信号、2PSK信号……已调信号(也叫带通信号、频带信号)。这种信号有两个基本特征:一是携带信息;二是适应在信道中传输,把基带信号变换成适合在信道中传输的信号完成这样的变换是调制器。

    信源编码是对输入信息进行编码,优化信息和压缩信息并且打成符合标准的数据包。信道编码是在数据中加入验证码,并且把加入验证码的数据进行调制。两者的作用完全不一样的。信源编码是指信号来源的编码,主要是指从那个接口进来的。信道编码是说的信号通道的编码,一般是指机内的电路。总的来说吧:信源编码是对视频, 音频, 数据进行的编码,即对信息进行编码以便处理,而信道编码是指在信息传输的过程中对信息进行的处理。

     

    四.信源编码和信道编码在现代社会的应用

    1.在现代无线通信中的应用:

        通信的任务是由一整套技术设备和传输媒介所构成的总体——通信系统来完成的。电子通信根据信道上传输信号的种类可分为模拟通信和数字通信。最简单的数字通信系统模型由信源、信道和信宿三个基本部分组成。实际的数字通信系统模型要比简单的数字通信系统模型复杂得多。数字通信系统设备多种多样,综合各种数字通信系统,其构成如图所示:

     

     

        信源编码是以提高通信有效性为目的的编码。通常通过压缩信源的冗余度来实现。采用的一般方法是压缩每个信源符号的平均比特数或信源的码率。

    信道,通俗地说是指以传输媒质为基础的信号通路。具体地说,信道是指由有线或无线电线路提供的信号通路。信道的作用是传输信号,它提供一段频带让信号通过,同时又给信号加以限制和损害。

    信道编码是以提高信息传输的可靠性为目的的编码。通常通过增加信源的冗余度来实现。采用的一般方法是增大码率或带宽。与信源编码正好相反。在计算机科学领域,信道编码(channel code)被广泛用作表示编码错误监测和纠正的术语,有时候也可以在通信和存储领域用作表示数字调制方式。信道编码用来在数据传输的时候保护数据,还可以在出现错误的时候来恢复数据。

    2.在超宽带信道中的应用

    超宽带(Ultra Wideband,以下简称UWB) [1][2]系统具有高传输速率、低功耗、低成本等独特优点,是下一代短距离无线通信系统的有力竞争者。它是指具有很高带宽比射频(带宽与中心频率之比)的无线电技术。近年来,超宽带无线通信在图像和视频传输中获得了越来越广泛的应用,它具有极高的传输速率以及很宽的传输频带,可以提供高达1Gbit/s的数据传输速率,可用在数字家庭网络或办公网络中,实现近距离、高速率数据传输。例如,利用UWB技术可以在家用电器设备之间提供高速的音频、视频业务传输,在数字办公环境中,应用UWB技术可以减少线缆布放的麻烦,提供无线高速互联。  

        联合信源信道编码(Joint Source Channel Coding,以下简称JSCC)[3][4]近几年来日益受到通信界的广泛重视,主要原因是多媒体无线通信变得更加重要。根据Shannon信息论原理,通信系统中信源编码和信道编码是分离的[5],然而,该定理假设信源编码是最优的,可以去掉所有冗余,并且假设当比特率低于信道容量时可纠正所有误码。在不限制码长的复杂性和时延的前提下,可以得到这样的系统。而在实际系统中又必须限制码长的复杂性和时延,这必然会导致性能下降,这和香农编码定理的假设是相矛盾的。因此,在许多情况下,采用独立编码技术并不能获得满意的效果,例如有严重噪声的衰落信道和(移动通信信道),采用独立编码技术不能满足要求。因此需要将信源编码和信道编码联合考虑,在实际的信道条件中获得比信源和信道单独进行编码更好的效果。其中不等差错保护是联合信源信道编码的一种, 是相对于同等差错保护而言的。在网络资源有限的情况下,同等差错保护方案使得重要信息得不到足够的保护而使解码质量严重下降。而不等差错保护根据码流的不同部分对图像重建质量的重要性不同, 而采用不同的信道保护机制, 是信源信道联合编码的一个重要应用。

    不等差错保护(Unequal Error Protection,以下简称UEP)的信源编码主要采用嵌入式信源编码,如SPIHT(Set Partitioning In Hierarchical Trees) [6],EZW,JPEG2000等,信源输出码流具有渐进特性,信道编码采用RCPC[7],RCPT等码率可变的信道编码。文章[8]中研究了在AWGN信道下的不等差错保护的性能; 文章[9]中研究了有反馈的移动信道下的多分辨率联合信源信道编码;文章[10]研究了无线信道下的图像传输,信源编码采用SPIHT,信道编码采用多码率Turbo coder的不等差错保护方案;文章[11]中研究了DS-CDMA多径衰落信道下信源编码为分层视频图像编码,信道编码采用RCPC,解决了在信源编码,信道编码以及各个层之间的码率最优分配; 文章[12]研究了3G网络下MPEG-4视频流的传输,信道编码采用 Turbo编码,提出了用TCP传输非常重要的MPEG-4流,而用UDP传输MPEG-4 audio/video ES (Elementary Streams),并且对UDP传输的码流进行UEP的方案;文章[13]研究在无线频率选择性衰落信道中将MIMO-OFDM和adaptive wavelet pretreatment(自适应小波预处理)结合在一起的联合信源信道编码图像传输。据我们的了解, 现在并无文章研究超宽带无线信道下不等差错保护方案,本文将不等差错保护联合信源信道编码应用于超宽带无线通信中, 信源部分采用基于小波SPIHT 的编码方法,而信道部分采用RCPC编码( Rate Compatible Punctured Convolutional codes) 对SPIHT输出码流按重要程度进行不等错误保护,并基于DS-UWB[14]方案提出双重不等差错保护方案, 研究了不等差错保护给图像在超宽带无线通信中的图像传输所带来性能增益。  

    采用标准LENA256×256图像进行仿真实验, 信源编码采用SPIHT算法,SPIHT 编码速率为0.5bpp, 信道编码采用码率自适应截短卷积码RCPC, 对实验图像进行同等差错保护信道编码( EEP) 和不等差错保护信道编码(UEP), 对于EEP编码采用1/ 2 码率;对于UEP 编码,其重要信息(包括头部语法及图像重要数据) 采用1/ 3码率,对图像次重要数据采用1/ 2码率进行编码,对图像非重要数据不进行编码。信道编码输出码流经过一个(Ns,1)重复编码器,对重要信息Ns取30,次重要数据Ns取20,非重要数据Ns取为10,再用一个周期为Np=Ns的伪随机DS码序列对重复编码器输出序列进行编码,最后对编码输出进行PAM调制和脉冲成形从而形成DS-UWB发送信号波形,其中脉冲参数设置为平均发射功率为-30,抽样频率为50e9,平均脉冲重复时间为2e-9,冲激响应持续时间为0.5e-9,脉冲波形形成因子为0.25e-9。DS-UWB信号经过IEEE802.15.3a CM1信道模型,接收端采用Rake接收机对接收信号进行解调,解调后的码流经过RCPC信道译码和SPIHT信源译码恢复出原始图像。

     

               CMI信道模型下Double-UEP与UEP,EEP的性能比较

    图中给出了IEEE802.15.3a CM1信道模型下双重不等差错保护(Double-UEP)与传统不等差错保护(UEP)与同等差错保护(EEP)的性能比较,其中横轴为超宽带信道中的信噪比Eb/N0,纵轴为重建图像的峰值信噪比PSNR(Peek Signal Noise Ratio)。

      由图可见,在UWB信道中,不等差错保护的性能普遍好于同等差错保护的性能,尤其是在低信噪比的时候,采用不等差错保护能够获得更大的性能增益。在高信噪比时,由于此时信道质量较好,误码率较低,图像中的重要码流基本不会产生误码,此时不等差错保护和同等差错保护性能趋于一致;而在低信噪比时,由于不等差错保护方案对图像的重要信息加入了更多的冗余,从而在不增加传输速率的情况下使图像得以更可靠的传输,提升重建图像的质量。

     

    五.信源编码与信道编码的发展前景

    信息论理论的建立,提出了信息、信息熵的概念,接着人们提出了编码定理。编码方法有较大发展,各种界限也不断有人提出,使多用户信息论的理论日趋完整,前向纠错码(FEC)的码字也在不断完善。但现有信息理论中信息对象的层次区分对产生和构成信息存在的基本要素、对象及关系区分不清,适用于复杂信息系统的理论比较少,缺乏核心的“实有信息”概念,不能很好地解释信息的创生和语义歧义问题。只有无记忆单用户信道和多用户信道中的特殊情况的编码定理已有严格的证明,其他信道也有一些结果,但尚不完善。但近几年来,第三代移动通信系统(3G)的热衷探索,促进了各种数字信号处理技术发展,而且Turbo码与其他技术的结合也不断完善信道编码方案。

    移动通信的发展日新月异,从1978年第一代模拟蜂窝通信系统诞生至今,不过20多年的时间,就已经过三代的演变,成为拥有10亿多用户的全球电信业最活跃、最具发展潜力的业务。尤其是近几年来,随着第三代移动通信系统(3G)的渐行渐近,以及各国政府、运营商和制造商等各方面为之而投入的大量人力物力,移动通信又一次地在电信业乃至全社会掀起了滚滚热潮。虽然目前由于全球电信业的低迷以及3G系统自身存在的一些问题尚未完全解决等因素,3G业务的全面推行并不象计划中的顺利,但新一代移动通信网的到来必是大势所趋。因此,人们对新的移动通信技术的研究的热情始终未减。

    移动通信的强大魅力之所在就是它能为人们提供了固话所不及的灵活、机动、高效的通信方式,非常适合信息社会发展的需要。但同时,这也使移动通信系统的研究、开发和实现比有线通信系统更复杂、更困难。实际上,移动无线信道是通信中最恶劣、最难预测的通信信道之一。由于无线电波传输不仅会随着传播距离的增加而造成能量损耗,并且会因为多径效应、多普勒频移和阴影效应等的影响而使信号快速衰落,码间干扰和信号失真严重,从而极大地影响了通信质量。为了解决这些问题,人们不断地研究和寻找多种先进的通信技术以提高移动通信的性能。特别是数字移动通信系统出现后,促进了各种数字信号处理技术如多址技术、调制技术、纠错编码、分集技术、智能天线、软件无线电等的发展。

     

    结论:

    从文中我们可以清楚的认识到信源编码和信道编码的发展布满艰辛,今天的成就来之不易。随着今天移动通信技术的不断发展和创新,信源编码与信道编码的应用也越来越广泛,其逐步的应用于各个领域,在通信系统中扮演着非常重要的角色,起到了至关重要的作用。但是,现有信息理论也存在一定的缺陷,具体表现在以下几个方面:

    1.现有信息理论体系中缺乏核心的 “实有信息”概念。

    2.适用于复杂信息系统的理论比较少。目前的狭义与广义信息论大多是起源和立足于简单系统的信息理论,即用简单通讯信息系统的方法来类比复杂系统的信息现象,将复杂性当成了简单性来处理。而涉及生命现象和人的认识论层次的信息是很复杂的对象,其中信宿主体内信息的语义歧义和信息创生问题是难点,用现有信息理论难以解释。

    3.对产生和构成信息存在的基本要素、对象及关系区分不清。如将对象的直接存在(对象的物质、能量、相互作用、功能等存在)当成信息存在;将信息的载体存在当成信息存在;将信息与载体的统一体当成信息存在;把信宿获得的“实得信息”当成唯一的信息存在,这是主观信息论。或者把信源和信道信息当成唯一的信息存在,称之为客观信息论。这二种极端的信息理论正是忽略了信息在关系中产生、在关系中存在的复杂本质。忽略了信息存在至少涉及三个以上对象及复杂关系。

    4.现有信息理论不能很好地解释信息的创生和语义歧义问题。

    5.现有信息理论对信宿实得信息的理解过于简单,没有将直接实得信息与间接实得信息区别开来。

    6.信息对象的层次区分没有得到重视。不少研究者将本体论层次的信息与认识论层次的信息混为一谈,将普适性信息范畴与具体科学,特别是技术层次(如通信、控制、计算等)的信息概念混为一谈。抓住信息的某一层次或某一方面当成信息对象的总体。

        因此,在科学技术飞速发展的今天,我们应该加强对信源编码与信道编码的了解和认识,这能让在以后的生活和学习过程中不断完善和改进现有信息论存在的缺陷,更好的应用和了解我们的专业知识,更好更快的做好自己的工作,让自己能从各方面得到满意的结果。

    常见的编码方法如下图:

    展开全文
  • 这些数据量非常庞大,通常需要经过编码压缩再进行传输,那么腾讯会议里有哪些视频编码方面的”神器”呢?本文将一一为大家揭晓。一、时域SVC在视频编码中,有三种帧类型:I帧:只能进行帧内预测,可以独立解码;P帧...

    a5666a20bd8d8a7e019ed88a4eac1a8f.gif

    作者:张清,腾讯多媒体实验室高级研究员。

    作为一款实时音视频通信产品,腾讯会议里面有海量的音视频数据需要进行实时传输,比如我们的摄像头画面,屏幕分享的数据等。这些数据量非常庞大,通常需要经过编码压缩再进行传输,那么腾讯会议里有哪些视频编码方面的”神器”呢?本文将一一为大家揭晓。

    一、时域SVC

    在视频编码中,有三种帧类型:
    • I帧:只能进行帧内预测,可以独立解码;

    • P帧:单假设参考帧,也就是通常说的前向预测帧,只能使用它之前的帧进行预测;

    • B帧:双假设参考帧, 一般为双向预测帧。

    由于B帧会带来不可避免的延迟,因此在实时通信中通常只使用I帧和P帧这两种帧类型。I帧只使用了本帧的信息进行预测,也就是说I帧的解码不依赖于其他帧,因此可以独立解码,但I帧的编码效率偏低,数据量较大。P帧使用了帧间预测方法,可以参考之前的一些解码帧信息,能达到较高的压缩效率(帧大小比I帧小很多),但是解码时必须依赖于其他帧。在实际的应用场景中,为了提升压缩效率,往往会使用IPPP的帧结构,即I帧之后编码N个P帧。但当网络情况不好时(如抖动,丢包,限速等),这种帧结构就会造成长时间的卡顿。如下图所示,第0帧为I帧,后续7个帧均为P帧,且每个P帧只有一个参考帧(为其前一帧)。当网络发生丢包时,第3帧丢失,由于第4帧参考第3帧进行压缩,因此不能正确解码,5~7帧则类似。这种情况下,即使丢包只造成个别帧的丢失,但由于接收端很多帧不能正确解码,会造成长时间的卡顿,只能通过申请I帧的机制进行恢复。0ecee4e2d1b7cfd2f396dffc6036434d.pngIPPP帧结构参考关系为了解决这一问题,我们加入了时域SVC技术,对参考帧结构进行了调整。2929d2e3fdc0414eafe5427a6a18671d.png时域SVC帧结构参考关系我们可以将视频帧分为若干层,上图以3层为例:
    • Layer0的帧只能参考同样为Layer0的帧,不能参考Layer1和Layer2的帧;

    • Layer1的帧可以参考Layer0和Layer1的帧,不能参考Layer2的帧;

    • Layer2的帧可以参考Layer0~2的帧。

    越低层级的帧被参考的可能性越大,因此重要性也越大。在网络发生丢包时,只要所丢的帧不是Layer0层,就不需要重新申请I帧,解码端就可以持续成功解码。如上图中第1帧丢失仅会影响2,3帧,其他帧不会受到影响。此外还可以结合网络层的策略,对低层级的帧多加一些保护(如FEC),降低其丢失的概率,能有效地解决卡死的问题。在参会的下行人数很多时,可能会有小部分下行网络较差,如果采用传统的IPPP结构,则当某个下行损伤时就需要不断的申请I帧来恢复,这样就会影响到其他接收端的视频体验;如果采用时域SVC的结构,在能够保证少数的下行网络存在问题时,其他的下行端不会受到影响。说了这么多,我们来看一下实际的效果吧!第一个视频示例是IPPP结构在网络损伤时的表现,卡顿感很明显;接下来是采用时域SVC的版本,帧率会有所影响但整体还算流畅。IPPP帧结构网络损伤效果时域SVC帧结构网络损伤效果

    ROI检测以及基于ROI的编码

    摄像头内容是腾讯会议中的一个主要视频场景。在此场景中,人眼往往比较关注人脸区域,对背景区域的关注度较低。因此,我们加入了人脸检测算法和基于感兴趣区域(Region of Interest, 简称ROI)的编码算法。这类算法的主要思路是:实时地检测出当前视频中的ROI区域,将其传入到编码器内部,编码器进行单帧的码率重分配。对ROI区域,增大其码率,能使该区域编码的更好,提升主观质量;对于非ROI区域,降低其码率,则总的码率不会超出目标码率。在ROI检测方面,因为腾讯会议是一个实时性要求很高的场景,对算法复杂度很敏感,我们使用一些传统的算法,结合编码器的一些预分析结果,确定最终的ROI-map,对于1080p的视频,单帧检测耗时在0.3ms以内,完全满足了实时性的要求。基于ROI的检测和码率调整算法的优点在于:在低码率的情况下,能极大地提升主观质量;在高码率的场景下,可以保持主观质量基本不变,码率节省20%~30%,以下是一些对比效果:a26bd06297ba938e4162272d3bdf1f7e.png低码率效果对比 (左)关闭ROI  (右)开启ROIa57b6f75c1e334550b484c32b4fbf700.png高码率效果对比 (左) 300kbps, 关闭ROI  (右) 210kbps, 开启ROI

    屏幕内容编码技术

    屏幕分享/白板等屏幕类内容是腾讯会议中另一类视频场景。屏幕生成的视频与摄像头采集的视频存在很大的不同:屏幕视频通常没有噪声,色调离散,线条细腻,边缘锐利;相反的,摄像机拍摄的视频通常存在噪声,色调连续且丰富,纹理比较复杂。传统的H.264和H.265编码器采用的是基于块的混合编码框架,包含预测,变换,量化以及熵编码。其中变换模块主要的目的是将残差信号从空域变换到频域,使信号能量更集中,也方便基于不同的频率分量做不同的处理,减小编码所需的比特数。但是,对屏幕分享的内容,采用基于变换的编码方法,会损失其高频细节,导致用户观看的视频变得不清晰基于上述原因,我们在H.265编码器中加入了一些有效的屏幕内容编码技术(Screen Content Coding,简称SCC),包括帧内块拷贝和调色板编码。我们在前面的介绍中也提到过,一般情况下I帧编码效率要比P帧差,主要原因是P帧可以利用时域上的信息进行预测,预测精确度往往很高,这样编码的信息量就变少了。如下图所示,第N帧与第N-1帧之间只有很少量的运动,所以用第N-1帧的信息来预测第N帧相对来说会很准确。6e8f6533ee1d95cbdd1d64e004a893de.png帧间预测示例图所谓的帧内块拷贝,是指借鉴了帧间预测的方法,在I帧中引入基于运动矢量(Motion Vector, 简称MV)的预测,提升其预测精确度,极大地提升了I帧的压缩效率。该方法之所以在屏幕类场景效果显著,是由于屏幕序列相比于摄像头采集序列有很多重复性的图案,用这个方法效果更好。f2927302078470d08613f6d66898e76d.png屏幕序列重复图案示例在屏幕内容中,像素点的选择通常集中在某一些色彩上,所以我们引入了调色板模式。该模式彻底抛弃了传统的变换编码的方法,直接依据像素点的“颜色值”生成调色板。对每个像素点,传输其在调色板中的“索引”(“index”)即可。该算法可以达到很高的编码效率提升,同时这种方法由于不使用变换,且大多数的点可以在颜色表中找到对应的项,主观质量也有明显的提升。

    YUV444编码

    在视频编码中,基本的数据格式为YUV,根据采样格式的不同可以分为YUV444, YUV422以及YUV420,这三种格式的区别见下图(O表示Y分量,X表示U/V分量):08865d727242ff42732e4c1fbe142f1a.pngYUV采样格式 (左)YUV444  (中)YUV422  (右)YUV420YUV444采样格式中Y、U、V 三个分量的比例相同,每个像素的三个分量信息完整,都是一个字节。YUV422采样格式中Y 分量和 UV 分量则按照 2 : 1 的比例采样。如图所示,水平方向有4个像素点,那么就采样4个Y分量,2个UV 分量。YUV420采样格式中,每一行扫描时只扫描一种色度分量(U 或者 V)且该色度分量与Y分量按照 2 : 1 的方式采样。如图所示,为了直观的理解,我们认为4个Y分量对应1个UV分量,因此将X放在了四个O中间。一般来说,大多数的视频类应用都采样YUV420的格式进行编码,一方面这种格式数据量较少,另一方面色度分量的重要程度明显低于亮度分量,对色度降采样后人眼主观感受降低不明显。然而,在屏幕分享场景中,相比于摄像头采集序列,U/V分量信息更丰富,下采样会严重的丢失这部分信息,且在后续的后处理等环节无法补回,所以我们加入了YUV444编码的支持。大家可以看下下面这两张图,我们人为生成了一张U/V分量信息很丰富的图片,在发送端可以看到是有色彩的,但是经过YUV420采集编码传输后,到接收端看到的却是一幅灰度图像,失真非常严重。90d8340c488f6deed8b3a8742a327048.png测试图片31621f7eca334b8af7ca25f26eee4654.pngYUV420传输效果(U/V分量严重失真)在屏幕分享场景下,有些时候可能会对色彩的保真度/还原度要求较高,如一些设计图像等,那么加入YUV444的支持就是为了在这些场景下达到不错的用户体验。下面是我们实际测试到的YUV420/YUV444编码下的对比图:2cad19888381707a375497f0c4d56bf9.png原图c5f63ff3f9f041d7c44e3722d3edd54b.pngYUV420编码图像1e4438146aea1cde8d75bc76b965f451.pngYUV444编码图像

    五、业界领先的编码器

    我们对H.264和H.265编码器进行了深度优化,一方面加入了很多快速算法,提升其编码速度;另一方面加入了一些新的编码工具集,提升其压缩效率。与业界最著名的x264开源编码器相比,我们的H.264编码器针对屏幕分享内容做了大量的优化,达到了40%以上压缩效率的提升,编码速度仅损失11%左右。我们的H.265编码器无论在屏幕分享场景还是摄像头场景,都远远优于开源的x265编码器。与x265相比,在屏幕分享场景下,压缩效率提升多达83.7%,速度提升210%;在摄像头场景下,压缩效率提升24.7%的同时速度可以提升140%左右。

    结语

    本文较为详细的介绍了一些腾讯会议中的视频编码“神器”,为了不断地提升产品体验,我们会根据不同的场景持续优化我们的编码器,增加适合的编码技术,欢迎大家咨询体验!

    38d83ac98b39be90f183add439588c54.gif

    展开全文
  • 1为什么要编码?以1080P分辨率,60fps帧率,...以20mbps的带宽传输,仅需要9秒钟,即9秒钟可以传送长度为1分钟视频,满足实时传输的要求,所以原始视频要想通过网络传输,势必要经过压缩编码。2视频编码协议有哪些?...
  • 在项目中,将报文进行压缩、加密后,最后一步必然是使用base64编码,因为base64编码的字符串,更适合不同平台、不同语言的传输; 这算法是编码, 不是压缩, 编码后只会增加字节数;(比之前多3分之一,如之前是3,...
  • 内容来源:SegmentFault 社区作者:cxuan之前的文章更多的介绍了计算机的硬件知识,会有一些难度,本篇文章的门槛会低一些,一起来看一下计算机中都有哪些压缩算法No.1认识压缩算法我们想必都有过压缩和 解压缩文件...
  • 音频编码

    2021-03-31 13:42:55
    本文章根据慕课网李超老师的音视频课程和...5 无损压缩采用的编码有哪些?哈夫曼树是什么? 6、常见的音频编码器? 7、AAC编码器? 8、ffmpeg生成aac?ffmpeg生成opus 1、为什么音频需要编码? 录制
  • AAC:MPGE-4高级音频编码 ACC:苹果设备的专属音乐格式 ACE:Ace压缩档案格式 ACT:Microsoft office助手文件 AIF,AIFF:音频互交换文件,Silicon Graphic and Macintosh应用程序的声音格式 ANI:Windows系统中的...
  • 每个HTTP请求和响应都会带相应的头部信息。... Accept-Encoding:浏览器能够处理的压缩编码 Accept-Language:浏览器当前设置的语言 Connection:浏览器与服务器之间连接的类型 Cookie:当前页面设...
  • Accept-encoding:客户端可以接受的编码方法,即压缩方法,如gzip、deflate Accept-Language:客户端可以接受的语言,如en-US、zh-Ch Cookie:告诉服务器关于 Session 的信息,存储让服务器辨识用户身份的信息。 ...
  • 常用的文件后缀都有哪些

    千次阅读 2019-07-21 06:49:39
    ACA Microsoft的代理使用的角色文档 acf 系统管理配置 acm 音频压缩管理驱动程序,为Windows系统提供各种声音格式的编码和解码功能 aif 声音文件,支持压缩,可以使用Windows Media Player和QuickTime Player播放 AIF...
  • 每个HTTP请求和响应都会带相应的头部信息。默认情况下,在发送XHR请求的...Accept-Encoding:浏览器能够处理的压缩编码 Accept-Language:浏览器当前设置的语言 Connection:浏览器与服务器之间连接的类型 C...
  • 默认情况下,在发送XHR请求的同时,还会发送下列头部信息:Accept:浏览器能够处理的内容类型Accept-Charset:浏览器能够显示的字符集Accept-Encoding:浏览器能够处理的压缩编码Accept-Language:浏览器当前设置的...
  • Accept-Encoding:浏览器能够处理的压缩编码 Accept-Language:浏览器当前设置的语言 Connection:浏览器与服务器之间连接的类型 Cookie:当前页面设置的任何Cookie Host:发出请求的页面所在的域 Referer:...
  • .acm:音频压缩管理驱动程序,为Windows系统提供各种声音格式的编码和解码功能 .aif:声音文件,支持压缩,可以使用Windows Media Player和QuickTime Player播放 .AIF:音频文件,使用Windows Media Player播放 .AIFC...
  • 今天我们就来看一下开发一套视频直播系统,所运用到的技术大概有哪些。 一个完整的直播APP开发流程: 原理:把主播录制的视频,推送到服务器,再由服务器分发给观众观看。 流程: 采集 —>处理—>编码和封装—...
  • 目前,5G时代正逐渐走向商用,带来的高带宽、低延时、连接广给直播行业带来了更为完善的发展条件。... 1、前端采集编码设备 主要是讲师端直播信号源的采集,以及音视频直播内容的编码压缩,完成...
  • 图像编码有哪些方式呢?今天就带大家看一下图像压缩的知识。 1 图像压缩 咱们先解决第一个问题,为什么要压缩?可能很多人可能并没有一个直观上的认识,举个例子,一张800X800大小的普通图片,如果未经压缩,大概...
  • 习题一1.什么是单片机,和微机相比较...5.计算机中常用的二进制编码有哪些,请分别予以叙述。6.(1)10和(-1)10的原码、反码和补码分别是多少?习题二1.单片机主要应用在什么领域?2. 89C51单片机包含哪些主要逻辑功能...
  • 每个HTTP请求和响应都会带相应的头部信息。默认情况下,在发送XHR请求的同时,还会发送下列头部信息: Accept:浏览器能够处理的内容类型 ...Accept-Encoding:浏览器能够处理的压缩编码 Accept-Languag...
  • 3、视频编码算法集合或者视频编码系统的压缩效果如何评价? 4、视频编码技术与视频编码标准二者的关系如何,技术重要还是标准重 要? 5、现有的视频编码标准体系架构如何?什么技术特点?存在哪些问题? 6、...
  • 不占内存,体积小,多线程,支持在线解压缩。同样作为ftp工具,小编所使用的另外一款软件,更受用户喜爱,那就是iis7服务器管理工具。 为什么iis7更受用户喜爱呢?IIS7服务器管理工具中的ftp功能支持批量操作,更...
  • 关于霍夫曼编码的算法,网上有很多对其详细的讲解,我们本篇幅不在细说,主要图解一下LZ77压缩算法的方式,看看其有哪些优缺点。  信息熵 数据为何是可以压缩的,因为数据都会表现出一定的特性,称为熵。绝大多数的...

空空如也

空空如也

1 2 3 4 5 ... 11
收藏数 220
精华内容 88
关键字:

压缩编码有哪些