精华内容
下载资源
问答
  • 并在此基础上解释了金属Pd的原子状态与晶体结构的关系,并通过计算得到了fcc-Pd的势能曲线及体弹性模量、线热膨胀系数、比热容和Gibbs自由能等热力学性质随温度变化的曲线,这些性质的理论值与实验值符合较好。
  • 据纯金属单原子理论确定面心立方结构(fcc)贵金属Ir的原子状态为[Xe](5dn)4.50(5dc)2.50(6sc)1.63-(6sf)0.37,并对金属Ir的密排六方结构(hcp)和体心立方结构(bcc)初态特征晶体及初态液体的原子状态进行...
  • 结合纯金属单原子(OA)理论和Debyu-Grtineisen模型,采用CALPHAD方法确定的晶格稳定参数,研究了SGTE纯单质数据库中fcc,h叩和bcc结构Au的原子状态、原子势能、原子动能、原子体积、体弹性模量和热膨胀系数等物理性质随...
  • 在重离子加速器国家实验室ECR离子源上,成功组建了用于高电荷态离子与表面相互作用研究的原子物理实验平台;利用该实验平台,研究了用不同电荷态和不同速度的高电荷态离子与不同表面相互作用的可见光和X射线发射的情况,...
  • 聚苯化合物的合成与光物理性质研究,周婉,郭永开,利用成环反应和D-A反应等设计合成了两种含有氮原子的聚苯小分子化合物,并通过核磁氢谱、碳谱以及质谱等手段进行了表征,确定了三
  • 依据纯金属单原子理论(OA)确定了体心立方结构(bcc)Cr的电子结构为[Ar](3dc)3.32(3dn)2.26(4sc)0.25-(4sf)0.17,并对Cr的面心立方结构(fcc)和密排六方结构(hcp)初态特征晶体和初态液体的电子结构进行了研究....
  • 事实证明,麦克斯韦辐射场,即光子,与电荷相互作用,但是在原子电子的束缚态或带电靶散射电子束的情况下,没有真正的光子参与。 虚拟光子一词描述了介导电磁场的相互作用,表明当前文献隐含地同意这一结论。 对于...
  • 由纯金属单原子理论(OA)确定了面心立方结构(FCC)贵金属Cu , Ag , Au的电子结构依次为Ar](3d.)5.58(3d,)4.21(4sc)“23(4sr)o.98、[Kr](4dn)4.87(4dc)4.56(5sc)“66(5sr)o.91 、[Xe](5dn)4.20(5dc)4.90(6sc)1.57(6sf)o...
  • MySQL 面试题

    万次阅读 多人点赞 2019-09-02 16:03:33
    如果能容忍拆分带来的空间问题,拆的话最好和经常要查询的表的主键在物理结构上放置在一起(分区) 顺序 IO ,减少连接消耗,最后这是一个文本列再加上一个全文索引来尽量抵消连接消耗。 不拆可能带来的问题:...

    MySQL 面试题

    MySQL 涉及的内容非常非常非常多,所以面试题也容易写的杂乱。当年,我们记着几个一定要掌握的重心:

    重点的题目添加了【重点】前缀。

    1. 索引。
    2. 锁。
    3. 事务和隔离级别。

    因为 MySQL 还会有部分内容和运维相关度比较高,所以本文我们分成两部分【开发】【运维】两部分。

    • 对于【开发】部分,我们需要掌握。
    • 对于【运维】部分,更多考验开发的知识储备情况,当然能回答出来是比较好的,特别是对于高级开发工程师、架构师等。

    开发

    为什么互联网公司一般选择 MySQL 而不是 Oracle?

    免费、流行、够用。

    ? 当然,这个回答要稍微润色下。不过一般,很少问这个问题了。

    数据库的三范式是什么?什么是反模式?

    艿艿:重点在于反模式的回答。实际开发中,不会严格遵守三范式。

    胖友直接看 《服务端指南 数据存储篇 | MySQL(07) 范式与反模式》

    MySQL 有哪些数据类型?

    MySQL 支持多种类型,大致可以分为三类:数值、日期/时间和字符串(字符)类型。具体可以看看 《MySQL 数据类型》 文档。

    • 正确的使用数据类型,对数据库的优化是非常重要的。

    ? MySQL 中 varchar 与 char 的区别?varchar(50) 中的 50 代表的涵义?

    • 1、varchar 与 char 的区别,char 是一种固定长度的类型,varchar 则是一种可变长度的类型。
    • 2、varchar(50) 中 50 的涵义最多存放 50 个字符。varchar(50) 和 (200) 存储 hello 所占空间一样,但后者在排序时会消耗更多内存,因为 ORDER BY col 采用 fixed_length 计算 col 长度(memory引擎也一样)。所以,实际场景下,选择合适的 varchar 长度还是有必要的。

    ? int(11) 中的 11 代表什么涵义?

    int(11) 中的 11 ,不影响字段存储的范围,只影响展示效果。具体可以看看 《MySQL 中 int 长度的意义》 文章。

    ? 金额(金钱)相关的数据,选择什么数据类型?

    • 方式一,使用 int 或者 bigint 类型。如果需要存储到分的维度,需要 *100 进行放大。
    • 方式二,使用 decimal 类型,避免精度丢失。如果使用 Java 语言时,需要使用 BigDecimal 进行对应。

    ? 一张表,里面有 ID 自增主键,当 insert 了 17 条记录之后,删除了第 15,16,17 条记录,再把 MySQL 重启,再 insert 一条记录,这条记录的 ID 是 18 还是 15?

    • 一般情况下,我们创建的表的类型是 InnoDB ,如果新增一条记录(不重启 MySQL 的情况下),这条记录的 ID 是18 ;但是如果重启 MySQL 的话,这条记录的 ID 是 15 。因为 InnoDB 表只把自增主键的最大 ID 记录到内存中,所以重启数据库或者对表 OPTIMIZE 操作,都会使最大 ID 丢失。
    • 但是,如果我们使用表的类型是 MyISAM ,那么这条记录的 ID 就是 18 。因为 MyISAM 表会把自增主键的最大 ID 记录到数据文件里面,重启 MYSQL 后,自增主键的最大 ID 也不会丢失。

    最后,还可以跟面试官装个 x ,生产数据,不建议进行物理删除记录。

    ? 表中有大字段 X(例如:text 类型),且字段 X 不会经常更新,以读为为主,请问您是选择拆成子表,还是继续放一起?写出您这样选择的理由

    • 拆带来的问题:连接消耗 + 存储拆分空间。

      如果能容忍拆分带来的空间问题,拆的话最好和经常要查询的表的主键在物理结构上放置在一起(分区) 顺序 IO ,减少连接消耗,最后这是一个文本列再加上一个全文索引来尽量抵消连接消耗。

    • 不拆可能带来的问题:查询性能。

      如果能容忍不拆分带来的查询性能损失的话,上面的方案在某个极致条件下肯定会出现问题,那么不拆就是最好的选择。

    实际场景下,例如说商品表数据量比较大的情况下,会将商品描述单独存储到一个表中。即,使用拆的方案。

    MySQL 有哪些存储引擎?

    MySQL 提供了多种的存储引擎:

    • InnoDB
    • MyISAM
    • MRG_MYISAM
    • MEMORY
    • CSV
    • ARCHIVE
    • BLACKHOLE
    • PERFORMANCE_SCHEMA
    • FEDERATED

    具体每种存储引擎的介绍,可以看看 《数据库存储引擎》

    ? 如何选择合适的存储引擎?

    提供几个选择标准,然后按照标准,选择对应的存储引擎即可,也可以根据 常用引擎对比 来选择你使用的存储引擎。使用哪种引擎需要根据需求灵活选择,一个数据库中多个表可以使用不同的引擎以满足各种性能和实际需求。使用合适的存储引擎,将会提高整个数据库的性能。

    1. 是否需要支持事务。

    2. 对索引和缓存的支持。

    3. 是否需要使用热备。

    4. 崩溃恢复,能否接受崩溃。

    5. 存储的限制。

    6. 是否需要外键支持。

      艿艿:目前开发已经不考虑外键,主要原因是性能。具体可以看看 《从 MySQL 物理外键开始的思考》 文章。

    目前,MySQL 默认的存储引擎是 InnoDB ,并且也是最主流的选择。主要原因如下:

    • 【最重要】支持事务。
    • 支持行级锁和表级锁,能支持更多的并发量。
    • 查询不加锁,完全不影响查询。
    • 支持崩溃后恢复。

    在 MySQL5.1 以及之前的版本,默认的存储引擎是 MyISAM ,但是目前已经不再更新,且它有几个比较关键的缺点:

    • 不支持事务。
    • 使用表级锁,如果数据量大,一个插入操作锁定表后,其他请求都将阻塞。

    艿艿:也就是说,我们不需要花太多力气在 MyISAM 的学习上。

    ? 请说明 InnoDB 和 MyISAM 的区别

    InnoDBMyISAM
    事务支持不支持
    存储限制64TB
    锁粒度行锁表锁
    崩溃后的恢复支持不支持
    外键支持不支持
    全文检索5.7 版本后支持支持

    更完整的对比,可以看看 《数据库存储引擎》「常用引擎对比」 小节。

    ? 请说说 InnoDB 的 4 大特性?

    艿艿:貌似我面试没被问过…反正,我是没弄懂过~~

    • 插入缓冲(insert buffer)
    • 二次写(double write)
    • 自适应哈希索引(ahi)
    • 预读(read ahead)

    ? 为什么 SELECT COUNT(*) FROM table 在 InnoDB 比 MyISAM 慢?

    对于 SELECT COUNT(*) FROM table 语句,在没有 WHERE 条件的情况下,InnoDB 比 MyISAM 可能会慢很多,尤其在大表的情况下。因为,InnoDB 是去实时统计结果,会全表扫描;而 MyISAM 内部维持了一个计数器,预存了结果,所以直接返回即可。

    详细的原因,胖友可以看看 《高性能 MySQL 之 Count 统计查询》 博客。

    ? 各种不同 MySQL 版本的 Innodb 的改进?

    艿艿:这是一个选择了解的问题。

    MySQL5.6 下 Innodb 引擎的主要改进:

    1. online DDL
    2. memcached NoSQL 接口
    3. transportable tablespace( alter table discard/import tablespace)
    4. MySQL 正常关闭时,可以 dump 出 buffer pool 的( space, page_no),重启时 reload,加快预热速度
    5. 索引和表的统计信息持久化到 mysql.innodb_table_stats 和 mysql.innodb_index_stats,可提供稳定的执行计划
    6. Compressed row format 支持压缩表

    MySQL5.7 下 Innodb 引擎的主要改进:

    • 1、修改 varchar 字段长度有时可以使用

      这里的“有时”,指的是也有些限制。可见 《MySQL 5.7 online ddl 的一些改进》

    • 2、Buffer pool 支持在线改变大小

    • 3、Buffer pool 支持导出部分比例

    • 4、支持新建 innodb tablespace,并可以在其中创建多张表

    • 5、磁盘临时表采用 innodb 存储,并且存储在 innodb temp tablespace 里面,以前是 MyISAM 存储

    • 6、透明表空间压缩功能

    重点】什么是索引?

    索引,类似于书籍的目录,想找到一本书的某个特定的主题,需要先找到书的目录,定位对应的页码。

    MySQL 中存储引擎使用类似的方式进行查询,先去索引中查找对应的值,然后根据匹配的索引找到对应的数据行。

    ? 索引有什么好处?

    1. 提高数据的检索速度,降低数据库IO成本:使用索引的意义就是通过缩小表中需要查询的记录的数目从而加快搜索的速度。
    2. 降低数据排序的成本,降低CPU消耗:索引之所以查的快,是因为先将数据排好序,若该字段正好需要排序,则正好降低了排序的成本。

    ? 索引有什么坏处?

    1. 占用存储空间:索引实际上也是一张表,记录了主键与索引字段,一般以索引文件的形式存储在磁盘上。
    2. 降低更新表的速度:表的数据发生了变化,对应的索引也需要一起变更,从而减低的更新速度。否则索引指向的物理数据可能不对,这也是索引失效的原因之一。

    ? 索引的使用场景?

    • 1、对非常小的表,大部分情况下全表扫描效率更高。

    • 2、对中大型表,索引非常有效。

    • 3、特大型的表,建立和使用索引的代价随着增长,可以使用分区技术来解决。

      实际场景下,MySQL 分区表很少使用,原因可以看看 《互联网公司为啥不使用 MySQL 分区表?》 文章。

      对于特大型的表,更常用的是“分库分表”,目前解决方案有 Sharding Sphere、MyCAT 等等。

    ? 索引的类型?

    索引,都是实现在存储引擎层的。主要有六种类型:

    • 1、普通索引:最基本的索引,没有任何约束。

    • 2、唯一索引:与普通索引类似,但具有唯一性约束。

    • 3、主键索引:特殊的唯一索引,不允许有空值。

    • 4、复合索引:将多个列组合在一起创建索引,可以覆盖多个列。

    • 5、外键索引:只有InnoDB类型的表才可以使用外键索引,保证数据的一致性、完整性和实现级联操作。

    • 6、全文索引:MySQL 自带的全文索引只能用于 InnoDB、MyISAM ,并且只能对英文进行全文检索,一般使用全文索引引擎。

      常用的全文索引引擎的解决方案有 Elasticsearch、Solr 等等。最为常用的是 Elasticsearch 。

    具体的使用,可以看看 《服务端指南 数据存储篇 | MySQL(03) 如何设计索引》

    ? MySQL 索引的“创建”原则?

    注意,是“创建”噢。

    • 1、最适合索引的列是出现在 WHERE 子句中的列,或连接子句中的列,而不是出现在 SELECT 关键字后的列。

    • 2、索引列的基数越大,索引效果越好。

      具体为什么,可以看看如下两篇文章:

    • 3、根据情况创建复合索引,复合索引可以提高查询效率。

      因为复合索引的基数会更大。

    • 4、避免创建过多的索引,索引会额外占用磁盘空间,降低写操作效率。

    • 5、主键尽可能选择较短的数据类型,可以有效减少索引的磁盘占用提高查询效率。

    • 6、对字符串进行索引,应该定制一个前缀长度,可以节省大量的索引空间。

    ? MySQL 索引的“使用”注意事项?

    注意,是“使用”噢。

    • 1、应尽量避免在 WHERE 子句中使用 !=<> 操作符,否则将引擎放弃使用索引而进行全表扫描。优化器将无法通过索引来确定将要命中的行数,因此需要搜索该表的所有行。

      注意,column IS NULL 也是不可以使用索引的。

    • 2、应尽量避免在 WHERE 子句中使用 OR 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:SELECT id FROM t WHERE num = 10 OR num = 20

    • 3、应尽量避免在 WHERE 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。

    • 4、应尽量避免在 WHERE 子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。

    • 5、不要在 WHERE 子句中的 = 左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

    • 6、复合索引遵循前缀原则。

    • 7、如果 MySQL 评估使用索引比全表扫描更慢,会放弃使用索引。如果此时想要索引,可以在语句中添加强制索引。

    • 8、列类型是字符串类型,查询时一定要给值加引号,否则索引失效。

    • 9、LIKE 查询,% 不能在前,因为无法使用索引。如果需要模糊匹配,可以使用全文索引。

    关于这块,可以看看 《服务端指南 数据存储篇 | MySQL(04) 索引使用的注意事项》 文章,写的更加细致。

    ? 以下三条 SQL 如何建索引,只建一条怎么建?

    WHERE a = 1 AND b = 1
    WHERE b = 1
    WHERE b = 1 ORDER BY time DESC
    
    
    • 以顺序 b , a, time 建立复合索引,CREATE INDEX table1_b_a_time ON index_test01(b, a, time)
    • 对于第一条 SQL ,因为最新 MySQL 版本会优化 WHERE 子句后面的列顺序,以匹配复合索引顺序。

    ? 想知道一个查询用到了哪个索引,如何查看?

    EXPLAIN 显示了 MYSQL 如何使用索引来处理 SELECT 语句以及连接表,可以帮助选择更好的索引和写出更优化的查询语句。

    使用方法,在 SELECT 语句前加上 EXPLAIN 就可以了。 《MySQL explain 执行计划详细解释》

    【重点】MySQL 索引的原理?

    解释 MySQL 索引的原理,篇幅会比较长,并且网络上已经有靠谱的资料可以看,所以艿艿这里整理了几篇,胖友可以对照着看。

    下面,艿艿对关键知识做下整理,方便胖友回顾。

    几篇好一点的文章:

    《MySQL索引背后的数据结构及算法原理》

    《MySQL 索引原理》

    《深入理解 MySQL 索引原理和实现 —— 为什么索引可以加速查询?》

    MySQL 有哪些索引方法?

    在 MySQL 中,我们可以看到两种索引方式:

    什么是 B-Tree 索引?

    B-Tree 是为磁盘等外存储设备设计的一种平衡查找树。因此在讲 B-Tree 之前先了解下磁盘的相关知识。

    • 系统从磁盘读取数据到内存时是以磁盘块(block)为基本单位的,位于同一个磁盘块中的数据会被一次性读取出来,而不是需要什么取什么。
    • InnoDB存储引擎中有页(Page)的概念,页是其磁盘管理的最小单位。InnoDB 存储引擎中默认每个页的大小为 16 KB,可通过参数 innodb_page_size 将页的大小设置为 4K、8K、16K ,在 MySQL 中可通过如下命令查看页的大小:
    mysql> show variables like 'innodb_page_size';
    
    • 而系统一个磁盘块的存储空间往往没有这么大,因此 InnoDB 每次申请磁盘空间时都会是若干地址连续磁盘块来达到页的大小 16KB 。InnoDB 在把磁盘数据读入到磁盘时会以页为基本单位,在查询数据时如果一个页中的每条数据都能有助于定位数据记录的位置,这将会减少磁盘 I/O 次数,提高查询效率。

    B-Tree 结构的数据可以让系统高效的找到数据所在的磁盘块。为了描述B-Tree,首先定义一条记录为一个二元组 [key, data] ,key 为记录的键值,对应表中的主键值,data 为一行记录中除主键外的数据。对于不同的记录,key值互不相同。

    一棵 m 阶的 B-Tree 有如下特性:

    1. 每个节点最多有 m 个孩子。
      • 除了根节点和叶子节点外,其它每个节点至少有 Ceil(m/2) 个孩子。
      • 若根节点不是叶子节点,则至少有 2 个孩子。
    2. 所有叶子节点都在同一层,且不包含其它关键字信息。
    3. 每个非叶子节点包含 n 个关键字信息(P0,P1,…Pn, k1,…kn)
      • 关键字的个数 n 满足:ceil(m/2)-1 <= n <= m-1
      • ki(i=1,…n) 为关键字,且关键字升序排序。
      • Pi(i=0,…n) 为指向子树根节点的指针。P(i-1) 指向的子树的所有节点关键字均小于 ki ,但都大于 k(i-1) 。

    B-Tree 中的每个节点根据实际情况可以包含大量的关键字信息和分支,如下图所示为一个 3 阶的 B-Tree:

    B-Tree 的结构

    • 每个节点占用一个盘块的磁盘空间,一个节点上有两个升序排序的 key 和三个指向子树根节点的 point ,point 存储的是子节点所在磁盘块的地址。两个 key 划分成的三个范围域,对应三个 point 指向的子树的数据的范围域。
    • 以根节点为例,key 为 17 和 35 ,P1 指针指向的子树的数据范围为小于 17 ,P2 指针指向的子树的数据范围为 [17~35] ,P3 指针指向的子树的数据范围为大于 35 。

    模拟查找 key 为 29 的过程:

    • 1、根据根节点找到磁盘块 1 ,读入内存。【磁盘I/O操作第1次】
    • 2、比较 key 29 在区间(17,35),找到磁盘块 1 的指针 P2 。
    • 3、根据 P2 指针找到磁盘块 3 ,读入内存。【磁盘I/O操作第2次】
    • 4、比较 key 29 在区间(26,30),找到磁盘块3的指针P2。
    • 5、根据 P2 指针找到磁盘块 8 ,读入内存。【磁盘I/O操作第3次】
    • 6、在磁盘块 8 中的 key 列表中找到 eky 29 。

    分析上面过程,发现需要 3 次磁盘 I/O 操作,和 3 次内存查找操作。由于内存中的 key 是一个有序表结构,可以利用二分法查找提高效率。而 3 次磁盘 I/O 操作是影响整个 B-Tree 查找效率的决定因素。B-Tree 相对于 AVLTree 缩减了节点个数,使每次磁盘 I/O 取到内存的数据都发挥了作用,从而提高了查询效率。

    什么是 B+Tree 索引?

    B+Tree 是在 B-Tree 基础上的一种优化,使其更适合实现外存储索引结构,InnoDB存储引擎就是用 B+Tree 实现其索引结构。

    从上一节中的 B-Tree 结构图中可以看到,每个节点中不仅包含数据的 key 值,还有 data 值。而每一个页的存储空间是有限的,如果 data 数据较大时将会导致每个节点(即一个页)能存储的 key 的数量很小,当存储的数据量很大时同样会导致 B-Tree 的深度较大,增大查询时的磁盘 I/O 次数,进而影响查询效率。在 B+Tree 中,所有数据记录节点都是按照键值大小顺序存放在同一层的叶子节点上,而非叶子节点上只存储 key 值信息,这样可以大大加大每个节点存储的 key 值数量,降低 B+Tree 的高度。

    B+Tree 相对于 B-Tree 有几点不同:

    • 非叶子节点只存储键值信息。
    • 所有叶子节点之间都有一个链指针。
    • 数据记录都存放在叶子节点中。

    将上一节中的 B-Tree 优化,由于 B+Tree 的非叶子节点只存储键值信息,假设每个磁盘块能存储 4 个键值及指针信息,则变成 B+Tree 后其结构如下图所示:

    B+Tree 的结构

    • 通常在 B+Tree 上有两个头指针,一个指向根节点,另一个指向关键字最小的叶子节点,而且所有叶子节点(即数据节点)之间是一种链式环结构。因此可以对 B+Tree 进行两种查找运算:一种是对于主键的范围查找和分页查找,另一种是从根节点开始,进行随机查找。

    可能上面例子中只有 22 条数据记录,看不出 B+Tree 的优点,下面做一个推算:

    • InnoDB 存储引擎中页的大小为 16KB,一般表的主键类型为 INT(占用4个字节) 或 BIGINT(占用8个字节),指针类型也一般为 4 或 8 个字节,也就是说一个页(B+Tree 中的一个节点)中大概存储 16KB/(8B+8B)=1K 个键值(因为是估值,为方便计算,这里的 K 取值为〖10〗^3)。也就是说一个深度为 3 的 B+Tree 索引可以维护10^3 *10^3 *10^3 = 10亿 条记录。
    • 实际情况中每个节点可能不能填充满,因此在数据库中,B+Tree 的高度一般都在 2~4 层。MySQL 的 InnoDB 存储引擎在设计时是将根节点常驻内存的,也就是说查找某一键值的行记录时最多只需要 1~3 次磁盘 I/O 操作。

    B+Tree 有哪些索引类型?

    在 B+Tree 中,根据叶子节点的内容,索引类型分为主键索引非主键索引

    • 主键索引的叶子节点存的数据是整行数据( 即具体数据 )。在 InnoDB 里,主键索引也被称为聚集索引(clustered index)。
    • 非主键索引的叶子节点存的数据是整行数据的主键,键值是索引。在 InnoDB 里,非主键索引也被称为辅助索引(secondary index)。

    辅助索引与聚集索引的区别在于辅助索引的叶子节点并不包含行记录的全部数据,而是存储相应行数据的聚集索引键,即主键。当通过辅助索引来查询数据时,需要进过两步:

    • 首先,InnoDB 存储引擎会遍历辅助索引找到主键。
    • 然后,再通过主键在聚集索引中找到完整的行记录数据。

    另外,InnoDB 通过主键聚簇数据,如果没有定义主键,会选择一个唯一的非空索引代替,如果没有这样的索引,会隐式定义个主键作为聚簇索引。

    再另外,可能有胖友有和艿艿的一样疑惑,在辅助索引如果相同的索引怎么存储?最终存储到 B+Tree 非子节点中时,它们对应的主键 ID 是不同的,所以妥妥的。如下图所示:

    相同的索引怎么存储

    聚簇索引的注意点有哪些?

    聚簇索引表最大限度地提高了 I/O 密集型应用的性能,但它也有以下几个限制:

    • 1、插入速度严重依赖于插入顺序,按照主键的顺序插入是最快的方式,否则将会出现页分裂,严重影响性能。因此,对于 InnoDB 表,我们一般都会定义一个自增的 ID 列为主键。

      关于这一点,可能面试官会换一个问法。例如,为什么主键需要是自增 ID ,又或者为什么主键需要带有时间性关联。

    • 2、更新主键的代价很高,因为将会导致被更新的行移动。因此,对于InnoDB 表,我们一般定义主键为不可更新。

      MySQL 默认情况下,主键是允许更新的。对于 MongoDB ,其 主键是不允许更新的。

    • 3、二级索引访问需要两次索引查找,第一次找到主键值,第二次根据主键值找到行数据。

      当然,有一种情况可以无需二次查找,基于非主键索引查询,但是查询字段只有主键 ID ,那么在二级索引中就可以查找到。

    • 4、主键 ID 建议使用整型。因为,每个主键索引的 B+Tree 节点的键值可以存储更多主键 ID ,每个非主键索引的 B+Tree 节点的数据可以存储更多主键 ID 。

    什么是索引的最左匹配特性?

    当 B+Tree 的数据项是复合的数据结构,比如索引 (name, age, sex) 的时候,B+Tree 是按照从左到右的顺序来建立搜索树的。

    • 比如当 (张三, 20, F) 这样的数据来检索的时候,B+Tree 会优先比较 name 来确定下一步的所搜方向,如果 name 相同再依次比较 age 和 sex ,最后得到检索的数据。
    • 但当 (20, F) 这样的没有 name 的数据来的时候,B+Tree 就不知道下一步该查哪个节点,因为建立搜索树的时候 name 就是第一个比较因子,必须要先根据 name 来搜索才能知道下一步去哪里查询。
    • 比如当 (张三, F) 这样的数据来检索时,B+Tree 可以用 name 来指定搜索方向,但下一个字段 age 的缺失,所以只能把名字等于张三的数据都找到,然后再匹配性别是 F 的数据了。

    这个是非常重要的性质,即索引的最左匹配特性。

    MyISAM 索引实现?

    MyISAM 索引的实现,和 InnoDB 索引的实现是一样使用 B+Tree ,差别在于 MyISAM 索引文件和数据文件是分离的,索引文件仅保存数据记录的地址

    MyISAM 索引与 InnoDB 索引的区别?

    • InnoDB 索引是聚簇索引,MyISAM 索引是非聚簇索引。
    • InnoDB 的主键索引的叶子节点存储着行数据,因此主键索引非常高效。
    • MyISAM 索引的叶子节点存储的是行数据地址,需要再寻址一次才能得到数据。
    • InnoDB 非主键索引的叶子节点存储的是主键和其他带索引的列数据,因此查询时做到覆盖索引会非常高效。

    【重点】请说说 MySQL 的四种事务隔离级别?

    • 1、插入速度严重依赖于插入顺序,按照主键的顺序插入是最快的方式,否则将会出现页分裂,严重影响性能。因此,对于 InnoDB 表,我们一般都会定义一个自增的 ID 列为主键。

      关于这一点,可能面试官会换一个问法。例如,为什么主键需要是自增 ID ,又或者为什么主键需要带有时间性关联。

    • 2、更新主键的代价很高,因为将会导致被更新的行移动。因此,对于InnoDB 表,我们一般定义主键为不可更新。

      MySQL 默认情况下,主键是允许更新的。对于 MongoDB ,其 主键是不允许更新的。

    • 3、二级索引访问需要两次索引查找,第一次找到主键值,第二次根据主键值找到行数据。

      当然,有一种情况可以无需二次查找,基于非主键索引查询,但是查询字段只有主键 ID ,那么在二级索引中就可以查找到。

    • 4、主键 ID 建议使用整型。因为,每个主键索引的 B+Tree 节点的键值可以存储更多主键 ID ,每个非主键索引的 B+Tree 节点的数据可以存储更多主键 ID 。

    • 1、插入速度严重依赖于插入顺序,按照主键的顺序插入是最快的方式,否则将会出现页分裂,严重影响性能。因此,对于 InnoDB 表,我们一般都会定义一个自增的 ID 列为主键。

      关于这一点,可能面试官会换一个问法。例如,为什么主键需要是自增 ID ,又或者为什么主键需要带有时间性关联。

    • 2、更新主键的代价很高,因为将会导致被更新的行移动。因此,对于InnoDB 表,我们一般定义主键为不可更新。

      MySQL 默认情况下,主键是允许更新的。对于 MongoDB ,其 主键是不允许更新的。

    • 3、二级索引访问需要两次索引查找,第一次找到主键值,第二次根据主键值找到行数据。

      当然,有一种情况可以无需二次查找,基于非主键索引查询,但是查询字段只有主键 ID ,那么在二级索引中就可以查找到。

    • 4、主键 ID 建议使用整型。因为,每个主键索引的 B+Tree 节点的键值可以存储更多主键 ID ,每个非主键索引的 B+Tree 节点的数据可以存储更多主键 ID 。

    • 1、插入速度严重依赖于插入顺序,按照主键的顺序插入是最快的方式,否则将会出现页分裂,严重影响性能。因此,对于 InnoDB 表,我们一般都会定义一个自增的 ID 列为主键。

      关于这一点,可能面试官会换一个问法。例如,为什么主键需要是自增 ID ,又或者为什么主键需要带有时间性关联。

    • 2、更新主键的代价很高,因为将会导致被更新的行移动。因此,对于InnoDB 表,我们一般定义主键为不可更新。

      MySQL 默认情况下,主键是允许更新的。对于 MongoDB ,其 主键是不允许更新的。

    • 3、二级索引访问需要两次索引查找,第一次找到主键值,第二次根据主键值找到行数据。

      当然,有一种情况可以无需二次查找,基于非主键索引查询,但是查询字段只有主键 ID ,那么在二级索引中就可以查找到。

    • 4、主键 ID 建议使用整型。因为,每个主键索引的 B+Tree 节点的键值可以存储更多主键 ID ,每个非主键索引的 B+Tree 节点的数据可以存储更多主键 ID 。

    事务就是对一系列的数据库操作(比如插入多条数据)进行统一的提交或回滚操作,如果插入成功,那么一起成功,如果中间有一条出现异常,那么回滚之前的所有操作。

    这样可以防止出现脏数据,防止数据库数据出现问题。

    事务的特性指的是?

    指的是 ACID ,如下图所示:

    事务的特性

    1. 原子性 Atomicity :一个事务(transaction)中的所有操作,或者全部完成,或者全部不完成,不会结束在中间某个环节。事务在执行过程中发生错误,会被恢复(Rollback)到事务开始前的状态,就像这个事务从来没有执行过一样。即,事务不可分割、不可约简。
    2. 一致性 Consistency :在事务开始之前和事务结束以后,数据库的完整性没有被破坏。这表示写入的资料必须完全符合所有的预设约束触发器级联回滚等。
    3. 隔离性 Isolation :数据库允许多个并发事务同时对其数据进行读写和修改的能力,隔离性可以防止多个事务并发执行时由于交叉执行而导致数据的不一致。事务隔离分为不同级别,包括读未提交(Read uncommitted)、读提交(read committed)、可重复读(repeatable read)和串行化(Serializable)。
    4. 持久性 Durability :事务处理结束后,对数据的修改就是永久的,即便系统故障也不会丢失。

    事务的并发问题?

    实际场景下,事务并不是串行的,所以会带来如下三个问题:

    • 1、脏读:事务 A 读取了事务 B 更新的数据,然后 B 回滚操作,那么 A 读取到的数据是脏数据。
    • 2、不可重复读:事务 A 多次读取同一数据,事务 B 在事务 A 多次读取的过程中,对数据作了更新并提交,导致事务 A 多次读取同一数据时,结果不一致。
    • 3、幻读:系统管理员 A 将数据库中所有学生的成绩从具体分数改为 ABCDE 等级,但是系统管理员 B 就在这个时候插入了一条具体分数的记录,当系统管理员 A 改结束后发现还有一条记录没有改过来,就好像发生了幻觉一样,这就叫幻读。

    小结:不可重复读的和幻读很容易混淆,不可重复读侧重于修改,幻读侧重于新增或删除。解决不可重复读的问题只需锁住满足条件的行,解决幻读需要锁表。

    MySQL 事务隔离级别会产生的并发问题?

    • READ UNCOMMITTED(未提交读):事务中的修改,即使没有提交,对其他事务也都是可见的。

      会导致脏读。

    • READ COMMITTED(提交读):事务从开始直到提交之前,所做的任何修改对其他事务都是不可见的。

      会导致不可重复读。

      这个隔离级别,也可以叫做“不可重复读”。

    • REPEATABLE READ(可重复读):一个事务按相同的查询条件读取以前检索过的数据,其他事务插入了满足其查询条件的新数据。产生幻行。

      会导致幻读。

    • SERIALIZABLE(可串行化):强制事务串行执行。

    事务隔离级别脏读不可重复读幻读
    读未提交(read-uncommitted)
    读已提交(read-committed)
    可重复读(repeatable-read)是(x)
    串行化(serializable)
    • MySQL 默认的事务隔离级别为可重复读(repeatable-read) 。
    • 上图的 <X> 处,MySQL 因为其间隙锁的特性,导致其在可重复读(repeatable-read)的隔离级别下,不存在幻读问题。也就是说,上图 <X> 处,需要改成“否”!!!!
    • ? 记住这个表的方式,我们会发现它是自左上向右下是一个对角线。当然,最好是去理解。
    • 具体的实验,胖友可以看看 《MySQL 的四种事务隔离级别》

    【重点】请说说 MySQL 的锁机制?

    表锁是日常开发中的常见问题,因此也是面试当中最常见的考察点,当多个查询同一时刻进行数据修改时,就会产生并发控制的问题。MySQL 的共享锁和排他锁,就是读锁和写锁。

    • 共享锁:不堵塞,多个用户可以同时读一个资源,互不干扰。
    • 排他锁:一个写锁会阻塞其他的读锁和写锁,这样可以只允许一个用户进行写入,防止其他用户读取正在写入的资源。

    ? 锁的粒度?

    • 表锁:系统开销最小,会锁定整张表,MyIsam 使用表锁。
    • 行锁:最大程度的支持并发处理,但是也带来了最大的锁开销,InnoDB 使用行锁。

    ? 什么是悲观锁?什么是乐观锁?

    1)悲观锁

    它指的是对数据被外界(包括本系统当前的其他事务,以及来自外部系统的事务处理)修改持保守态度,因此,在整个数据处理过程中,将数据处于锁定状态。悲观锁的实现,往往依靠数据库提供的锁机制(也只有数据库层提供的锁机制才能真正保证数据访问的排他性,否则,即使在本系统中实现了加锁机制,也无法保证外部系统不会修改数据)。

    在悲观锁的情况下,为了保证事务的隔离性,就需要一致性锁定读。读取数据时给加锁,其它事务无法修改这些数据。修改删除数据时也要加锁,其它事务无法读取这些数据。

    2)乐观锁

    相对悲观锁而言,乐观锁机制采取了更加宽松的加锁机制。悲观锁大多数情况下依靠数据库的锁机制实现,以保证操作最大程度的独占性。但随之而来的就是数据库性能的大量开销,特别是对长事务而言,这样的开销往往无法承受。

    而乐观锁机制在一定程度上解决了这个问题。乐观锁,大多是基于数据版本( Version )记录机制实现。何谓数据版本?即为数据增加一个版本标识,在基于数据库表的版本解决方案中,一般是通过为数据库表增加一个 “version” 字段来实现。读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提交数据的版本数据与数据库表对应记录的当前版本信息进行比对,如果提交的数据版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。

    什么是死锁?

    多数情况下,可以认为如果一个资源被锁定,它总会在以后某个时间被释放。而死锁发生在当多个进程访问同一数据库时,其中每个进程拥有的锁都是其他进程所需的,由此造成每个进程都无法继续下去。简单的说,进程 A 等待进程 B 释放他的资源,B 又等待 A 释放他的资源,这样就互相等待就形成死锁。

    虽然进程在运行过程中,可能发生死锁,但死锁的发生也必须具备一定的条件,死锁的发生必须具备以下四个必要条件:

    • 互斥条件:指进程对所分配到的资源进行排它性使用,即在一段时间内某资源只由一个进程占用。如果此时还有其它进程请求资源,则请求者只能等待,直至占有资源的进程用毕释放。
    • 请求和保持条件:指进程已经保持至少一个资源,但又提出了新的资源请求,而该资源已被其它进程占有,此时请求进程阻塞,但又对自己已获得的其它资源保持不放。
    • 不剥夺条件:指进程已获得的资源,在未使用完之前,不能被剥夺,只能在使用完时由自己释放。
    • 环路等待条件:指在发生死锁时,必然存在一个进程——资源的环形链,即进程集合 {P0,P1,P2,•••,Pn} 中的 P0 正在等待一个 P1 占用的资源;P1 正在等待 P2 占用的资源,……,Pn 正在等待已被 P0 占用的资源。

    下列方法有助于最大限度地降低死锁:

    • 设置获得锁的超时时间。

      通过超时,至少保证最差最差最差情况下,可以有退出的口子。

    • 按同一顺序访问对象。

      这个是最重要的方式。

    • 避免事务中的用户交互。

    • 保持事务简短并在一个批处理中。

    • 使用低隔离级别。

    • 使用绑定连接。

    ? MySQL 中 InnoDB 引擎的行锁是通过加在什么上完成(或称实现)的?为什么是这样子的??

    InnoDB 是基于索引来完成行锁。例如:SELECT * FROM tab_with_index WHERE id = 1 FOR UPDATE

    • FOR UPDATE 可以根据条件来完成行锁锁定,并且 id 是有索引键的列,如果 id 不是索引键那么 InnoDB 将完成表锁,并发将无从谈起。

    【重要】MySQL 查询执行顺序?

    MySQL 查询执行的顺序是:

    (1)     SELECT
    (2)     DISTINCT <select_list>
    (3)     FROM <left_table>
    (4)     <join_type> JOIN <right_table>
    (5)     ON <join_condition>
    (6)     WHERE <where_condition>
    (7)     GROUP BY <group_by_list>
    (8)     HAVING <having_condition>
    (9)     ORDER BY <order_by_condition>
    (10)    LIMIT <limit_number>
    

    具体的,可以看看 《SQL 查询之执行顺序解析》 文章。

    【重要】聊聊 MySQL SQL 优化?

    可以看看如下几篇文章:

    另外,除了从 SQL 层面进行优化,也可以从服务器硬件层面,进一步优化 MySQL 。具体可以看看 《MySQL 数据库性能优化之硬件优化》

    编写 SQL 查询语句的考题合集

    MySQL 数据库 CPU 飙升到 500% 的话,怎么处理?

    当 CPU 飙升到 500% 时,先用操作系统命令 top 命令观察是不是 mysqld 占用导致的,如果不是,找出占用高的进程,并进行相关处理。

    如果此时是 IO 压力比较大,可以使用 iostat 命令,定位是哪个进程占用了磁盘 IO 。

    如果是 mysqld 造成的,使用 show processlist 命令,看看里面跑的 Session 情况,是不是有消耗资源的 SQL 在运行。找出消耗高的 SQL ,看看执行计划是否准确, index 是否缺失,或者实在是数据量太大造成。一般来说,肯定要 kill 掉这些线程(同时观察 CPU 使用率是否下降),等进行相应的调整(比如说加索引、改 SQL 、改内存参数)之后,再重新跑这些 SQL。

    也可以查看 MySQL 慢查询日志,看是否有慢 SQL 。

    也有可能是每个 SQL 消耗资源并不多,但是突然之间,有大量的 Session 连进来导致 CPU 飙升,这种情况就需要跟应用一起来分析为何连接数会激增,再做出相应的调整,比如说限制连接数等。

    ? 在 MySQL 服务器运行缓慢的情况下输入什么命令能缓解服务器压力?

    1)检查系统的状态

    通过操作系统的一些工具检查系统的状态,比如 CPU、内存、交换、磁盘的利用率,根据经验或与系统正常时的状态相比对,有时系统表面上看起来看空闲,这也可能不是一个正常的状态,因为 CPU 可能正等待IO的完成。除此之外,还应观注那些占用系统资源(CPU、内存)的进程。

    • 使用 sar 来检查操作系统是否存在 IO 问题。
    • 使用 vmstat 监控内存 CPU 资源。
    • 磁盘 IO 问题,处理方式:做 raid10 提高性能 。
    • 网络问题,telnet 一下 MySQL 对外开放的端口。如果不通的话,看看防火墙是否正确设置了。另外,看看 MySQ L是不是开启了 skip-networking 的选项,如果开启请关闭。

    2)检查 MySQL 参数

    • max_connect_errors
    • connect_timeout
    • skip-name-resolve
    • slave-net-timeout=seconds
    • master-connect-retry

    3)检查 MySQL 相关状态值

    • 关注连接数
    • 关注下系统锁情况
    • 关注慢查询(slow query)日志

    Innodb 的事务与日志的实现方式

    ? 有多少种日志?

    • redo 日志
    • undo 日志

    ? 日志的存放形式?

    • redo:在页修改的时候,先写到 redo log buffer 里面, 然后写到 redo log 的文件系统缓存里面(fwrite),然后再同步到磁盘文件(fsync)。
    • undo:在 MySQL5.5 之前,undo 只能存放在 ibdata* 文件里面, 5.6 之后,可以通过设置 innodb_undo_tablespaces 参数把 undo log 存放在 ibdata* 之外。

    ? 事务是如何通过日志来实现的,说得越深入越好

    艿艿:这个流程的理解还是比较简单的,实际思考实现感觉还是蛮复杂的。

    基本流程如下:

    • 因为事务在修改页时,要先记 undo ,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 redo(里面包括 undo 的修改)一定要比数据页先持久化到磁盘。
    • 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态。
    • 崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo 把该事务的修改回滚到事务开始之前。如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。

    MySQL binlog 的几种日志录入格式以及区别

    ? 各种日志格式的涵义

    binlog 有三种格式类型,分别如下:

    1)Statement

    每一条会修改数据的 SQL 都会记录在 binlog 中。

    • 优点:不需要记录每一行的变化,减少了 binlog 日志量,节约了 IO,提高性能。(相比 row 能节约多少性能与日志量,这个取决于应用的 SQL 情况,正常同一条记录修改或者插入 row 格式所产生的日志量还小于 Statement 产生的日志量,但是考虑到如果带条件的 update 操作,以及整表删除,alter 表等操作,ROW 格式会产生大量日志,因此在考虑是否使用 ROW 格式日志时应该跟据应用的实际情况,其所产生的日志量会增加多少,以及带来的 IO 性能问题。)

    • 缺点:由于记录的只是执行语句,为了这些语句能在 slave 上正确运行,因此还必须记录每条语句在执行的时候的一些相关信息,以保证所有语句能在 slave 得到和在 master 端执行时候相同 的结果。另外 MySQL 的复制,像一些特定函数功能,slave 可与 master 上要保持一致会有很多相关问题(如 sleep() 函数,last_insert_id(),以及 user-defined functions(udf) 会出现问题)。

    • 使用以下函数的语句也无法被复制:

      • LOAD_FILE()

      • UUID()

      • USER()

      • FOUND_ROWS()

      • SYSDATE() (除非启动时启用了 --sysdate-is-now 选项)

        同时在 INSERT …SELECT 会产生比 RBR 更多的行级锁 。

    2)Row

    不记录 SQL 语句上下文相关信息,仅保存哪条记录被修改。

    • 优点:binlog 中可以不记录执行的 SQL 语句的上下文相关的信息,仅需要记录那一条记录被修改成什么了。所以 rowlevel 的日志内容会非常清楚的记录下每一行数据修改的细节。而且不会出现某些特定情况下的存储过程,或 function ,以及 trigger 的调用和触发无法被正确复制的问题。
    • 缺点:所有的执行的语句当记录到日志中的时候,都将以每行记录的修改来记录,这样可能会产生大量的日志内容,比如一条 Update 语句,修改多条记录,则 binlog 中每一条修改都会有记录,这样造成 binlog 日志量会很大,特别是当执行 alter table 之类的语句的时候,由于表结构修改,每条记录都发生改变,那么该表每一条记录都会记录到日志中。

    3)Mixedlevel

    是以上两种 level 的混合使用。

    • 一般的语句修改使用 Statement 格式保存 binlog 。
    • 如一些函数,statement 无法完成主从复制的操作,则采用 Row 格式保存 binlog 。

    MySQL 会根据执行的每一条具体的 SQL 语句来区分对待记录的日志形式,也就是在 Statement 和 Row 之间选择 一种。

    新版本的 MySQL 中对 row level 模式也被做了优化,并不是所有的修改都会以 row level 来记录。

    • 像遇到表结构变更的时候就会以 Statement 模式来记录。
    • 至于 Update 或者 Delete 等修改数据的语句,还是会记录所有行的变更,即使用 Row 模式。

    ? 适用场景?

    在一条 SQL 操作了多行数据时, Statement 更节省空间,Row 更占用空间。但是, Row 模式更可靠。

    因为,互联网公司,使用 MySQL 的功能相对少,基本不使用存储过程、触发器、函数的功能,选择默认的语句模式,Statement Level(默认)即可。

    ? 结合第一个问题,每一种日志格式在复制中的优劣?

    • Statement 可能占用空间会相对小一些,传送到 slave 的时间可能也短,但是没有 Row 模式的可靠。
    • Row 模式在操作多行数据时更占用空间,但是可靠。

    所以,这是在占用空间和可靠之间的选择。

    如何在线正确清理 MySQL binlog?

    MySQL 中的 binlog 日志记录了数据中的数据变动,便于对数据的基于时间点和基于位置的恢复。但日志文件的大小会越来越大,占用大量的磁盘空间,因此需要定时清理一部分日志信息。

    # 首先查看主从库正在使用的binlog文件名称
    show master(slave) status
    
    # 删除之前一定要备份
    purge master logs before'2017-09-01 00:00:00'; # 删除指定时间前的日志
    purge master logs to'mysql-bin.000001'; # 删除指定的日志文件
    
    # 自动删除:通过设置binlog的过期时间让系统自动删除日志
    show variables like 'expire_logs_days'; # 查看过期时间
    set global expire_logs_days = 30; # 设置过期时间
    

    MySQL 主从复制的流程是怎么样的?

    MySQL 的主从复制是基于如下 3 个线程的交互(多线程复制里面应该是 4 类线程):

    • 1、Master 上面的 binlog dump 线程,该线程负责将 master 的 binlog event 传到 slave 。
    • 2、Slave 上面的 IO 线程,该线程负责接收 Master 传过来的 binlog,并写入 relay log 。
    • 3、Slave 上面的 SQL 线程,该线程负责读取 relay log 并执行。
    • 4、如果是多线程复制,无论是 5.6 库级别的假多线程还是 MariaDB 或者 5.7 的真正的多线程复制, SQL 线程只做 coordinator ,只负责把 relay log 中的 binlog 读出来然后交给 worker 线程, woker 线程负责具体 binlog event 的执行。

    ? MySQL 如何保证复制过程中数据一致性?

    • 1、在 MySQL5.5 以及之前, slave 的 SQL 线程执行的 relay log 的位置只能保存在文件( relay-log.info)里面,并且该文件默认每执行 10000 次事务做一次同步到磁盘, 这意味着 slave 意外 crash 重启时, SQL 线程执行到的位置和数据库的数据是不一致的,将导致复制报错,如果不重搭复制,则有可能会导致数据不一致。
      • MySQL 5.6 引入参数 relay_log_info_repository,将该参数设置为 TABLE 时, MySQL 将 SQL 线程执行到的位置存到 mysql.slave_relay_log_info 表,这样更新该表的位置和 SQL 线程执行的用户事务绑定成一个事务,这样 slave 意外宕机后,slave 通过 innodb 的崩溃恢复可以把 SQL 线程执行到的位置和用户事务恢复到一致性的状态。
    • 2、MySQL 5.6 引入 GTID 复制,每个 GTID 对应的事务在每个实例上面最多执行一次, 这极大地提高了复制的数据一致性。
    • 3、MySQL 5.5 引入半同步复制, 用户安装半同步复制插件并且开启参数后,设置超时时间,可保证在超时时间内如果 binlog 不传到 slave 上面,那么用户提交事务时不会返回,直到超时后切成异步复制,但是如果切成异步之前用户线程提交时在 master 上面等待的时候,事务已经提交,该事务对 master 上面的其他 session 是可见的,如果这时 master 宕机,那么到 slave 上面该事务又不可见了,该问题直到 5.7 才解决。
    • 4、MySQL 5.7 引入无损半同步复制,引入参 rpl_semi_sync_master_wait_point,该参数默认为 after_sync,指的是在切成半同步之前,事务不提交,而是接收到 slave 的 ACK 确认之后才提交该事务,从此,复制真正可以做到无损的了。
    • 5、可以再说一下 5.7 的无损复制情况下, master 意外宕机,重启后发现有 binlog 没传到 slave 上面,这部分 binlog 怎么办???分 2 种情况讨论, 1 宕机时已经切成异步了, 2 是宕机时还没切成异步??? 这个怎么判断宕机时有没有切成异步呢??? 分别怎么处理???

    ? MySQL 如何解决主从复制的延时性?

    5.5 是单线程复制,5.6 是多库复制(对于单库或者单表的并发操作是没用的),5.7 是真正意义的多线程复制,它的原理是基于 group commit, 只要 master 上面的事务是 group commit 的,那 slave 上面也可以通过多个 worker线程去并发执行。 和 MairaDB10.0.0.5 引入多线程复制的原理基本一样。

    ? 工作遇到的复制 bug 的解决方法?

    5.6 的多库复制有时候自己会停止,我们写了一个脚本重新 start slave 。

    ? 你是否做过主从一致性校验,如果有,怎么做的,如果没有,你打算怎么做?

    主从一致性校验有多种工具 例如 checksum、mysqldiff、pt-table-checksum 等。

    聊聊 MySQL 备份方式?备份策略是怎么样的?

    具体的,胖友可以看看 《MySQL 高级备份策略》 。主要有几个知识点:

    • 数据的备份类型

      • 【常用】完全备份

        这是大多数人常用的方式,它可以备份整个数据库,包含用户表、系统表、索引、视图和存储过程等所有数据库对象。但它需要花费更多的时间和空间,所以,一般推荐一周做一次完全备份。

      • 增量备份

        它是只备份数据库一部分的另一种方法,它不使用事务日志,相反,它使用整个数据库的一种新映象。它比最初的完全备份小,因为它只包含自上次完全备份以来所改变的数据库。它的优点是存储和恢复速度快。推荐每天做一次差异备份。

      • 【常用】事务日志备份

        事务日志是一个单独的文件,它记录数据库的改变,备份的时候只需要复制自上次备份以来对数据库所做的改变,所以只需要很少的时间。为了使数据库具有鲁棒性,推荐每小时甚至更频繁的备份事务日志。

      • 文件备份

        数据库可以由硬盘上的许多文件构成。如果这个数据库非常大,并且一个晚上也不能将它备份完,那么可以使用文件备份每晚备份数据库的一部分。由于一般情况下数据库不会大到必须使用多个文件存储,所以这种备份不是很常用。

    • 备份数据的类型

      • 热备份
      • 温备份
      • 冷备份
    • 备份工具

      • cp
      • mysqldump
      • xtrabackup
      • lvm2 快照

    MySQL 几种备份方式?

    MySQL 一般有 3 种备份方式。

    1)逻辑备份

    使用 MySQL 自带的 mysqldump 工具进行备份。备份成sql文件形式。

    • 优点:最大好处是能够与正在运行的 MySQL 自动协同工作,在运行期间可以确保备份是当时的点,它会自动将对应操作的表锁定,不允许其他用户修改(只能访问)。可能会阻止修改操作。SQL 文件通用方便移植。
    • 缺点:备份的速度比较慢。如果是数据量很多的时候,就很耗时间。如果数据库服务器处在提供给用户服务状态,在这段长时间操作过程中,意味着要锁定表(一般是读锁定,只能读不能写入数据),那么服务就会影响的。

    2)物理备份

    艿艿:因为现在主流是 InnoDB ,所以基本不再考虑这种方式。

    直接拷贝只适用于 MyISAM 类型的表。这种类型的表是与机器独立的。但实际情况是,你设计数据库的时候不可能全部使用 MyISAM 类型表。你也不可能因为 MyISAM 类型表与机器独立,方便移植,于是就选择这种表,这并不是选择它的理由。

    • 缺点:你不能去操作正在运行的 MySQL 服务器(在拷贝的过程中有用户通过应用程序访问更新数据,这样就无法备份当时的数据),可能无法移植到其他机器上去。

    3)双机热备份。

    当数据量太大的时候备份是一个很大的问题,MySQL 数据库提供了一种主从备份的机制,也就是双机热备。

    • 优点:适合数据量大的时候。现在明白了,大的互联网公司对于 MySQL 数据备份,都是采用热机备份。搭建多台数据库服务器,进行主从复制。

    数据库不能停机,请问如何备份? 如何进行全备份和增量备份?

    可以使用逻辑备份和双机热备份。

    • 完全备份:完整备份一般一段时间进行一次,且在网站访问量最小的时候,这样常借助批处理文件定时备份。主要是写一个批处理文件在里面写上处理程序的绝对路径然后把要处理的东西写在后面,即完全备份数据库。
    • 增量备份:对 ddl 和 dml 语句进行二进制备份。且 5.0 无法增量备份,5.1 后可以。如果要实现增量备份需要在 my.ini 文件中配置备份路径即可,重启 MySQL 服务器,增量备份就启动了。

    ? 你的备份工具的选择?备份计划是怎么样的?

    视库的大小来定,一般来说 100G 内的库,可以考虑使用 mysqldump 来做,因为 mysqldump 更加轻巧灵活,备份时间选在业务低峰期,可以每天进行都进行全量备份(mysqldump 备份出来的文件比较小,压缩之后更小)。

    100G 以上的库,可以考虑用 xtrabackup 来做,备份速度明显要比 mysqldump 要快。一般是选择一周一个全备,其余每天进行增量备份,备份时间为业务低峰期。

    备份恢复时间是多长?

    物理备份恢复快,逻辑备份恢复慢。

    这里跟机器,尤其是硬盘的速率有关系,以下列举几个仅供参考:

    • 20G 的 2 分钟(mysqldump)
    • 80G 的 30分钟(mysqldump)
    • 111G 的 30分钟(mysqldump)
    • 288G 的 3 小时(xtrabackup)
    • 3T 的 4 小时(xtrabackup)

    逻辑导入时间一般是备份时间的 5 倍以上。

    备份恢复失败如何处理?

    首先在恢复之前就应该做足准备工作,避免恢复的时候出错。比如说备份之后的有效性检查、权限检查、空间检查等。如果万一报错,再根据报错的提示来进行相应的调整。

    ? mysqldump 和 xtrabackup 实现原理?

    1)mysqldump

    mysqldump 是最简单的逻辑备份方式。

    • 在备份 MyISAM 表的时候,如果要得到一致的数据,就需要锁表,简单而粗暴。
    • 在备份 InnoDB 表的时候,加上 –master-data=1 –single-transaction 选项,在事务开始时刻,记录下 binlog pos 点,然后利用 MVCC 来获取一致的数据,由于是一个长事务,在写入和更新量很大的数据库上,将产生非常多的 undo ,显著影响性能,所以要慎用。
    • 优点:简单,可针对单表备份,在全量导出表结构的时候尤其有用。
    • 缺点:简单粗暴,单线程,备份慢而且恢复慢,跨 IDC 有可能遇到时区问题

    2)xtrabackup

    xtrabackup 实际上是物理备份+逻辑备份的组合。

    • 在备份 InnoDB 表的时候,它拷贝 ibd 文件,并一刻不停的监视 redo log 的变化,append 到自己的事务日志文件。在拷贝 ibd 文件过程中,ibd文件本身可能被写”花”,这都不是问题,因为在拷贝完成后的第一个 prepare 阶段,xtrabackup 采用类似于 Innodb 崩溃恢复的方法,把数据文件恢复到与日志文件一致的状态,并把未提交的事务回滚。
    • 如果同时需要备份 MyISAM 表以及 InnoDB 表结构等文件,那么就需要用 flush tables with lock 来获得全局锁,开始拷贝这些不再变化的文件,同时获得 binlog 位置,拷贝结束后释放锁,也停止对 redo log 的监视。

    如何从 mysqldump 产生的全库备份中只恢复某一个库、某一张表?

    具体可见 《MySQL 全库备份中恢复某个库和某张表以及 mysqldump 参数 –ignore-table 介绍》 文章。

    聊聊 MySQL 集群?

    艿艿:这块艿艿懂的少,主要找了一些网络上的资料。

    ? 对于简历中写有熟悉 MySQL 高可用方案?

    我一般先问他现在管理的数据库架构是什么,如果他只说出了主从,而没有说任何 HA 的方案,那么我就可以判断出他没有实际的 HA 经验。

    不过这时候也不能就是断定他不懂 MySQL 高可用,也许是没有实际机会去使用,那么我就要问 MMM 以及 MHA 以及 MM + keepalived 等的原理、实现方式以及它们之间的优势和不足了,一般这种情况下,能说出这个的基本没有。

    • MMM 那东西好像不靠谱,据说不稳定,但是有人在用的,和 mysql-router 比较像,都是指定可写的机器和只读机器。
    • MHA 的话一句话说不完,可以搜索下相关博客。

    聊聊 MySQL 安全?

    感兴趣的胖友,可以看看:

    MySQL 有哪些日志?

    • 错误日志:记录了当 mysqld 启动和停止时,以及服务器在运行过程中发生任何严重错误时的相关信息。

    • 二进制文件:记录了所有的 DDL(数据定义语言)语句和 DML(数据操纵语言)语句,不包括数据查询语句。语句以“事件”的形式保存,它描述了数据的更改过程。(定期删除日志,默认关闭)。

      就是我们上面看到的 MySQL binlog 日志。

    • 查询日志:记录了客户端的所有语句,格式为纯文本格式,可以直接进行读取。(log 日志中记录了所有数据库的操作,对于访问频繁的系统,此日志对系统性能的影响较大,建议关闭,默认关闭)。

    • 慢查询日志:慢查询日志记录了包含所有执行时间超过参数long_query_time(单位:秒)所设置值的 SQL 语句的日志。(纯文本格式)

      重要,一定要开启。

    另外,错误日志和慢查询日志的详细解释,可以看看 《MySQL 日志文件之错误日志和慢查询日志详解》 文章。

    聊聊 MySQL 监控?

    你是如何监控你们的数据库的?

    监控的工具有很多,例如 Zabbix ,Lepus ,我这里用的是 Lepus

    对一个大表做在线 DDL ,怎么进行实施的才能尽可能降低影响?

    使用 pt-online-schema-change ,具体可以看看 《MySQL 大表在线 DML 神器–pt-online-schema-change》 文章。

    另外,还有一些其它的工具,胖友可以搜索下。

    展开全文
  • 【数据库学习】数据库总结

    万次阅读 多人点赞 2018-07-26 13:26:41
    2)范式 各个范式联系: 5NF⊂4NF⊂BCNF⊂3NF⊂2NF⊂1NF ①1NF(满足最低要求的范式:字段不可再分,原子性) 如果一个关系模式R的所有属性都是不可分的基本数据项,则R∈1NF。 自我理解1NF就是无重复的列。 如:...

    1,概念

    1)数据库

    数据库是长期存储在计算机内、有组织的、可共享的大量数据的集合。
    数据库中存储的是数据及数据之间的关系。

    正常情况读写文件系统比数据库快一到两个数据级;
    数据库的查询,大量并发的时候可能最浪费时间的是connect和close。
    数据库的优势是体现的大量数据的查询、统计以及并发读写,不是在速度上。

    2)数据库数据特点

    永久存储、有组织、可共享。
    (数据的最小存取单位是数据项)

    3)数据库系统的特点

    ①数据结构化

    ②数据的共享性,冗余度,易扩充

    ③数据独立性高

    数据独立性包括:物理独立性和逻辑独立性
    a)物理独立性(外模式\模式映像):
    用户程序不需要了解,应用程序要处理的只是数据的逻辑结构,这样当数据的物理存储改变了,应用程序不用改变。
    b)逻辑独立性(模式\内模式映像):
    逻辑独立性是指用户的应用程序与数据库的逻辑结构是相互独立的,即,当数据的逻辑结构改变时,用户程序也可以不变。
    逻辑数据独立性(logical data independence)是指概念模式改变,外模式和应用程序不变。在逻辑数据独立性里,数据的逻辑结构发生改变或存储关系的选择发生改变时用户不会受到影响。改变概念模式,例如增加和删除实体、增加和删除属性、增加和删除联系,不需要改变现有的外模式或重写应用程序。在DBMS中只需要修改视图的定义和映像来支持逻辑数据独立性。对用户来说,不再关心所做的修改是非常重要的。换句话说,模式经过逻辑重构之后,根据外模式构建的应用程序还是和从前一样工作。

    4)概念模型(E-R模型)

    ①概念

    概念模型的一种表示方法:实体联系方法,用E-R方法(E-R模型)来描述。
    概念模型是用于信息世界的建模,是一种信息模型,与具体的DBMS无关。且能满足用户对数据的处理要求,易于修改。
    概念模型与具体数据模型无关且容易向数据库模型转化。

    实体:举行表示
    属性:椭圆表示,并用直线与实体连接
    联系:菱形表示,用直线与实体连接,同时在边上标上联系的类型(1:1,1:n,m:n)。
    

    一个联系转化为一个关系模式,与该联系相连的各实体的码以及联系的属性转化为关系的属性,该关系的码则有三种情况:
    若联系为1:1,则每个实体的码均是该关系的后选码。
    若联系为1:n,则关系的码为n端实体的码。
    若联系为m:n,则关系的码为诸实体码的组合。

    数据库模式定义语言DDL(Data Definition Language):是用于描述数据库中要存储的现实世界实体的语言。一个数据库模式包含该数据库中所有实体的描述定义。这些定义包括结构定义、操作方法定义等。

    数据库逻辑设计: 将概念设计所得到的概念模型转换为某一具体的数据模型(层次、网状、关系、面向对象).

    5)关系完整性

    在关系模型中,关系完整性主要是指以下三方面:

    实体完整性

    所谓的实体完整性就是指关系(所谓的关系就是表)的主码不能取空值;
    比如学生表的主码通常是取学号为主码

    参照完整性

    是指参照关系中每个元素的外码要么为空(NULL),要么等于被参照关系中某个元素的主码;
    参照关系也称为外键表,被参照关系也称为主键表。

    用户定义的完整性

    指对关系中每个属性的取值作一个限制(或称为约束)的具体定义。比如 性别属性只能取”男“或”女“,再就是年龄的取值范围,可以取值0-130 ,但不能取负数,因为年龄不可能是负数。

    6)关系数据库规范化

    目地:使结构更合理,消除存储异常,使数据冗余尽量小,便于插入、删除和更新。
    原则:遵从概念单一化“一事一地”原则,即一个关系模式描述一个实体或实体间的一种联系。
    规范的实质:概念的单一化。
    规范化的方法:将关系模式投影分解成两个或两个以上的关系模式。

    2,依赖和范式

    1)依赖

    ①部分函数依赖

    设X,Y是关系R的两个属性集合,存在X→Y,若X’是X的真子集,存在X’→Y,则称Y部分函数依赖于X。

        举个例子:通过AB能得出C,通过A也能得出C,通过B也能得出C,那么说C部分依赖于AB。
    

    ②完全函数依赖

    设X,Y是关系R的两个属性集合,X’是X的真子集,存在X→Y,但对每一个X’都有X’!→Y,则称Y完全函数依赖于X。

        举个例子:通过AB能得出C,但是AB单独得不出C,那么说C完全依赖于AB.
    

    ③传递函数依赖

    设X,Y,Z是关系R中互不相同的属性集合,存在X→Y(Y !→X),Y→Z,则称Z传递函数依赖于X。

        举个例子:通过A得到B,通过B得到C,但是C得不到B,B得不到A,那么成C传递依赖于A
    

    ④多值依赖

    设R(U)是属性集U上的一个关系模式。X,Y,Z是U的子集,并且Z=U-X-Y。关系模式R(U)中多值依赖X→→Y成立,当且仅当对R(U)的任一关系r,给定的一对(x,z)值有一组Y的值,这组值仅仅决定于x值而与z值无关。

    举例:
    有这样一个关系 <仓库管理员,仓库号,库存产品号> ,假设一个产品只能放到一个仓库中,但是一个仓库可以有若干管理员,那么对应于一个 <仓库管理员,库存产品号>有一个仓库号,而实际上,这个仓库号只与库存产品号有关,与管理员无关,就说这是多值依赖。

    2)范式

    各个范式联系:
    5NF⊂4NF⊂BCNF⊂3NF⊂2NF⊂1NF

    ①1NF(满足最低要求的范式:字段不可再分,原子性)

    如果一个关系模式R的所有属性都是不可分的基本数据项,则R∈1NF。
    自我理解1NF就是无重复的列。
    如:(X1,X2)→X3,X2→X3 其中x3对x2部分依赖
    如:(X1,X2)→X3,X2→X4 其中有非主属性X4部分依赖于候选键{X1,X2},所以这个关系模式不为第二范式;又因为范式之间的关系满足1NF⊇2NF⊇3NF ⊇ BCNF,所以是第一范式。

    ②2NF(消除部分子函数依赖:一个表只能说明一个事物)

    若R∈1NF,且每一个非主属性完全函数依赖于码,则R∈2NF。
    即要求数据库表中的每个实例或行必须可以被唯一地区分。

    ③3NF(消除传递依赖,即消除非主属性对键的传递依赖:每列都与主键有直接关系,不存在传递依赖。任何非主属性不依赖于其它非主属性。)

    若R∈3NF,则每一个非主属性既不部分依赖于码,也不传递依赖于码。
    自我理解是:表中所有的数据元素不但要能唯一地被主键所标识,而且他们之间还必须相互独立,不存在其他的函数关系。

    ④BCNF(修正第三范式、扩充第三范式 消除主属性对键的传递依赖)

    所有非主属性对每一个码都是完全函数依赖;
    所有主属性对每一个不包含它的码,也是完全函数依赖;
    没有任何属性完全函数依赖于非码的任何一组属性。

    ⑤4NF

    关系模式R<U,F>∈1NF,如果对于R的每个非平凡多值依赖X->->Y(Y∉X),X都含有码,则称R<U,F>∈4NF

    3,数据库平台

    数据库管理系统(DBMS):是系统软件,是数据库系统的核心。
    常见数据库管理系统有:Access、mysql、sql server

    4,数据库语句

    SQL 语言是非过程化的语言,易学习。
    SQL语言具有两种使用方式:一种是在终端交互方式下使用,称为交互式SQL; 另一种是嵌入在高级语言的程序中使用,称为嵌入式SQL,而这些高级语言可以是C、PASCAL、COBOL等,称为宿主语言。

    1)基本对象

    关系数据库系统支持 三级模式结构,其概念模式、外模式和内模式中的基本对象有表、视图和索引。
    三级模式结构有效地组织、管理数据,提高了数据库的逻辑独立性和物理独立性。使数据库达到了数据独立性。

    ①模式(schema,逻辑模式)

    A.概念

    是数据库中全体数据的逻辑结构和特征的描述,是所有用户的公共数据视图。是数据库系统模式结构的中间层,即不涉及数据的物理存储细节和硬件环境,也与具体的应用程序、开发工具及高级设计语言无关。
    模式是数据库数据在逻辑级上的视图,一个数据库只有一个模式。

    也用于区分一个 大项目中的各个小项目,这样若有相同名字的表的话, 不同模式不会发生冲突。相当于编程时的命名空间。
    如:
    一个公司的系统,分2个子系统,分别为财务系统和人力资源系统.
    这2个子系统, 共用一个数据库。
    那么 财务系统的表, 可以放在财务的模式(schema).
    人力资源系统的表,放在人力资源系统的模式里面。
    这2个子系统,能够互相访问对方的表。
    但是又不因为 表重名 的问题,影响对方。

    B.访问

    访问具体的一个表,可以由 4个部分组成
    分别为 服务器名, 数据库名,模式名,表名。

    对于访问本地的数据库:
    不指定模式名的话, 数据库默认使用dbo模式。
    (DBO是每个数据库的默认用户,具有所有者权限,即DbOwner )
    pg不指定模式的话默认使用public模式。

    C.操作

    --创建
    CREATE SCHEMA schema_name;
    

    ②外模式(子模式,用户模式)

    是数据库用户能够看见和使用的局部数据的逻辑结构和特征的描述,是数据库用户的数据视图,是与某一应用有关的数据的逻辑表示。
    外模式通常是模式的子集,一个数据库可以有多个外模式,但一个应用程序只能有一个外模式。
    外模式是保证数据库安全性的一个有力措施:用户只能访问外模式的数据,其余数据不可见。

    ③内模式(存储模式)

    一个数据库只有一个内模式。
    内模式是数据物理结构和存储方式的描述,是数据在数据库内部的表示方式。

    数据库管理系统在三级模式之间提供了两层映像:
    外模式/模式映像(保证数据的逻辑独立性)
    模式/内模式映像(保证了物理独立性)

    ④表

    表分为临时表和永久表。

    临时表

    临时表存储在tempdb中(如下),当不再使用时会自动删除。

    IF OBJECT_ID('tempdb..#ownerAnnouce') IS NOT NULL
    

    根据进程独立,只有进程的拥有者有表的访问权限,其它用户不能访问该表;
    不同的用户进程,创建的临时表虽然“名字”相同,但是这些表之间相互并不存在任何关系;在SQLSERVER中,通过特别的命名机制保证临时表的进程独立性。

    临时表有两种类型:本地和全局。

    A.本地临时表

    名称以单个数字符号 (#) 打头;它们仅对当前的用户连接是可见的;当用户从 SQL Server 实例断开连接时被删除。

    B.全局临时表

    名称以两个数字符号 (##) 打头,创建后对任何用户都是可见的,当所有引用该表的用户从 SQL Server 断开连接时被删除。

    临时表优点

    真正的临时表利用了数据库临时表空间,由数据库系统自动进行维护,因此节省了表空间。并且由于临时表空间一般利用虚拟内存,大大减少了硬盘的I/O次数,因此也提高了系统效率。

    临时表的创建

    A. create table #临时表名
    B.select * into #临时表名 from 表名(永久表或临时表)

    ⑤视图

    A.概念

    视图是一张虚拟表,视图的字段是自定义的,视图只支持查询,查询数据来源于实体表。

    一般视图是只读的,在pg中通过添加规则可以进行视图的更新。从pg9.1开始,用户可以通过INSTEAD OF的触发器来实现视图更新。

    B.优缺点

    • 优点
      视图可以将多个复杂关联表提取信息,方便查询,但不能优化查询速度(调用视图查询时才进行动态检索数据)。
      即,如果你认为一个sql查询非常慢,为了优化它的速度把它建立成视图,这是不可取的,视图是每次调用的时候生成,并不是数据源变化就刷新数据,并不能提高检索效率。
    • 缺点
      视图就是临时表,即调即用,如果数据源没有任何变化,在反复调用中,临时表会缓存到内存中(SHOW STATUS LIKE ‘Qcache%’;),视图中不能创建索引,但视图可以基于索引生成 。

    C.场景

    1. 重用SQL语句;
    2. 简化复杂SQL操作(生成视图),重用查询且不需要知道基本查询细节。
    3. 保护数据。用户有表的部分权限。
    4. 更改数据格式和表示。视图可返回与底层表不同的表示和格式。

    D.操作

    --创建视图
    CREATE OR REPLACE VIEW view_name(studentName, studentAge)  --(studentName, studentAge) 可以去掉,加上是重命名列名
    AS 
    SELECT user_info.name, user_info.age from user_info;
    
    --删除视图
    DROP VIEW view_name;
    

    ⑥实体视图

    相对于普通的视图来说,实体化视图的不同之处在于实体化视图管理存储数据,占据数据库的物理空间。

    实体化视图的结果会保存在一个普通的数据表中,在对实体化视图进行查询的时候不再会对创建实体化视图的基表进行查询,而是直接查询实体化视图对应的结果表,然后通过定期的刷新机制来更新实体化视图表中的数据。

    demo

    -- 创建物化视图
    CREATE MATERIALIZED VIEW MAX_ID_MVIEW 
    AS
      SELECT PART_ID, MAX(ID)  MAX_ID
      FROM PART_DETAIL GROUP BY PART_ID;
      
    -- 如果刷新时不带CONCURRENTLY则无需创建唯一索引
    CREATE UNIQUE INDEX IDX_MAX_ID ON MAX_ID_MVIEW(PART_ID);
    
    -- 利用watch命令每120s刷新一次物化视图
    REFRESH MATERIALIZED VIEW CONCURRENTLY MAX_ID_MVIEW; \watch 120
    

    作用

    1. 减轻网络负担:通过实体化视图将数据从一个数据库分发到多个不同的数据库上,通过对多个数据库访问来减轻对单个数据库的网络负担。
    2. 搭建分发环境:通过从一个中央数据库将数据分发到多个节点数据库,达到分发数据的目的。
    3. 复制数据子集:实体化视图可以进行行级/列级的筛选,这样可以复制需要的那一部分数据。
    4. 实体化视图是用于汇总,预计算,复制或分发数据的对象, 在大型的数据库中使用它可以提高涉及到的SUM,COUNT,AVG,MIN,MAX等的表的查询的速度。
    5. 物化视图的快速刷新采用了增量的机制,在刷新时,只针对基表上发生变化的数据进行刷新。因此快速刷新是物化视图刷新方式的首选。

    ⑦索引

    为了改变数据库的性能和可访问性所增加的一组辅助性数据。
    详细介绍见下文。

    2)数据结构创建及修改

    1>数据库操作

    --查看数据库
    show databases;
    --建库
    create database children;
    --删库
    drop database children;
    --调用数据库
    use children;
    

    2>表操作

    --pg建表
    CREATE TABLE if not exists public.stu_info(   --创建public模式下的表
        FOREIGN KEY (ID) REFERENCES people_info (ID),  --单个外键,一般情况下不建议增加这种强约束
        id int8 PRIMARY KEY,    --系统会自动为主键创建一个隐含的索引  primary key(Sno,Cno)组合主键
        address VARCHAR (255) UNIQUE NOT NULL,
        birthday TIMESTAMP NOT NULL,  
        age int default 15,  --默认值,影响后续插入值。但对旧数据没有影响。
       CONSTRAINT student2_pkey PRIMARY KEY (id),
       CONSTRAINT ck_age CHECK(age<18), --检查约束,约束某些字段需要满足的要求。NULL被认为满足条件。
       CONSTRAINT uk_tbl_unique_a_b unique(id ,address) --唯一约束。唯一键中可以写入任意多个NULL!即可以存在多组 1,null  
    )
    WITH (
      OIDS=FALSE
    );
    ALTER TABLE myschema.tb_test
      OWNER TO postgres;
    
    --重命名表
    alter table tableName RENAME TO newName;--pg
    

    i>指定默认值

    一般用于数据预置或create_time、update_time的自动录入。各个DBMS获得系统日期如下:

    DBMS函数/变量
    AccessNOW()
    DB2CURRENT_DATE
    MySQLCURRENT_DATE()
    OracleSYSDATE
    PostgreSQLCURRENT_DATE
    SQL ServerGETDATE()
    SQLitedate(‘now’)
    --修改默认值
    alter table tableName alter column age set DEFAULT 15;--pg
    --删除默认值
    alter table tableName alter column age drop DEFAULT 15;--pg
    

    ii>表约束

    表约束有:主键、外键、检查约束、唯一约束、非NULL约束。

    --添加主键(有些DBMS不允许在建表之后修改主键)
    ALTER TABLE tableName ADD PRIMARY KEY(fieldName) ; --fieldName在库中不能有重复数据
    --增加约束
    alter table tableName add check (age<16);--pg 增加检查约束,约束名为:tableName_age_check
    alter table tableName add constraint uk_tbl_unique_a_b unique (a,b);--pg 增加唯一约束
    alter table tableName alter column fieldName set NOT NULL;--pg 增加非空约束
    --删除约束
    alter table tableName drop constraint constraintName;--pg 根据约束名删除检查约束、唯一约束
    alter table tableName alter column fieldName drop NOT NULL;--pg 删除非空约束(非空约束没有约束名)
    

    iii>修改表字段

    --增加列\添加一个字段
    alter table tableName add column columnName varchar(30) default 'a' not null; --column 可加可不加
    --删除列(会连同字段上的约束一并删除)
    alter table tableName drop column columnName; --column 可加可不加
    --修改列名:
    alter table tableName rename column fieldName TO fieldNameNew;--pg、oracle中
    exec sp_rename '[表名].[列名]‘,’[表名].[新列名]'--在sqlserver
    ALTER TABLE 表名 CHANGE 列名 新列名 列类型--mysql
    
    --修改字段类型或长度:
    alter table tableName modify column 字段名 类型;
    alter table tableName alter column fieldName TYPE text;--pg修改字段数据类型。仅在当前数据都可以隐式转换为新类型时才可以执行成功
    --将NAME最大列宽增加到10个字符
    ALTER TABLE CARD ALTER COLUMN NAME varchar(10) 
    
    

    3)数据查询

    数据库处理一个查询的步骤:
    客户端连接->查询缓存->解析器->预处理器->查询优化器->查询执行引擎->数据

    1. 客户端发送一条查询给服务器;
    2. 服务器先会检查查询缓存query cache,如果命中了缓存,则立即返回存储在缓存中的结果。否则进入下一阶段;
    3. 服务器端进行SQL解析parsing、预处理transition,再由优化器optimization生成对应的执行计划;
    4. 根据优化器生成的执行计划,调用存储引擎的API来执行分布distribution查询;
    5. 将结果返回给客户端。
    

    1>简单查询

    select * from student;
    select 1+2; #当表达式与表列无关时,在pg和mysql中不适用“from tableName”
    

    拼接查询:
    Access和 SQL Server使用 + 号。DB2、Oracle、PostgreSQL、SQLite和Open Office Base 使用 ||。

    select label || '_' || id from user_info;  --结果:abc_1
    

    2>条件查询

    功能表达举例备注
    等于=
    不等于<>!=
    空值is null,is not nullselect * from student where class is not null;
    确定集合,ininnot inselect * from student where age not in(21,23);在sql标准中仅支持100个以内的占位符作为查询参数。根据数据库不同,对in的参数和长度有不同的限制,否则会直接报错。
    确定范围between and , not between and
    模糊查询like ,not likeselect * from student where name like '%丽%';’ %代表任意长度(可为0)的字符串;_(下划线):代表任意单个字符。(汉字代表2个字符,所以一个汉字用两个下划线);\为转义字符

    select出的别名是否可以作为where查询条件?不能,因为执行计划中where在selectz之前。如:select label a from asset_field where a = '分类'

    3>排序查询

    非排序查询的数据顺序:pg默认返回数据的顺序是插入表的数据顺序。

    # 单个排序:
    select name,age from student order by age desc; # 默认为asc:升序排列。desc:降序排序。
    
    #多重排序:
    order by 字段5,字段6 asc  //先按字段5排序,再按字段6排序
    

    4>case when then查询

    --简单case函数
    case sex
      when '1' then '男'
      when '2' then '女’
      else '其他' end
    --case搜索函数
    case when sex = '1' then ''
         when sex = '2' then ''
         else '其他' end  
    

    应用:

    select (case sex
    		  when '1' then '男'
    		  when '2' then '女’
    		  else '其他' end)sex from student where class = 11;
    

    5>where、group by、having

    大部分的where都可以背having代替,不同的是where过滤行,而having过滤分组,用在group by之后。(where在分组前过滤,having在分组后过滤)

    select class,avg(age) as age from student 
    group by class 
    having avg(age)>23 /*要求平均年龄大于23*/
    

    where肯定在group by 之前
    where后的条件表达式里不允许使用聚合函数,而having可以。

    6> 函数

    聚合函数

    avg平均数,同min(age)、max(age)、sum(age)

    select avg(age)  as age from student group by class order by age desc; 
    

    count

    select count(class)from student;
    /*数量 因为使用了92标准,所以null不计入count*/
    count(*) 跟count(1) 的结果一样,返回记录的总行数,都包括对NULL 的统计,
    count(column) 是不包括NULL 的统计。
    

    distinct

    select distinct(class)from student;/*去重复,出现所有不同的内容*/
    select count(distinct(class)) from student;
    

    其它

    LEFT(“123456789”,LEN(“数据库”))/*分两步运算,第一步是运算LEN函数,结果是3。第二步针对123456789这个字符从左边开始连续取三个数*/
    
    select top 100 * from student where no=11;/*显示前100行*/
    select isnull(name,'无') as name,age,class from student;/*isnull之后就无列名了 用as给列重命名*/
    select name,age,class,'the name is' + name as introduce from student;/*用加号形成一个自定义列*/
    

    7>SQL-92 规则

    是数据库的一个标准。以下代码 写在存储过程前面,表示遵从SQL-92 规则。
    SQL-92 标准要求在对空值进行等于 (=) 或不等于 (<) 比较时取值为 FALSE。

    SET ANSI_NULLS ON
    GO
    SET QUOTED_IDENTIFIER ON
    GO
    

    SET ANSI_NULLS ON
    即使 column_name 中包含空值,使用 WHERE column_name = NULL 的 SELECT 语句仍返回零行。
    即使 column_name 中包含非空值,使用 WHERE column_name < NULL 的 SELECT 语句仍会返回零行。

    SET QUOTED_IDENTIFIER ON
    为ON:标识符可以由双引号分隔,而文字必须由单引号分隔。
    为OFF:标识符不可加引号。

    8>多层查询 EXISTS

    如果内层查询语句查询到符合条件的记录,就返回一个真值(true),否则,将返回
    一个假值(false)。

    SELECT * FROM employee
    WHERE EXISTS
    (SELECT d_name FROM department WHERE d_id=1003);
    

    同理还有:NOT EXISTS。

    9>关联查询、联结(JOIN)表

    关系数据库设计中表的设计是把信息分解成多个表,一类数据一个表,各表通过某些共同的值相互关联。
    一般情况下我们不建议建立外键这种强关联的关联信息。

    可伸缩(scale)
    能够适应不断增加的工作量而不失败。关系数据库的可伸缩性远远优于非关系数据库。

    注意:

    1. 联结的表越多效率越低。
    2. SQL本身不限制联结表的数目,但DBMS有最大数目限制。
    3. 一般情况下,联结查询比子查询快,实际应用中应该尝试两种方法看哪种快。
    JSON类型说明备注
    JOIN如果表中有至少一个匹配,则返回行INNER已省略。外联结比内联结返回的行数多(还包括没有关联的行)
    LEFT JOIN即使右表中没有匹配,也从左表返回所有的行OUTER已省略
    RIGHT JOIN即使左表中没有匹配,也从右表返回所有的行OUTER已省略
    FULL JOIN只要其中一个表中存在匹配,就返回行OUTER已省略

    luo_persons表:

    id_plast_namefirst_nameaddresscity

    luo_orders表:

    id_oorder_noid_p

    要求输出:谁订购了产品,并且他们订购了什么产品?

    ①联表查询(等值联结,equijoin)

    SELECT
    	a.last_name, a.first_name, b.order_no
    FROM
    	luo_persons a,
    	luo_orders b 
    WHERE
    	a.id_p = b.id_p	
    

    ②join查询(内联结,inner join, 推荐)

    /*(推荐)等值联结明确指定联结类型可转换为inner join

    SELECT
    	last_name,
    	first_name,
    	order_no 
    FROM
    	luo_persons
    	INNER JOIN luo_orders ON luo_persons.id_p = luo_orders.id_p
    

    ③union查询(复合查询、并查询)

    UNION 操作符用于合并两个或多个 SELECT 语句的结果集。

    注意:

    1. UNION 内部的 SELECT 语句必须拥有相同数量的列、表达式或聚集函数。列也必须拥有相似的数据类型(可以不完全相同,但是可以互相转换)。同时,每条 SELECT 语句中的列的顺序必须相同。
    2. 默认地,UNION 操作符选取不同的值。如果允许重复的值,请使用 UNION ALL。
    3. UNION能组合的最大语句数目限制需要查询具体的DBMS文档。
    	select id_p from luo_persons 
    	union 
    	SELECT id_p from luo_orders
    

    某些DBMS中还支持其它类型的UNION:

    1. EXCEPT(或MINUS):检索在第一个表中存在而在第二个表中不存在的行;
    2. INTERSECT:检索两个表中都存在的行。

    4)数据更新

    ①数据插入

    i> insert

    insert into tableName(no,name) values'1','kate');
    --按表中列的顺序,但如果表结构发生了变化那么对应 sql也要改。不推荐
    insert into product values('001','001','N','N');
    

    有自增长主键(id)的插入:
    i>可以把id的值设置为null或者0,这样mysql会自己做处理
    ii>手动指定需要插入的列,不插入这一个字段的数据!

    ii> insert select

    将select结果插入表中,一般用于可重复执行的sql。
    注:
    1.insert select语句中,如果select返回多行,那么会insert多行数据。

    INSERT INTO "public"."vendors"("vend_name", "vend_id") select 'vend_name1', 1 
    WHERE NOT EXISTS (select 1  FROM "public"."vendors" WHERE vend_id = 1);
    

    iii> select into

    1. SELECT INTO 语句从一个表中选取数据,然后把数据插入另一个表中。
    2. SELECT INTO 语句常用于创建表的备份复件或者用于对记录进行存档。
    3. select into 可以从多个表中检索数据,但只能插入到一个表中。

    函数里面,把一个查询出来的值存入临时变量:

    SELECT LastName,FirstName
    INTO _lName,_fName  FROM Persons
    

    也可以存入临时表中:

    SELECT *
    INTO Persons_backup
    FROM Persons
    

    ②数据修改

    update tableName set name = 'Tom' where name='kate';
    update tableName set age = age + 1;
    

    5)数据删除

    删除表中几行:

    DELETE FROM Person WHERE LastName = 'Wilson' 
    

    删除表中所有行,保留表、不释放空间。所删除的每行记录都会进日志,可以回滚。

    DELETE FROM table_name
    

    删除表:删除内容和定义,释放空间

    drop table user;    
    DROP TABLE IF EXISTS "public"."role_relation"; 可重复执行sql
    

    删除表中所有数据,保留表、同时释放空间(速度比delete快,但是无法撤回,日志里面只记录页释放):

    truncate table book;
    

    truncate是DDL语句(Data Definition,数据定义语句),相当于用重新定义一个新表的方法把原表的内容直接丢弃了,所以执行起来很快。delete语句是DML语句(Data Manipulation,数据操作语句),把数据一条一条的删除,所以删除多行数据执行较慢。

    6)其他注意

    ①加中括号

    列名、表名、存储过程名、函数名等都可以按需要加中括号。防止某些关键字在应用中引起歧义。

    select [select] from 表名;
    

    7)数据库授权

    ①授权GRANT

        GRANT <权限>
        ON <对象类型>  <对象名>
        TO <用户>
        [WITH GRANT OPTION]  // 如果指定了WITH GRANT OPTION子句,则获得某种权限的用户还可以把这种权限再授予其他用户,允许用户传递权限,但是不允许循环授权。
    

    举例:

    例1:把查询Student表的权限授给用户U1
    GRANT SELECT
    ON TABLE Student
    TO U1;
    
    例2:把全部操作权限授予用户U2和U3
    GRANT ALL PRIVILEGES
    ON TABLE Student,Course
    TO U2,U3;
    
    例3:把查询权限授予所有用户
    GRANT SELECT
    ON TABLE SC
    TO PUBLIC;
    

    ③权限的收回 REVOKE

    REVOKE <权限>
    ON <对象类型>  <对象名>
    FROM <用户>
    

    举例:

    例6:收回所有用户对表sc的查询权限
    REVOKE SELECT
    ON TABLE SC
    FROM PUBLIC;
    

    ③对用户模式的授权

    由DBA(数据库管理员,Database Administrator,简称DBA)在创建用户时实现。

    CREATE USER <username>
    [WITH] [DBA|RESOURCE|CONNECT]
    

    只有系统的超级用户才有权创建一个新的数据库用户
    新创建的用户有三种权限:DB,|RESOURCE,CONNECT

    ④数据库角色创建及授权

    CREATE ROLE <角色名>
    

    给角色授权:

    GRANT <权限>
    ON <对象类型>  对象名
    TO <角色>
    

    将一个角色授予其他的角色或用户

    GRANT <角色1>
    TO <角色3>
    [WITH ADMIN OPTION]//如果指定了WITH ADMIN OPTION 子句,则获得某种权限的角色或用户还可以把这种权限再授予其他角色
    

    角色权限的收回

    REVOKE <权限>
    ON <对象类型>  <对象名>
    FROM <角色>
    

    ⑤DENY 拒绝账户访问

    在安全系统中创建一项,以拒绝给当前数据库内的安全帐户授予权限并防止安全帐户通过其组或角色成员资格继承权限。

    DENY { ALL | statement [ ,...n ] }
    TO security_account [ ,...n ]
    

    和授权区别:
    不授权是没有权限,但是如果这个用户属于某个角色,这个角色有了权限,那么这个用户可以从角色继承这个权限。如果选择了deny,即使这个用户属于某个具有权限的角色,他也没有权限。

    8)数据类型

    ①uniqueidentifier

    可存储16字节的二进制值,其作用与全局唯一标记符(GUID)一样。GUID是唯一的二进制数:世界上的任何两台计算机都不会生成重复的GUID值。GUID主要用于在用于多个节点,多台计算机的网络中,分配必须具有唯一性的标识符。

    9)函数

    ①OBJECT_ID

    A. 返回指定对象的对象 ID

    USE master;
    GO
    SELECT OBJECT_ID(N'AdventureWorks.Production.WorkOrder') AS 'Object ID';
    GO
    

    B. 验证对象是否存在

    USE AdventureWorks;
    GO
    IF OBJECT_ID (N'dbo.AWBuildVersion', N'U') IS NOT NULL
    DROP TABLE dbo.AWBuildVersion;
    GO
    

    N是显式的将非unicode字符转成unicode字符,它来自 SQL-92 标准中的 National(Unicode)数据类型,用于扩展和标准化,在这里可以不用,写作object_id(PerPersonData)。

    10)SQL中的借书经典案例

    ①问题描述

    本题用到下面三个关系表:
    CARD 借书卡。 CNO 卡号,NAME 姓名,CLASS 班级
    BOOKS 图书。 BNO 书号,BNAME 书名, AUTHOR 作者,PRICE 单价,QUANTITY 库存册数
    BORROW 借书记录。 CNO 借书卡号,BNO 书号,RDATE 还书日期

    备注:限定每人每种书只能借一本;库存册数随借书、还书而改变。

    要求1. 写出建立BORROW表的SQL语句,要求定义主码完整性约束和引用完整性约束。

    CREATE TABLE BORROW(
        CNO int FOREIGN KEY REFERENCES CARD(CNO),
        BNO int FOREIGN KEY REFERENCES BOOKS(BNO),
        RDATE datetime,
        PRIMARY KEY(CNO,BNO)) 
    

    要求2. 找出借书超过5本的读者,输出借书卡号及所借图书册数。

    SELECT CNO,借图书册数=COUNT(*)
    FROM BORROW
    GROUP BY CNO
    HAVING COUNT(*)>5
    

    要求3. 查询借阅了"水浒"一书的读者,输出姓名及班级

    CARD 借书卡。 CNO 卡号,NAME 姓名,CLASS 班级
    BOOKS 图书。 BNO 书号,BNAME 书名, AUTHOR 作者,PRICE 单价,QUANTITY 库存册数
    BORROW 借书记录。 CNO 借书卡号,BNO 书号,RDATE 还书日期

    SELECT * FROM CARD c
    WHERE EXISTS(
        SELECT * FROM BORROW a,BOOKS b 
        WHERE a.BNO=b.BNO
            AND b.BNAME=N'水浒'
            AND a.CNO=c.CNO) 
    

    要求4. 查询过期未还图书,输出借阅者(卡号)、书号及还书日期。

    SELECT * FROM BORROW 
    WHERE RDATE<GETDATE() 
    

    要求5. 查询书名包括"网络"关键词的图书,输出书号、书名、作者。

    SELECT BNO,BNAME,AUTHOR FROM BOOKS
    WHERE BNAME LIKE N'%网络%' 
    

    N’string’ 表示string是个Unicode字符串

    要求6. 查询现有图书中价格最高的图书,输出书名及作者。

    SELECT BNO,BNAME,AUTHOR FROM BOOKS
    WHERE PRICE=(
        SELECT MAX(PRICE) FROM BOOKS) 
    

    要求7. 查询当前借了"计算方法"但没有借"计算方法习题集"的读者,输出其借书卡号,并按卡号降序排序输出。

    SELECT a.CNO
    FROM BORROW a,BOOKS b
    WHERE a.BNO=b.BNO AND b.BNAME=N'计算方法'
        AND NOT EXISTS(
            SELECT * FROM BORROW aa,BOOKS bb
            WHERE aa.BNO=bb.BNO
                AND bb.BNAME=N'计算方法习题集'
                AND aa.CNO=a.CNO)
    ORDER BY a.CNO DESC 
    

    要求8. 将"C01"班同学所借图书的还期都延长一周。

    UPDATE b SET RDATE=DATEADD(Day,7,b.RDATE)
    FROM CARD a,BORROW b
    WHERE a.CNO=b.CNO
        AND a.CLASS=N'C01' 
    
    DATEADD(datepart,number,date)  
    date 参数是合法的日期表达式。number 是您希望添加的间隔数;对于未来的时间,此数是正数,对于过去的时间,此数是负数。
    

    要求9. 从BOOKS表中删除当前无人借阅的图书记录。

    DELETE FROM BOOKS a
    WHERE NOT EXISTS(
        SELECT * FROM BORROW
        WHERE BNO=a.BNO) 
    

    要求11.在BORROW表上建立一个触发器,完成如下功能:如果读者借阅的书名是"数据库技术及应用",就将该读者的借阅记录保存在BORROW_SAVE表中(注ORROW_SAVE表结构同BORROW表)。

    CREATE TRIGGER TR_SAVE ON BORROW
    FOR INSERT,UPDATE
    AS
    IF @@ROWCOUNT>0
    INSERT BORROW_SAVE SELECT i.*
    FROM INSERTED i,BOOKS b
    WHERE i.BNO=b.BNO
        AND b.BNAME=N'数据库技术及应用' 
    

    要求13.查询当前同时借有"计算方法"和"组合数学"两本书的读者,输出其借书卡号,并按卡号升序排序输出。

    SELECT a.CNO
    FROM BORROW a,BOOKS b
    WHERE a.BNO=b.BNO
        AND b.BNAME IN(N'计算方法',N'组合数学')
    GROUP BY a.CNO
    HAVING COUNT(*)=2
    ORDER BY a.CNO DESC
    

    5,索引

    6,关系运算

    1)集合运算符

    并(∪)、差(-)、交(∩)、笛卡尔积(×)

    笛卡尔积(直积):表示为X × Y,第一个对象是X的成员而第二个对象是Y的所有可能有序对的其中一个成员。
    例如,A={a,b}, B={0,1,2},则
    A×B={(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)}
    

    2)专门的关系运算符

    ①选择(限制、σ)

    在关系R中选择满足给定条件的诸元组。

    ②投影(π)

    关系R上的投影是从R中选择出若干属性列组成新的关系。
    这里写图片描述
    投影之后可既改变行,又改变元组的数量。

    ③连接(θ连接、⋈)

    从两个关系的笛卡尔积中选取属性间满足一定条件的元组。(连接由乘积(笛卡尔积)、选择、投影组成)
    分为等值连接(=)、自然连接(要求比较的分量是相同的属性组,并在结果中把重复的属性列去掉)。
    这里写图片描述

    ④除运算(➗)

    RS÷S的意义就是:“在R和S的联系RS中,找出与S中所有的元组有关系的R元组”。

    3)算术比较符

    4)逻辑运算符

    非与或

    7,数据库完整性

    1)实体完整性

    主键唯一且不为空。

    2)参照完整性

    不允许修改外码
    级连操作:当删除或修改被参照表时,同时删除或修改参照表中的不一致元祖。

    3)用户定义的完整性

    4)触发器(Trigger)

    是用户定义在关系表上的一类由事件驱动的特殊过程。一旦定义,任何用户对标的增删改操作均由服务器自动激活相应触发器,在DBMS核心层进行集中的完整性控制。

    8,存储过程(Stored Procedure)

    1)概念

    存储过程是一组为了完成特定功能的SQL 语句集,存储在数据库中,经过第一次编译后再次调用不需要再次编译,用户通过指定存储过程的名字并给出参数(如果该存储过程带有参数)来执行它。

    2)优点

    ①执行效率高

    存储过程因为SQL 语句已经预编译过了,因此运行的速度比较快。

    ②降低了客户机和服务器之间的通信

    存储过程在服务器端运行,减少客户端的压力。
    减少网络流量,客户端调用存储过程只需要传存储过程名和相关参数即可,与传输SQL 语句相比自然数据量少了很多。

    ③方便实施企业规则(提高了可维护性、安全性)

    可以把企业规则的运算程序写成存储过程放入数据库服务器中,由RDBMS管理,既有利于集中控制,又能够方便地进行维护。
    当用户规则发生变化时,只要修改存储过程,无须修改其他应用程序。

    允许模块化程序设计,就是说只需要创建一次过程,以后在程序中就可以调用该过程任意次,类似方法的复用。
    增强了使用的安全性,充分利用系统管理员可以对执行的某一个存储过程进行权限限制,从而能够实现对某些数据访问的限制,避免非授权用户对数据的访问,保证数据的安全。程序员直接调用存储过程,根本不知道表结构是什么,有什么字段,没有直接暴露表名以及字段名给程序员。

    ④安全性高

    可设定只有某些用户才具有对指定存储过程的使用权。

    3)缺点

    调试麻烦(至少没有像开发程序那样容易),可移植性不灵活(因为存储过程是依赖于具体的数据库)。

    4)场景

    当一个事务涉及到多个SQL语句时或者涉及到对多个表的操作时就要考虑用存储过程;
    当在一个事务的完成需要很复杂的商业逻辑时(比如,对多个数据的操作,对多个状态的判断更改等)要考虑;还有就是比较复杂的统计和汇总也要考虑,但是过多的使用存储过程会降低系统的移植性。

    sql尽量放在存储过程中。
    面对大量数据,用orcle比sql server稳定。

    5)代码

    ①创建

    use test1
    set ansi_nulls on
    go
    set quoted_identifier on
    go
    create procedure procedure_student
    	-- add the parameters for the stored procedure here
    	@gradeid int,
    	@gradename varchar(10) --传入的参数
    as
    begin
    	--计算内容
    end
    go
    

    ②执行

    exec dbo.procedure_student 1,'g'
    

    9,数据库恢复技术

    1)事务

    10,并发控制

    为了保证事务的隔离性和一致性,DBMS需要对并发操作进行正确调度。

    1)并发操作带来的数据不一致性

    ①更新丢失

    ②读“脏”数据

    事务T1修改数据,T2读取数据,T1由于某种原因被撤销,则数据修改回原值,但T2读取的数据是之前修改的数据,即脏数据、不正确的数据。

    ③不可重复读

    事务T1读数据后,T2修改了数据,T1无法再现上一次读取的结果。

    ④幻读

    事务T1读数据后,T2新增或者删除了数据,T1无法再现上一次读取的结果。

    2)并发控制技术

    悲观锁:封锁
    乐观锁:版本号、时间戳

    3)封锁分类(悲观锁)

    ①共享锁(S锁、读锁)

    (读取)操作创建的锁。其他用户可以并发读取数据,但任何事物都不能获取数据上的排它锁,直到已释放所有共享锁。
    若事务T对数据对象A加上S锁,则事务T只能读A;其他事务只能再对A加S锁,而不能加X锁,直到T释放A上的S锁。这就保证了其他事务可以读A,但在T释放A上的S锁之前不能对A做任何修改。

    ②排它锁(X锁、写锁,eXclusive lock)

    若事物T对数据对象A加上X锁,则只允许T读取和修改A,其它任何事务都不能再对A加任何类型的锁,直到T释放A上的锁。它防止任何其它事务获取资源上的锁,直到在事务的末尾将资源上的原始锁释放为止。

    ③更新锁(U锁)

    用来预定要对此页施加X锁,它允许其他事务读,但不允许再施加U锁或X锁;当被读取的页将要被更新时,则升级为X锁;U锁一直到事务结束时才能被释放。

    4)封锁问题

    ①活锁

    i>饥饿

    考虑一台打印机分配的例子,当有多个进程需要打印文件时,系统按照短文件优先的策略排序,该策略具有平均等待时间短的优点,似乎非常合理,但当短文件打印任务源源不断时,长文件的打印任务将被无限期地推迟,导致饥饿以至饿死。

    ii>活锁概念

    与饥饿相关的另外一个概念称为活锁,在忙式等待条件下发生的饥饿,称为活锁。

    a)忙式等待:不进入等待状态的等待。
    b)阻塞式等待:进程得不到共享资源时将进入阻塞状态,让出CPU 给其他进程使用。
    c)忙等待和阻塞式等待的相同之处:
    在于进程都不具备继续向前推进的条件,不同之处在于处于忙等待的进程不主动放弃CPU,尽管CPU 可能被剥夺,因而是低效的;而处于阻塞状态的进程主动放弃CPU ,因而是高效的。

    iii>举例

    事务T1请求封锁R,T2请求封锁R,T3请求封锁R……
    T1释放R之后,系统批准了T3的请求,然后是T4……请求,T2可能永远等待下去。(在整个过程中,事务T2 在不断的重复尝试获取锁R)。

    iv>与死锁区别

    活锁的时候,进程是不会阻塞的,这会导致耗尽CPU 资源,这是与死锁最明显的区别。
    处于活锁的实体是在不断的改变状态,所谓的“活”, 而处于死锁的实体表现为等待;活锁有一定几率解开,而死锁是无法解开的。

    v>避免方式

    采用先来先服务策略。

    ②死锁

    i>概念

    是指两个或两个以上的进程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去,此时称系统处于死锁状态或系统产生了死锁。

    ii>举例

    T1请求封锁R1,T2请求封锁R2,然后T1又请求封锁R2,T1一直等待T2释放R2,此时,T2请求封锁R1,T2将一直等待T1释放R1。

    iii>死锁原因

    在数据库中,产生死锁的原因主要是:
    两个或多个事务都已封锁了一些数据对象,然后又都请求其他事务已封锁的数据对象,从而出现死等待。

    产生死锁的四个必要条件:
    (1) 互斥条件:一个资源每次只能被一个进程使用。
    (2) 请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。
    (3) 不可剥夺条件: 进程已获得的资源,在末使用完之前,不能强行剥夺。
    (4) 环路等待条件: 若干进程之间形成一种头尾相接的循环等待资源关系。
    只要系统发生了死锁,这些条件必然成立,而只要上述条件之一不满足,就不会发生死
    锁。

    iv>死锁预防

    预防死锁的发生只需破坏死锁产生的四个必要条件之一即可。

    1. 破坏互斥条件
      如果允许系统资源都能共享使用,则系统不会进入死锁状态。但有些资源根本不能同时访问,如打印机等临界资源只能互斥使用。所以,破坏互斥条件而预防死锁的方法不太可行,而且在有的场合应该保护这种互斥性。
    2. 破坏不剥夺条件
      当一个已保持了某些不可剥夺资源的进程,请求新的资源而得不到满足时,它必须释放已经保持的所有资源,待以后需要时再重新申请。这意味着,一个进程已占有的资源会被暂时释放,或者说是被剥夺了,或从而破坏了不可剥夺条件。
      该策略实现起来比较复杂,释放已获得的资源可能造成前一阶段工作的失效,反复地申请和释放资源会增加系统开销,降低系统吞吐量。这种方法常用于状态易于保存和恢复的资源,如CPU 的寄存器及内存资源,一般不能用于打印机之类的资源。
    3. 破坏请求和保持条件
      釆用预先静态分配方法,即进程在运行前一次申请完它所需要的全部资源,在它的资源未满足前,不把它投入运行。一旦投入运行后,这些资源就一直归它所有,也不再提出其他资源请求,这样就可以保证系统不会发生死锁。
      这种方式实现简单,但缺点也显而易见,系统资源被严重浪费,其中有些资源可能仅在运行初期或运行快结束时才使用,甚至根本不使用。而且还会导致“饥饿”现象,当由于个别资源长期被其他进程占用时,将致使等待该资源的进程迟迟不能开始运行。
    4. 破坏环路等待条件
      为了破坏循环等待条件,可釆用顺序资源分配法。首先给系统中的资源编号,规定每个进程,必须按编号递增的顺序请求资源,同类资源一次申请完。也就是说,只要进程提出申请分配资源Ri,则该进程在以后的资源申请中,只能申请编号大于Ri 的资源。
      这种方法存在的问题是,编号必须相对稳定,这就限制了新类型设备的增加;尽管在为资源编号时已考虑到大多数作业实际使用这些资源的顺序,但也经常会发生作业使甩资源的顺序与系统规定顺序不同的情况,造成资源的浪费;此外,这种按规定次序申请资源的方法,也必然会给用户的编程带来麻烦。

    都不好用,一般采用死锁的诊断和解除。

    v>死锁的诊断和解除

    a)超时法
    如果一个事务等待时间超时,则认为发生死锁。(可能误判)
    b)事务等待图法
    事务等待图是一个有向图,反映了事务的等待情况。如果图中出现回路,就表示出现了死锁。

    处理方案是:选择一个处理代价最小的事务,将其撤销并释放所有锁。
    a) 从死锁进程处剥夺资源
    b) 终止部分或全部进程

    5) 两段锁协议(Two-Phase Locking――2PL)

    两段锁协议规定所有的事务应遵守的规则:
    ① 在对任何数据进行读、写操作之前,首先要申请并获得对该数据的封锁。
    ② 在释放一个封锁之后,事务不再申请和获得其它任何封锁。
    即事务的执行分为两个阶段:
    第一阶段是获得封锁的阶段,称为扩展阶段。
    第二阶段是释放封锁的阶段,称为收缩阶段。

    定理:若所有事务均遵守两段锁协议,则这些事务的所有交叉调度都是可串行化的。
    对于遵守两段协议的事务,其交叉并发操作的执行结果一定是正确的。值得注意的是,上述定理是充分条件,不是必要条件。一个可串行化的并发调度的所有事务并不一定都符合两段锁协议,存在不全是2PL的事务的可串行化的并发调度。
    同时我们必须指出,遵循两段锁协议的事务有可能发生死锁。

    此时事务T1 、T2同时处于扩展阶段,两个事务都坚持请求加锁对方已经占有的数据,导致死锁。
    为此,又有了一次封锁法。一次封锁法要求事务必须一次性将所有要使用的数据全部加锁,否则就不能继续执行。因此,一次封锁法遵守两段锁协议,但两段锁并不要求事务必须一次性将所有要使用的数据全部加锁,这一点与一次性封锁不同,这就是遵守两段锁协议仍可能发生死锁的原因所在。

    11,常见图

    DFD 数据流图(Data Flow Diagram):
    这里写图片描述
    ER图 实体-联系图(Entity-Relationship Diagram)
    这里写图片描述

    12,数据库连接:JDBC与JdbcTemplate

    13,数据库安全

    1)SQL注入

    ①概念

    在SQL 语句在拼接的情况下,用户输入为一部分sql语句。

    ②解决方法

    i> 对特殊字符进行过滤、转义或者使用预编译的sql 语句绑定变量

    SQL执行时,2种方式:
    ①字符串处理(拼接),然后执行SQL
    用户输入的时候,可以通过输入sql语句来进行SQL注入。
    ②传参,执行SQL -->交给SQL引擎**(推荐)**
    用prepareStatement,参数用set 方法进行填装。

    String sql= "insert into userlogin values(?,?)";
    PreparedStatement ps=conn.prepareStatement(sql);
    for(int i=1;i<100;i++){
    ps.setInt(1, i);
    ps.setInt(2, 8888);
    ps.executeUpdate();
    ps.close();
    conn.close();
    

    ii> 当sql 语句运行出错时,不要把数据库返回的错误信息全部显示给用户,以防止泄漏服务器和数据库相关信息

    iii>检查变量的数据类型和格式

    只要是有固定格式的变量,在SQL 语句执行前,应该严格按照固定格式去检查,确保变量是我们预想的格式,这样很大程度上可以避免SQL 注入攻击。
    例如:对于where id={$id}这种形式,数据库里所有的id 都是数字,那么就应该在SQL 被执行前,检查确保变量id 是int 类型。

    iv>所有的SQL 语句都封装在存储过程中

    所有的SQL 语句都封装在存储过程中,这样不但可以避免SQL 注入,还能提高一些性能。

    14,分布式数据库

    1)概念

    分布式数据库是一个物理上分散的而逻辑上集中的数据集。
    它有三大特点: 数据分布性 逻辑关联性 站点自治性

    2)五个基本原则

    ①资源的重复性
    指分布式系统中硬件,软件以及数据的冗余配置。
    ②物理上的分布性
    从硬件,软件以及数据上看都是相互独立地分布。
    ③高层操作系统(或者分布式操作系统)
    高层操作系统负责对分布性的资源进行统一的控制,它使一个简单的硬件堆积转变为一个统一协调的工作系统。
    ④系统的透明性
    透明性是分布式系统的灵魂,实现不同层次的透明性是分布式系统必须解决的关键问题之一。
    ⑤协作的自治性
    每一节点都是一个完整的处理系统,同时又是合作的。 简而言之:分布式系统是一个多节点的,处理或数据分布的,在统一下提高综合处理能力的协作体。

    3)待解决问题

    不完整系统状态信息
    时间延迟
    通信的代价
    负载均衡

    4)分类(从控制方式角度)

    ①紧耦合式DDBMS

    全局控制信息放在一个称为中心站点的站点上。所有的全局访问都必须通过中心站点来确定远程数据片的位置。
    优点:容易实现数据的一致性和完整性。
    缺点:易产生访问瓶颈,系统效率不高,可靠性较差。

    ②联邦式DDBMS

    每个站点都包含全局控制信息的一个副本,都可以接受全局访问。任何对远程数据的请求,都可以通过广播方式传播到其他节点。
    优点:具有较好的可靠性和可用性,并行性好,更容易适应旧有的系统集成和异构分布式数据库系统的建立。
    缺点:保持数据的一致性很困难,实现难度大。

    ③组合式DDBMS

    是上述方案的折衷,它把站点分为两类,一类具有全局控制信息,称为主节点,可以接受全局任务,另一类没有全局信息,只能为主节点提供数据服务。
    优点:灵活性较好,易于实现层次控制结构。
    缺点:设计复杂。

    5)分布透明性

    即在分布式数据库系统中用户不必关心数据的分布情况。分为三个层次:

    ①分片透明性

    它是分布式数据库系统的最高透明性层次,它向用户完全屏蔽了DDB的分片信息。这样的透明性保持了高水平的数据独立性。

    ②位置透明性

    用户的应用程序不需要关心数据分片的具体存储站点,当数据库的数据片的存储站点发生改变时,只需改变对应的GRS/NRS映射就可以保持全局表示模式不发生改变

    ③数据模型透明性

    它向用户屏蔽的只是本站点的具体数据库存储及其管理情况。 在异构的情况下,这种透明性避免了用户对不同数据模型的转换的实现。
    本地透明性是3种透明方式中最低的。

    6)数据分割方法

    ①水平分割

    把全局关系的元组分割成一些子集,这些子集被称为数据分片或段(Fragment)。
    水平分割可以通过关系运算“选择”来定义。

    水平分片是对全局关系执行“选择”操作,把具有相同性质的元组进行分组,构成若干个不相交的子集.水平分片的方法可归为初级分片和导出分片两类。

    ②垂直分割

    把全局关系按照属性组(纵向)分隔成一些数据分片或段。
    垂直分割可以通过关系运算“投影”来定义。

    ③混合分割

    可把水平分割和垂直分割这两种方法结合起来使用,产生混合式数据分片。

    ④数据分片应遵循的原则

    若R={R1,R2,…,Rn}满足:
    1)完整性(completeness)条件:
    如果分片 a∈R,则必有a∈Ri,i=l,2,…,n
    2)可重构(reconstructed)条件:
    R=∪ Ri,(水平分片)或R=∞Ri,(垂直分片)
    3)不相交(disjoint)条件:
    Ri∩ Rj=φ,i≠j,I,j:=1,2,…,,n(水平 分片)
    Ri∩Rj=主键属性,I,j=1,2,…,n(垂直分片)

    7)分布式数据库和集中式区别

    分布式(distributed)是指在多台不同的服务器中部署不同的服务模块,通过远程调用协同工作,对外提供服务。
    集群(cluster)是指在多台不同的服务器中部署相同应用或服务模块,构成一个集群,通过负载均衡设备对外提供服务。

    15,数据库优化

    1)优化SQL 语句

    ①explain

    通过explain(查询优化神器)用来查看SQL 语句的执行效果,可以帮助选择更好的索引和优化查询语句,写出更好的优化语句。
    通常我们可以对比较复杂的尤其是涉及到多表的SELECT 语句,把关键字EXPLAIN 加到前面,查看执行计划。例如:explain select * from news;

    explain语法:

    explain select … from … [where ...] 
    

    ② 用具体的字段列表代替“*

    任何地方都不要使用select * from t ,不要返回用不到的任何字段。

    ③ 不在索引列做运算或者使用函数

    ④ 查询尽可能使用limit 减少返回的行数,减少数据传输时间和带宽浪费。

    2)优化表的数据类型

    ① 使用procedure analyse()函数对表进行分析

    该函数可以对表中列的数据类型提出优化建议。能小就用小。表数据类型第一个原则是:使用能正确的表示和存储数据的最短类型。这样可以减少对磁盘空间、内存、cpu 缓存的使用。
    使用方法:select * from 表名procedure analyse();

    ② 对表进行拆分

    通过拆分表可以提高表的访问效率。有2 种拆分方法:
    1.垂直拆分
    把主键和一些列放在一个表中,然后把主键和另外的列放在另一个表中。如果一个表中某些列常用,而另外一些不常用,则可以采用垂直拆分。
    2.水平拆分
    根据一列或者多列数据的值把数据行放到二个独立的表中。

    ③ 使用中间表来提高查询速度

    创建中间表,表结构和源表结构完全相同,转移要统计的数据到中间表,然后在中间表上进行统计,得出想要的结果。

    3)硬件优化

    ①CPU 的优化

    选择多核和主频高的CPU。

    ②内存的优化

    使用更大的内存。将尽量多的内存分配给MYSQL 做缓存。

    ③磁盘I/O 的优化

    i>使用磁盘阵列

    RAID 0 没有数据冗余,没有数据校验的磁盘陈列。实现RAID 0至少需要两块以上的硬盘,它将两块以上的硬盘合并成一块,数据连续地分割在每块盘上。
    RAID1 是将一个两块硬盘所构成RAID 磁盘阵列,其容量仅等于一块硬盘的容量,因为另一块只是当作数据“镜像”。
    使用RAID-0+1 磁盘阵列。RAID 0+1 是RAID 0 和RAID 1 的组合形式。它在提供与RAID 1 一样的数据安全保障的同时,也提供了与RAID 0 近似的存储性能。

    ii>调整磁盘调度算法

    选择合适的磁盘调度算法,可以减少磁盘的寻道时间。

    4)MySQL 自身的优化

    对MySQL 自身的优化主要是对其配置文件my.cnf 中的各项参数进行优化调整。如指定MySQL 查询缓冲区的大小,指定MySQL 允许的最大连接进程数等。

    5)应用优化

    ①使用数据库连接池

    ②使用查询缓存

    它的作用是存储select 查询的文本及其相应结果。如果随后收到一个相同的查询,服务器会从查询缓存中直接得到查询结果。查询缓存适用的对象是更新不频繁的表,当表中数据更改后,查询缓存中的相关条目就会被清空。

    6)大访问量的优化

    ①使用优化查询的方法

    (见上面)

    ②主从复制,读写分离

    i>主从复制(master,slave):

    通过配置两台(或多台)数据库的主从关系,可以将一台数据库服务器的数据更新同步到另一台服务器上。网站可以利用数据库的这一功能,实现数据库的读写分离,从而改善数据库的负载压力。一个系统的读操作远远多于写操作,因此写操作发向master,读操作发向slaves 进行操作(简单的轮循算法来决定使用哪个slave)。
    利用数据库的读写分离,Web 服务器在写数据的时候,访问主数据库(Master),主数据库通过主从复制机制将数据更新同步到从数据库(Slave),这样当Web 服务器读数据的时候,就可以通过从数据库获得数据。这一方案使得在大量读操作的Web 应用可以轻松地读取数据,而主数据库也只会承受少量的写入操作,还可以实现数据热备份,可谓是一举两得的方案。
    这里写图片描述

    负载均衡(Load Balance,简称LB)

    7)数据库分表、分区、分库

    分表见上面描述。
    分区就是把一张表的数据分成多个区块,这些区块可以在一个磁盘上,也可以在不同的磁盘上,分区后,表面上还是一张表,但数据散列在多个位置,这样一来,多块硬盘同时处理不同的请求,从而提高磁盘I/O 读写性能,实现比较简单。包括水平分区和垂直分区。
    分库是根据业务不同把相关的表切分到不同的数据库中,比如web、bbs、blog 等库。

    17,应用

    1)服务器与服务器之间传输文件夹下的文件,一个文件夹下有10 个文件,另一个文件夹下有100 个文件,两个文件夹大小相等,问,哪个传输更快?

    10 个文件更快。
    1)建立连接数更少,建立连接的开销比传输文件的开销大。
    2)文件写入磁盘,要计算文件的起始位置,文件数目少的话,这个开销就小了

    展开全文
  • 数据库面试题

    千次阅读 多人点赞 2018-05-24 10:46:20
    原子性:原子性。即不可分割性,事务要么全部被执行,要么就全部不被执行。   一致性:事务的执行使得数据库从一种正确状态转换成另一种正确状态   隔离性:在事务正确提交之前,不允许把该事务对数据的任何...

     

    数据库面试题

    1.什么是存储过程?用什么来调用?

    存储过程是一个预编译的SQL语句,优点是允许模块化的设计,就是说只需创建一次,以后在该程序中就可以调用多次。如果某次操作需要执行多次SQL,使用存储过程比单纯SQL语句执行要快。

    调用:   1)可以用一个命令对象来调用存储过程。

    2)可以供外部程序调用,比如:java程序。

     

    2.存储过程的优缺点?

    优点:

    1)存储过程是预编译过的,执行效率高。

    2)存储过程的代码直接存放于数据库中,通过存储过程名直接调用,减少网络通讯。

    3)安全性高,执行存储过程需要有一定权限的用户。

    4)存储过程可以重复使用,可减少数据库开发人员的工作量。

    缺点:移植性差

     

    3.存储过程与函数的区别

    存储过程

    函数

    用于在数据库中完成特定的操作或者任务(如插入、删除等)

    用于特定的数据(如选择)

    程序头部声明用procedure

    程序头部声明用function

    程序头部声明时不需描述返回类型

    程序头部声明时要描述返回类型,而且PL/SQL块中至少要包括一个有效的return语句

    可以使用in/out/in out 三种模式的参数

    可以使用in/out/in out 三种模式的参数

    可作为一个独立的PL/SQL语句来执行

    不能独立执行,必须作为表达式的一部分调用

    可以通过out/in out 返回零个或多个值

    通过return语句返回一个值,且改值要与声明部分一致,也可以是通过out类型的参数带出的变量

    SQL语句(DML SELECT)中不可调用存储过程

    SQL语句(DML SELECT)中可以调用函数

    4.索引的作用?和它的优点缺点是什么?

    索引就一种特殊的查询表,数据库的搜索可以利用它加速对数据的检索。它很类似与现实生活中书的目录,不需要查询整本书内容就可以找到想要的数据。索引可以是唯一的,创建索引允许指定单个列或者是多个列。缺点是它减慢了数据录入的速度,同时也增加了数据库的尺寸大小。

     

    5.视图的优缺点

    优点:   1)对数据库的访问,因为视图可以有选择性的选取数据库里的一部分。

    2)用户通过简单的查询可以从复杂查询中得到结果。

    3)维护数据的独立性,试图可从多个表检索数据。

    4)对于相同的数据可产生不同的视图。

    缺点:性能:查询视图时,必须把视图的查询转化成对基本表的查询,如果这个视图是由一个复杂的多表查询所定义,那么,那么就无法更改数据

    6.在数据库中查询语句速度很慢,如何优化?

    1.建索引

    2.减少表之间的关联

    3.优化sql,尽量让sql很快定位数据,不要让sql做全表查询,应该走索引,把数据量大的表排在前面

    4.简化查询字段,没用的字段不要,已经对返回结果的控制,尽量返回少量数据 5.尽量用PreparedStatement来查询,不要用Statement

     

    7.Oracle和Mysql的区别?

    1)库函数不同。

    2Oracle是用表空间来管理的,Mysql不是。

    3)显示当前所有的表、用户、改变连接用户、显示当前连接用户、执行外部脚本的语句的不同。

    4)分页查询时候时候,mysqllimit oraclerownum

    mysql> SELECT * FROM table LIMIT 5,10; // 检索记录行 6-15 //为了检索从某一个偏移量到记录集的结束所有的记录行,可以指定第二个参数为 -1 mysql> SELECT * FROM table LIMIT 95,-1; // 检索记录行 96-last. //如果只给定一个参数,它表示返回最大的记录行数目: mysql> SELECT * FROM table LIMIT 5; //检索前 5 个记录行 //换句话说,LIMIT n 等价于 LIMIT 0,n

    5sql的语法的不同。

     

    8.oracle分页查询语句

    使用rownum,两种如下:

    第一种: select * from (selectt.*,rownum row_num from mytable t) b where b.row_num between 1 and 10

    第二种: select * from (select a.*, rownum rn from mytable a where rownum <= 10 ) where rn >= 1 使用rowid如下: select * from scott.emp where rowid in (select rd from(select rowid as rd ,rownum as rn from scott.emp ) where rn<=6 and rn>3)

     

    9.从数据库中随机取50条

    select * from (select * from t_example orderby dbms_random.random) where rownum <= 50

     

    10.表和视图的关系

    视图其实就是一条查询sql语句,用于显示一个或多个表或其他视图中的相关数据。表就是关系数据库中实际存储数据用的。

     

    11.oracle获取系统时间

    select to_char(sysdate, 'yyyy-MM-ddHH24:mi:ss') from dual;

     

    12.什么是事物,事物的特性是什么

    事务:是一系列的数据库操作,是数据库应用的基本逻辑单位。

    事务性质:

    原子性:原子性。即不可分割性,事务要么全部被执行,要么就全部不被执行。

                 一致性:事务的执行使得数据库从一种正确状态转换成另一种正确状态

                 隔离性:在事务正确提交之前,不允许把该事务对数据的任何改变提供给任何其他事务

    持久性:事务正确提交后,其结果将永久保存在数据库中,即使在事务提交后有其他故障,事务的处理结果也会得到保存。

     

     

    13.什么是死锁,死锁如何处理:

    事务循环等待数据锁,则会死锁。

    死锁处理:预防死锁协议,死锁恢复机制

     

    14.存储过程有什么优点

    1.存储过程因为SQL语句已经预编绎过了,因此运行的速度比较快。

    2. 可保证数据的安全性和完整性。通过存储过程可以使没有权限的用户在控制之下间接地存取数据库,从而保证数据的安全。通过存储过程可以使相关的动作在一起发生,从而可以维护数据库的完整性。

    3.可以降低网络的通信量。存储过程主要是在服务器上运行,减少对客户机的压力。

    4:存储过程可以接受参数、输出参数、返回单个或多个结果集以及返回值。可以向程序返回错误原因

    5:存储过程可以包含程序流、逻辑以及对数据库的查询。同时可以实体封装和隐藏了数据逻辑。  

    15.内联接,外联接区别?

    内连接是保证两个表中所有的行都要满足连接条件,而外连接则不然。

    在外连接中,某些不满条件的列也会显示出来,也就是说,只限制其中一个表的行,而不限制另一个表的行。分左连接、右连接、全连接三种

    16.什么是内存泄漏?

    一般我们所说的内存泄漏指的是堆内存的泄漏。堆内存是程序从堆中为其分配的,大小任意的,使用完后要显示释放内存。当应用程序用关键字new等创建对象时,就从堆中为它分配一块内存,使用完后程序调用free或者delete释放该内存,否则就说该内存就不能被使用,我们就说该内存被泄漏了。

    17.什么叫视图?游标是什么?

    视图是一种虚拟的表,具有和物理表相同的功能。可以对视图进行增,改,查,操作,试图通常是有一个表或者多个表的行或列的子集。对视图的修改不影响基本表。它使得我们获取数据更容易,相比多表查询。

          游标:是对查询出来的结果集作为一个单元来有效的处理。游标可以定在该单元中的特定行,从结果集的当前行检索一行或多行。可以对结果集当前行做修改。一般不使用游标,但是需要逐条处理数据的时候,游标显得十分重要。

     

    18.使用索引查询一定能提高查询的性能吗?为什么

    通常,通过索引查询数据比全表扫描要快.但是我们也必须注意到它的代价.

    索引需要空间来存储,也需要定期维护, 每当有记录在表中增减或索引列被修改时,索引本身也会被修改. 这意味着每条记录的INSERT,DELETE,UPDATE将为此多付出4,5 次的磁盘I/O. 因为索引需要额外的存储空间和处理,那些不必要的索引反而会使查询反应时间变慢.使用索引查询不一定能提高查询性能,索引范围查询(INDEX RANGESCAN)适用于两种情况:

    基于一个范围的检索,一般查询返回结果集小于表中记录数的30%

    基于非唯一性索引的检索

     

    19.简单说一说drop、delete与truncate的区别

    SQL中的dropdeletetruncate都表示删除,但是三者有一些差别

    deletetruncate只删除表的数据不删除表的结构

    速度,一般来说: drop> truncate >delete 

    delete语句是dml,这个操作会放到rollback segement,事务提交之后才生效;

    如果有相应的trigger,执行的时候将被触发. truncate,dropddl, 操作立即生效,原数据不放到rollback segment,不能回滚. 操作不触发trigger. 

    20.drop、delete与truncate分别在什么场景之下使用?

    不再需要一张表的时候,用drop

    想删除部分数据行时候,用delete,并且带上where子句

    保留表而删除所有数据的时候用truncate

    21. 说一说三个范式。

    第一范式(1NF):数据库表中的字段都是单一属性的,不可再分。这个单一属性由基本类型构成,包括整型、实数、字符型、逻辑型、日期型等。

    第二范式(2NF):数据库表中不存在非关键字段对任一候选关键字段的部分函数依赖(部分函数依赖指的是存在组合关键字中的某些字段决定非关键字段的情况),也即所有非关键字段都完全依赖于任意一组候选关键字。

    第三范式(3NF):在第二范式的基础上,数据表中如果不存在非关键字段对任一候选关键字段的传递函数依赖则符合第三范式。所谓传递函数依赖,指的是如果存在"A B C"的决定关系,则C传递函数依赖于A。因此,满足第三范式的数据库表应该不存在如下依赖关系:关键字段非关键字段 x 非关键字段y

     

     

    展开全文
  • 什么是数据结构?

    千次阅读 2019-06-19 20:25:39
    数据对象是性质相同的数据元素的集合,是数据的一个子集。数据对象可以是有限的,也可以是无限的。 数据处理是指对数据进行查找、插入、删除、合并、排序、统计以及简单计算等的操作过程。在早期,计算机主要用于...

    什么是数据结构?数据结构是什么?

     

    数据结构是计算机存储、组织数据的方式。数据结构是指相互之间存在一种或多种特定关系的数据元素的集合。通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。

     

    定义

    名词定义

    数据结构是指相互之间存在着一种或多种关系的数据元素的集合和该集合中数据元素之间的关系组成。也就是说,数组结构指的是数据集合及数据之间关系的集合,是两个集合。

    记为:Data_Structure=(D,R)

    其中D是数据元素的集合,R是该集合中所有元素之间的关系的有限集合。 

    数据结构是指相互之间存在着一种或多种关系的数据元素的集合和该集合中数据元素之间的关系组成。

     

    其它定义

    Sartaj Sahni在他的《数据结构、算法与应用》一书中称:“数据结构是数据对象,以及存在于该对象的实例和组成实 例的数据元素之间的各种联系。这些联系可以通过定义相关的函数来给出。”他将数据对象(data object)定义为“一个数据对象是实例或值的集合”。
    Clifford A.Shaffer在《数据结构与算法分析》一书中的定义是:“数据结构是ADT(抽象数据类型Abstract Data Type) 的物理实现。”
    Robert L.Kruse在《数据结构与程序设计》一书中,将一个数据结构的设计过程分成抽象层、数据结构层和实现层。其中,抽象层是指抽象数据类型层,它讨论数据的逻辑结构及其运算,数据结构层和实现层讨论一个数据结构的表示和在计算机内的存储细节以及运算的实现。
    数据结构具体指同一类数据元素中,各元素之间的相互关系,包括三个组成成分,数据的逻辑结构,数据的存储结构和数据运算结构。

     

    研究对象

    一、数据的逻辑结构:指反映数据元素之间的逻辑关系的数据结构,其中的逻辑关系是指数据元素之间的前后件关系,而与他们在计算机中的存储位置无关。逻辑结构包括:
    集合
    数据结构中的元素之间除了“同属一个集合” 的相互关系外,别无其他关系;
    2.线性结构
    数据结构中的元素存在一对一的相互关系;
    3.树形结构
    数据结构中的元素存在一对多的相互关系;
    4.图形结构
    数据结构中的元素存在多对多的相互关系。
    二、数据的物理结构:指数据的逻辑结构在计算机存储空间的存放形式。 
    数据的物理结构是数据结构在计算机中的表示(又称映像),它包括数据元素的机内表示和关系的机内表示。由于具体实现的方法有顺序、链接、索引、散列等多种,所以,一种数据结构可表示成一种或多种存储结构。
    数据元素的机内表示(映像方法): 用二进制位(bit)的位串表示数据元素。通常称这种位串为节点(node)。当数据元素有若干个数据项组成时,位串中与个数据项对应的子位串称为数据域(data field)。因此,节点是数据元素的机内表示(或机内映像)。
    关系的机内表示(映像方法):数据元素之间的关系的机内表示可以分为顺序映像和非顺序映像,常用两种存储结构:顺序存储结构和链式存储结构。顺序映像借助元素在存储器中的相对位置来表示数据元素之间的逻辑关系。非顺序映像借助指示元素存储位置的指针(pointer)来表示数据元素之间的逻辑关系。
    三、数据结构的运算。

     

    重要意义

              一般认为,一个数据结构是由数据元素依据某种逻辑联系组织起来的。对数据元素间逻辑关系的描述称为数据的逻辑结构;数据必须在计算机内存储,数据的存储结构是数据结构的实现形式,是其在计算机内的表示;此外讨论一个数据结构必须同时讨论在该类数据上执行的运算才有意义。一个逻辑数据结构可以有多种存储结构,且各种存储结构影响数据处理的效率。

             在许多类型的程序的设计中,数据结构的选择是一个基本的设计考虑因素。许多大型系统的构造经验表明,系统实现的困难程度和系统构造的质量都严重的依赖于是否选择了最优的数据结构。许多时候,确定了数据结构后,算法就容易得到了。有些时候事情也会反过来,我们根据特定算法来选择数据结构与之适应。不论哪种情况,选择合适的数据结构都是非常重要的。

             选择了数据结构,算法也随之确定,是数据而不是算法是系统构造的关键因素。这种洞见导致了许多种软件设计方法和程序设计语言的出现,面向对象的程序设计语言就是其中之一。

     

    研究内容

             在计算机科学中,数据结构是一门研究非数值计算的程序设计问题中计算机的操作对象(数据元素)以及它们之间的关系和运算等的学科,而且确保经过这些运算后所得到的新结构仍然是原来的结构类型。

             “数据结构”作为一门独立的课程在国外是从1968年才开始设立的。 1968年美国唐纳德·克努特(Donald Ervin Knuth)教授开创了数据结构的最初体系,他所著的《计算机程序设计艺术》第一卷《基本算法》是第一本较系统地阐述数据的逻辑结构和存储结构及其操作的著作。“数据结构”在计算机科学中是一门综合性的专业基础课,数据结构是介于数学、计算机硬件和计算机软件三者之间的一门核心课程。数据结构这一门课的内容不仅是一般程序设计(特别是非数值性程序设计)的基础,而且是设计和实现编译程序、操作系统、数据库系统及其他系统程序的重要基础。

             计算机科学是一门研究用计算机进行信息表示和处理的科学。这里面涉及到两个问题:信息的表示,信息的处理 。

             而信息的表示和组织又直接关系到处理信息的程序的效率。随着计算机的普及,信息量的增加,信息范围的拓宽,使许多系统程序和应用程序的规模很大,结构又相当复杂。因此,为了编写出一个“好”的程序,必须分析待处理的对象的特征及各对象之间存在的关系,这就是数据结构这门课所要研究的问题。众所周知,计算机的程序是对信息进行加工处理。在大多数情况下,这些信息并不是没有组织,信息(数据)之间往往具有重要的结构关系,这就是数据结构的内容。数据的结构,直接影响算法的选择和效率。

             计算机解决一个具体问题时,大致需要经过下列几个步骤:首先要从具体问题中抽象出一个适当的数学模型,然后设计一个解此数学模型的算法(Algorithm),最后编出程序、进行测试、调整直至得到最终解答。

             寻求数学模型的实质是分析问题,从中提取操作的对象,并找出这些操作对象之间含有的关系,然后用数学的语言加以描述。当人们用计算机处理数值计算问题时,所用的数学模型是用数学方程描述。所涉及的运算对象一般是简单的整形、实型和逻辑型数据,因此程序设计者的主要精力集中于程序设计技巧上,而不是数据的存储和组织上。然而,计算机应用的更多领域是“非数值型计算问题”,它们的数学模型无法用数学方程描述,而是用数据结构描述,解决此类问题的关键是设计出合适的数据结构,描述非数值型问题的数学模型是用线性表、树、图等结构来描述的。

             计算机算法与数据的结构密切相关,算法无不依附于具体的数据结构,数据结构直接关系到算法的选择和效率。运算是由计算机来完成,这就要设计相应的插入、删除和修改的算法 。也就是说,数据结构还需要给出每种结构类型所定义的各种运算的算法。

             数据是信息的载体,是可以被计算机识别存储并加工处理的描述客观事物的信息符号的总称。所有能被输入计算机中,且能被计算机处理的符号的集合,它是计算机程序加工处理的对象。客观事物包括数值、字符、声音、图形、图像等,它们本身并不是数据,只有通过编码变成能被计算机识别、存储和处理的符号形式后才是数据。

             数据元素是数据的基本单位,在计算机程序中通常作为一个整体考虑。一个数据元素由若干个数据项组成。数据项是数据结构中讨论的最小单位。有两类数据元素:若数据元素可再分,则每一个独立的处理单元就是数据项,数据元素是数据项的集合;若数据元素不可再分,则数据元素和数据项是同一概念,如:整数"5",字符 "N" 等。例如描述一个学生的信息的数据元素可由下列6个数据项组成。其中的出生日期又可以由三个数据项:"年"、"月"和"日"组成,则称"出生日期"为组合项,而其它不可分割的数据项为原子项。

             关键字指的是能识别一个或多个数据元素的数据项。若能起唯一识别作用,则称之为 "主" 关键字,否则称之为 "次" 关键字。

             数据对象是性质相同的数据元素的集合,是数据的一个子集。数据对象可以是有限的,也可以是无限的。

             数据处理是指对数据进行查找、插入、删除、合并、排序、统计以及简单计算等的操作过程。在早期,计算机主要用于科学和工程计算,进入八十年代以后,计算机主要用于数据处理。据有关统计资料表明,计算机用于数据处理的时间比例达到80%以上,随着时间的推移和计算机应用的进一步普及,计算机用于数据处理的时间比例必将进一步增大。

     

    结构分类

             数据结构是指同一数据元素类中各数据元素之间存在的关系。数据结构分别为逻辑结构、存储结构(物理结构)和数据的运算。数据的逻辑结构是从具体问题抽象出来的数学模型,是描述数据元素及其关系的数学特性的,有时就把逻辑结构简称为数据结构。逻辑结构是在计算机存储中的映像,形式地定义为(K,R)(或(D,S)),其中,K是数据元素的有限集,R是K上的关系的有限集。

             根据数据元素间关系的不同特性,通常有下列四类基本的结构: ⑴集合结构。该结构的数据元素间的关系是“属于同一个集合”。 ⑵线性结构。该结构的数据元素之间存在着一对一的关系。 ⑶树型结构。该结构的数据元素之间存在着一对多的关系。 ⑷图形结构。该结构的数据元素之间存在着多对多的关系,也称网状结构。 从上面所介绍的数据结构的概念中可以知道,一个数据结构有两个要素。一个是数据元素的集合,另一个是关系的集合。在形式上,数据结构通常可以采用一个二元组来表示。

             数据结构的形式定义为:数据结构是一个二元组 :Data_Structure=(D,R),其中,D是数据元素的有限集,R是D上关系的有限集。线性结构的特点是数据元素之间是一种线性关系,数据元素“一个接一个的排列”。在一个线性表中数据元素的类型是相同的,或者说线性表是由同一类型的数据元素构成的线性结构。在实际问题中线性表的例子是很多的,如学生情况信息表是一个线性表:表中数据元素的类型为学生类型; 一个字符串也是一个线性表:表中数据元素的类型为字符型,等等。

             线性表是最简单、最基本、也是最常用的一种线性结构。 线性表是具有相同数据类型的n(n>=0)个数据元素的有限序列,通常记为: (a1,a2,… ai-1,ai,ai+1,…an) ,其中n为表长, n=0 时称为空表。 它有两种存储方法:顺序存储和链式存储,它的主要基本操作是插入、删除和检索等。

             数据结构在计算机中的表示(映像)称为数据的物理(存储)结构。它包括数据元素的表示和关系的表示。数据元素之间的关系有两种不同的表示方法:顺序映象和非顺序映象,并由此得到两种不同的存储结构:顺序存储结构和链式存储结构。

             顺序存储方法:它是把逻辑上相邻的结点存储在物理位置相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现,由此得到的存储表示称为顺序存储结构。顺序存储结构是一种最基本的存储表示方法,通常借助于程序设计语言中的数组来实现。

             链接存储方法:它不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系是由附加的指针字段表示的。由此得到的存储表示称为链式存储结构,链式存储结构通常借助于程序设计语言中的指针类型来实现

             索引存储方法:除建立存储结点信息外,还建立附加的索引表来标识结点的地址。

             散列存储方法:就是根据结点的关键字直接计算出该结点的存储地址。

             数据结构中,逻辑上(逻辑结构:数据元素之间的逻辑关系)可以把数据结构分成线性结构和非线性结构。线性结构的顺序存储结构是一种顺序存取的存储结构,线性表的链式存储结构是一种随机存取的存储结构。线性表若采用链式存储表示时所有结点之间的存储单元地址可连续可不连续。逻辑结构与数据元素本身的形式、内容、相对位置、所含结点个数都无关。

     

    结构算法

             算法的设计取决于数据(逻辑)结构,而算法的实现依赖于采用的存储结构。数据的存储结构实质上是它的逻辑结构在计算机存储器中的实现,为了全面的反映一个数据的逻辑结构,它在存储器中的映象包括两方面内容,即数据元素之间的信息和数据元素之间的关系。不同数据结构有其相应的若干运算。数据的运算是在数据的逻辑结构上定义的操作算法,如检索、插入、删除、更新和排序等。

             数据的运算是数据结构的一个重要方面,讨论任一种数据结构时都离不开对该结构上的数据运算及其实现算法的讨论。
    数据结构不同于数据类型,也不同于数据对象,它不仅要描述数据类型的数据对象,而且要描述数据对象各元素之间的相互关系。

             数据类型是一个值的集合和定义在这个值集上的一组操作的总称。数据类型可分为两类:原子类型、结构类型。一方面,在程序设计语言中,每一个数据都属于某种数据类型。类型明显或隐含地规定了数据的取值范围、存储方式以及允许进行的运算。可以认为,数据类型是在程序设计中已经实现了的数据结构。另一方面,在程序设计过程中,当需要引入某种新的数据结构时,总是借助编程语言所提供的数据类型来描述数据的存储结构。

             计算机中表示数据的最小单位是二进制数的一位,叫做位。我们用一个由若干位组合起来形成的一个位串表示一个数据元素,通常称这个位串为元素或结点。当数据元素由若干数据项组成时,位串中对应于各个数据项的子位串称为数据域。元素或结点可看成是数据元素在计算机中的映象。

             一个软件系统框架应建立在数据之上,而不是建立在操作之上。一个含抽象数据类型的软件模块应包含定义、表示、实现三个部分。
    对每一个数据结构而言,必定存在与它密切相关的一组操作。若操作的种类和数目不同,即使逻辑结构相同,数据结构能起的作用也不同。

             不同的数据结构其操作集不同,但下列操作必不可缺:
             1,结构的生成;
             2.结构的销毁;
             3,在结构中查找满足规定条件的数据元素;
             4,在结构中插入新的数据元素;
             5,删除结构中已经存在的数据元素;
             6,遍历。

             抽象数据类型:一个数学模型以及定义在该模型上的一组操作。抽象数据类型实际上就是对该数据结构的定义。因为它定义了一个数据的逻辑结构以及在此结构上的一组算法。抽象数据类型可用以下三元组表示:(D,S,P)。D是数据对象,S是D上的关系集,P是对D的基本操作集。ADT的定义为:

             ADT 抽象数据类型名:{数据对象:(数据元素集合),数据关系:(数据关系二元组结合),基本操作:(操作函数的罗列)}; ADT抽象数据类型名;抽象数据类型有两个重要特性:

             数据抽象

             用ADT描述程序处理的实体时,强调的是其本质的特征、其所能完成的功能以及它和外部用户的接口(即外界使用它的方法)。

             数据封装

             将实体的外部特性和其内部实现细节分离,并且对外部用户隐藏其内部实现细节。

             数据(Data)是信息的载体,它能够被计算机识别、存储和加工处理。它是计算机程序加工的原料,应用程序处理各种各样的数据。计算机科学中,所谓数据就是计算机加工处理的对象,它可以是数值数据,也可以是非数值数据。数值数据是一些整数、实数或复数,主要用于工程计算、科学计算和商务处理等;非数值数据包括字符、文字、图形、图像、语音等。数据元素(Data Element)是数据的基本单位。在不同的条件下,数据元素又可称为元素、结点、顶点、记录等。例如,学生信息检索系统中学生信息表中的一个记录等,都被称为一个数据元素。
    有时,一个数据元素可由若干个数据项(Data Item)组成,例如,学籍管理系统中学生信息表的每一个数据元素就是一个学生记录。它包括学生的学号、姓名、性别、籍贯、出生年月、成绩等数据项。这些数据项可以分为两种:一种叫做初等项,如学生的性别、籍贯等,这些数据项是在数据处理时不能再分割的最小单位;另一种叫做组合项,如学生的成绩,它可以再划分为数学、物理、化学等更小的项。通常,在解决实际应用问题时是把每个学生记录当作一个基本单位进行访问和处理的。

             数据对象(Data Object)或数据元素类(Data Element Class)是具有相同性质的数据元素的集合。在某个具体问题中,数据元素都具有相同的性质(元素值不一定相等),属于同一数据对象(数据元素类),数据元素是数据元素类的一个实例。例如,在交通咨询系统的交通网中,所有的顶点是一个数据元素类,顶点A和顶点B各自代表一个城市,是该数据元素类中的两个实例,其数据元素的值分别为A和B。 数据结构(Data Structure)是指互相之间存在着一种或多种关系的数据元素的集合。在任何问题中,数据元素之间都不会是孤立的,在它们之间都存在着这样或那样的关系,这种数据元素之间的关系称为结构。

     

    常用结构

    数组
             在程序设计中,为了处理方便, 把具有相同类型的若干变量按有序的形式组织起来。这些按序排列的同类数据元素的集合称为数组。在C语言中, 数组属于构造数据类型。一个数组可以分解为多个数组元素,这些数组元素可以是基本数据类型或是构造类型。因此按数组元素的类型不同,数组又可分为数值数组、字符数组、指针数组、结构数组等各种类别。


             是只能在某一端插入和删除的特殊线性表。它按照先进后出的原则存储数据,先进入的数据被压入栈底,最后的数据在栈顶,需要读数据的时候从栈顶开始弹出数据(最后一个数据被第一个读出来)。

    队列
             一种特殊的线性表,它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作。进行插入操作的端称为队尾,进行删除操作的端称为队头。队列是按照“先进先出”或“后进后出”的原则组织数据的。队列中没有元素时,称为空队列。

    链表
             是一种物理存储单元上非连续、非顺序的存储结构,它既可以表示线性结构,也可以用于表示非线性结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列结点(链表中每一个元素称为结点)组成,结点可以在运行时动态生成。每个结点包括两个部分:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域。


             是包含n(n>0)个结点的有穷集合K,且在K中定义了一个关系N,N满足 以下条件:
             (1)有且仅有一个结点 K0,他对于关系N来说没有前驱,称K0为树的根结点。简称为根(root)。  
             (2)除K0外,K中的每个结点,对于关系N来说有且仅有一个前驱。
             (3)K中各结点,对关系N来说可以有m个后继(m>=0)。


             图是由结点的有穷集合V和边的集合E组成。其中,为了与树形结构加以区别,在图结构中常常将结点称为顶点,边是顶点的有序偶对,若两个顶点之间存在一条边,就表示这两个顶点具有相邻关系。


             在计算机科学中,堆是一种特殊的树形数据结构,每个结点都有一个值。通常我们所说的堆的数据结构,是指二叉堆。堆的特点是根结点的值最小(或最大),且根结点的两个子树也是一个堆。

    散列表
             若结构中存在关键字和K相等的记录,则必定在f(K)的存储位置上。由此,不需比较便可直接取得所查记录。称这个对应关系f为散列函数(Hash function),按这个思想建立的表为散列表。

     

    简而言之,数据结构说的是:计算机组织数据和存储数据的方式。

    展开全文
  • 《数据库原理》— 数据库系统概论第五版习题解析

    万次阅读 多人点赞 2017-05-29 14:57:48
    实体型:具有相同属性的实体具有相同的特征和性质,用实体名及其属性名集合来抽象和刻画同类实体,称为实体型。实体集:同型实体的集合称为实体集;实体之间的联系:通常是指不同实体型的实体集之间的联系,实体之间...
  • 原子核的几何模型

    2020-06-03 19:23:43
    在试验越来越流行的钕磁球组时,作者开发了一种方法,可以通过该方法创建原子核模型。... 即使此类宏观模型无法描述核过程的真正量子物理性质,但它们在数学上比以前使用的无序球集在表示原子核方面更有用。
  • 近年来,半导体量子点特别是InAs量子点的基本物理性质和潜在应用得到了广泛研究。许多研究者利用InAs量子点结构的改变以调制其光电特性。本文采用液滴外延法在GaAs(001)表面沉积了不同沉积量的In(3 ML、4 ML、5 ML)...
  • 提出一种新的拓扑指数Cm,建立计算饱和一元醇物理化学性质的定量公式,预测了含10个碳原子以内的饱和一元醇的原子化热△Ha,气相生成热4Hgi,摩尔折射Rm,蒸发热△Hv,摩尔磁化率Xm,沸点B.P.(℃)和分配系数logP等7项物理...
  • JAC的主要指导思想是为原子物理学界开发一个通用且易于使用的工具箱,其中包括一个可供工作的谱系分析家,理论家和代码开发人员同等使用的界面。 除了简单易用之外,我还希望提供一种现代的代码设计,合理的代码...
  • 点击标题下蓝色字体可快速关注初中化学知识还是偏向于理论性的,这都是为高中的实验模块做好基础知识准备!「必考知识点一」原子:化学变化中的最小微粒。...分子:保持物质化学性质的最小粒子。(1)构成物质的...
  • 从分子隐氢图中各原子间的距离与连接关系出发,提出了一种表征...对2~9个碳原子饱和烷烃几种物理化学性质进行了定量构效关系建模,与现有的一些拓扑指数相比,该指数具有较好的结构选择性和性质相关性,并且计算更加简便。
  • 借助基团体积的贡献值和分子中各原子的支化度,写出分子的距离矩阵Di,由Di构建新拓扑指数同时,引进分子的结构描述符QC,有机性无机性比值OI,用多元线性回归关联脂肪醇复相关系数均在0.99以上。
  • 原子模型的历史变迁

    2021-02-05 06:32:59
    是什么样的内部结构才会导致电学性质不同?因此,首先我们研究一下:导电性的差别如何表现在物质的原子结构中?物质是由原子组成的,原子又由原子核和绕着核层旋转的电子构成,这是原子结构的经典模型。有了量子理论...
  • 原子结构知识点分析

    2020-11-30 11:30:57
    原子结构知识点分析 原子的电子结构与元素周期律 核外电子运动状态描述 历史发展 道尔顿原子学说 汤姆孙“西瓜式模型” 卢瑟福核式结构模型 波尔电子分层排布模型 量子力学模型 氢原子的薛定谔方程 波函数ψ...
  • \(\def\vec#1{\boldsymbol{#1}}\) \(\def\t#1{\text{#1}}\) \(\def\bra#1{\langle#1|}\) \(\def\ket#1{|#1\rangle}\) \(\...参考了《原子结构理论》(黄时中), 《高等量子力学》(喀兴林), 《物理学中的群论》(Joshi),...
  • 我们提出一种现象学的方法,以检查短程和长程核子-核子相关性在原子核中单粒子强度的猝灭及其在不对称核和中子物质中的演化中的作用。 这些相关被认为是在(e,e'p),(p,2p)和转移反应中观察到的光谱因子淬灭的...
  • 由于分子内原子间的相互作用,分子的物理和化学性质不仅取决于组成原子的种类和数目,更取决于分子的结构。 分子扩展 原子(atom): 指化学反应不可再分的基本微粒,原子在化学反应中不可分割。但在物理...
  • 机械和化学领域是众所周知的,但由于缺乏亚原子尺度的实验技术,核的结构和核键的性质仍然是个谜。 最近人们对核在宏观尺度上的整体作用的认识迫使进行更多的研究。 在我们的旅行中,我们以可用的质量缺陷数据为...
  • 我们发现它们具有自然的种群反转,最适合于利用观测到的原子跃迁辐射的玻色性质。 在可观察到的原子Majorana混合中,我们包括通过高强度X射线束提高了长寿命亚稳态激发X射线的速率:在当前的XFEL设施中,可以想到...
  • 《数据库系统概论》复习

    千次阅读 多人点赞 2019-05-27 12:13:27
    基本关系的6条性质:列同质、异列可同域、行列无序性、候选码唯一性、分量原子性 2、关系模式 关系模式:关系的描述称为模式,它的形式化表达为R(U,D,DOM,F),其中R为关系名,U为属性名集合,D为属性域,DOM为...
  • 8 原子结构

    2021-01-26 13:37:42
    原子间结合方式改变,随之产生性质各异的不同种物质。 本章重点讨论原子核外电子的运动状态及其变化规律, 阐述元素性质呈周期性变化的内在本质 8.1 氢原子光谱和Bohr理论 8.1.1 原子结构理论发展历史的简单回顾...
  • 在用Tang-Toennies势模型计算了稀有气体原子间相互作用势[1~3]的基础上,系统计算了五种纯稀有气体的宏观性质,包括第二维里系数B,扩散系数D,热传导系数λ,粘滞系数η和热扩散因子α

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 12,507
精华内容 5,002
关键字:

原子的物理性质