精华内容
下载资源
问答
  • 目前在许多手持设备、汽车以及计算机等设备只用单电源供电,但是单电源容易出现不稳定问题,因此需要在电路外围增加辅助器件以提高稳定性。在电路图1中展示了单电源供电运算放大器的偏置方法,用电阻RA与电阻RB构成...
  • 目前在许多手持设备、汽车以及计算机等设备只用单电源供电,但是单电源容易出现不稳定问题,因此需要在电路外围增加辅助器件以提高稳定性。在电路图1中展示了单电源供电运算放大器的偏置方法,用电阻RA与电阻RB构成...
  • 耦合指信号由第一级向第二级传递的过程,一般不加注明时往往是指交流耦合。退是指对电源采取进一步的...2、大信号工作时,电路对电源需求加大,引起电源波动,通过退降低大信号时电源波动对输入级/高电压增益级...

    e2f2d266ab286c71844d09aae9a9a677.png

    耦合指信号由第一级向第二级传递的过程,一般不加注明时往往是指交流耦合。

    3d781adcb84cecd478cf603f1236578b.png


    退耦是指对电源采取进一步的滤波措施,去除两级间信号通过电源互相干扰的影响。耦合常数是指耦合电容值与第二级输入阻抗值乘积对应的时间常数。

    1

    退耦有三个目的

    1、将电源中的高频纹波去除,将多级放大器的高频信号通过电源相互串扰的通路切断。

    2、大信号工作时,电路对电源需求加大,引起电源波动,通过退耦降低大信号时电源波动对输入级/高电压增益级的影响。


    3、形成悬浮地或是悬浮电源,在复杂的系 统中完成各部分地线或是电源的协调匹,有源器件在开关时产生的高频开关噪声将沿着电源线传播。

    去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地。

    2

    干扰的耦合方式


    干扰源产生的干扰信号是通过一定的耦合通道对电控系统发生电磁干扰作用的。干扰的耦合方式无非是通过导线、空间、公共线等作用在电控系统上。分析下来主要有以下几种。

    直接耦合:

    这是干扰侵入最直接的方式,也是系统中存在最普遍的一种方式。

    如干扰信号通过导线直接侵入系统而造成对系统的干扰。对这种耦合方式,可采用滤波去耦的方法有效地抑制电磁干扰信号的传入。

    公共阻抗耦合:

    这也是常见的一种耦合方式。常发生在两个电路的电流有共同通路的情况。

    公共阻抗耦合有公共地和电源阻抗两种。防止这种耦合应使耦合阻抗趋近于零、使干扰源和被干扰对象间没有公共阻抗。

    电容耦合:

    又称电场耦合或静电耦合,是由于分布电容的存在而产生的一种耦合方式。

    电磁感应耦合:

    又称磁场耦合。是由于内部或外部空间电磁场感应的一种耦合方式,防止这种耦合的常用方法是对容易受干扰的器件或电路加以屏蔽。

    辐射耦合:

    电磁场的辐射也会造成干扰耦合,是一种无规则的干扰。这种干扰很容易通过电源线传到系统中去。

    另当信号传输线较长时,它们能辐射干扰波和接收干扰波,称为大线效应。

    漏电耦合:

    所谓漏电耦合就是电阻性耦合。这种干扰常在绝缘降低时发生。

    去藕电容一般容量比较大,也就是避免噪声耦合到其他部分的意思;旁路电容容量小,提供低阻抗的噪声回流路径。

    其实这种说法也可以算没有什么大错误。但是经过偶查阅了相关资料,才发现其实decouple和bypass从根本上来说没有任何区别,两者在称谓上可以互换。两者的作用低俗一点说:当电源用。
    所谓噪声其实就是电源的波动,电源波动来自于两个方面:电源本身的波动,负载对电流需求变化和电源系统相应能力的差别带来的电压波动。而去藕和旁路电容都是相对负载变化引起的噪声来说。

    所以他们两个没有必要做区分。而且实际上电容值的大小,数量也是有理论根据可循的,如果随意选择,可能会在某些情况下遇到去藕电容(旁路)和分布参数发生自激振荡的情况。

    所以真正意义上的去藕和旁路都是根据负载和供电系 统的实际情况来说的。没有必要去做区分,也没有本质区别。
    电容是板卡设计中必用的元件,其品质的好坏已经成为我们判断板卡质量的一个很重要的方面。1、电容的功能和表示方法
    由两个金属极,中间夹有绝缘介质构成。电容的特性主要是隔直流通交流,因此多用于级间耦合、滤波、去耦、旁路及信号调谐。

    电容在电路中用“C”加数字表示,比如C8,表示在电路中编号为8的电容。

    2、电容的分类
    电容按介质不同分为:气体介质电容,液体介质电容,无机固体介质电容,有机固体介质电容电解电容。

    按极性分为:有极性电容和无极性电容。按结构可分为:固定电容,可变电容,微调电容。3、电容的容量
    电容容量表示能贮存电能的大小。

    电容对交流信号的阻碍作用称为容抗,容抗与交流信号的频率和电容量有关,容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量)。 4、电容的容量单位和耐压
    电容的基本单位是F(法),其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)。

    由于单位F 的容量太大,所以我们看到的一般都是μF、nF、pF的单位。

    换算关系:1F=1000000μF,1μF=1000nF=1000000pF。
    每一个电容都有它的耐压值,用V表示。

    一般无极电容的标称耐压值比较高有:63V、100V、160V、250V、400V、600V、1000V等。

    有极电容的耐压相对比较低,一般标称耐压值有:4V、6.3V、10V、16V、25V、35V、50V、63V、80V、100V、220V、400V等。5、电容的标注方法和容量误差
    电容的标注方法分为:直标法、色标法和数标法。

    对于体积比较大的电容,多采用直标法。如果是0.005,表示0.005uF=5nF。如果是5n,那就表示的是5nF。
    数标法一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是10的多少次方。如:102表示10x10x10 PF=1000PF,203表示20x10x10x10 PF。

    色标法是沿电容引线方向,用不同的颜色表示不同的数字,第一、二种环表示电容量,第三种颜色表示有效数字后零的个数(单位为pF)。

    颜色代表的数值为:黑=0、棕=1、红=2、橙=3、黄=4、绿=5、蓝=6、紫=7、灰=8、白=9。
    电容容量误差用符号F、G、J、K、L、M来表示,允许误差分别对应为±1%、±2%、±5%、±10%、±15%、±20%。 6、电容的正负极区分和测量
    电容上面有标志的黑块为负极。在PCB上电容位置上有两个半圆,涂颜色的半圆对应的引脚为负极。也有用引脚长短来区别正负极长脚为正,短脚为负。
    当我们不知道电容的正负极时,可以用万用表来测量。电容两极之间的介质并不是绝对的绝缘体,它的电阻也不是无限大,而是一个有限的数值,一般在1000兆欧以上。

    电容两极之间的电阻叫做绝缘电阻或漏电电阻。只有电解电容的正极接电源正(电阻挡时的黑表笔),负端接电源负(电阻挡时的红表笔)时,电解电容的漏电流才小(漏电阻大)。反之,则电解电容的漏电流增加(漏电阻减小)。

    这样,我们先假定某极为“+”极,万用表选用R*100或R*1K挡,然后将假定的“+”极与万用表的黑表笔相接,另一电极与万用表的红表笔相接,记下表针停止的刻度(表针靠左阻值大),对于数字万用表来说可以直接读出读数。

    然后将电容放电(两根引线碰一下),然后两只表笔对调,重新进行测量。两次测量中,表针最后停留的位置靠左(或阻值大)的那次,黑表笔接的就是电解电容的正极。

    7、电容使用的一些经验及四个误区

    【一些经验】

    在电路中不能确定线路的极性时,建议使用无极电解电容。通过电解电容的纹波电流不能超过其充许范围。

    如超过了规定值,需选用耐大纹波电流的电容。电容的工作电压不能超过其额定电压。

    在进行电容的焊接的时候,电烙铁应与电容的塑料外壳保持一定的距离,以防止过热造成塑料套管破裂。并且焊接时间不应超过10秒,焊接温度不应超过260摄氏度。

    【四个误区】

    (1)电容容量越大越好

    很多人在电容的替换中往往爱用大容量的电容。我们知道虽然电容越大,为IC提供的电流补偿的能力越强。

    且不说电容容量的增大带来的体积变大,增加成本的同时还影响空气流动和散热。关键在于电容上存在寄生电感,电容放电回路会在某个频点上发生谐振。

    在谐振点,电容的阻抗小。因此放电回路的阻抗最小,补充能量的效果也最好。但当频率超过谐振点时,放电回路的阻抗开始增加,电容提供电流能力便开始下降。

    电容的容值越大,谐振频率越低,电容能有效补偿电流的频率范围也越小。从保证电容提供高频电流的能力的角度来说,电容越大越好的观点是错误的,一般的电路设计中都有一个参考值的。

    (2)同样容量的电容,并联越多的小电容越好

    耐压值、耐温值、容值、ESR(等效电阻)等是电容的几个重要参数,对于ESR自然是越低越好。
    ESR与电容的容量、频率、电压、温度等都有关系。当电压固定时候,容量越大,ESR越低。在板卡计中采用多个小电容并连多是出与PCB空间的限制,这样有的人就认为,越多的并联小电阻,ESR越低,效果越好。

    理论上是如此,但是要考虑到电容接脚焊点的阻抗,采用多个小电容并联,效果并不一定突出。

    (3)ESR越低,效果越好

    结合我们上面的提高的供电电路来说,对于输入电容来说,输入电容的容量要大一点。相对容量的要求,对ESR的要求可以适当的降低。

    因为输入电容主要是耐压,其次是吸收MOSFET的开关脉冲。对于输出电容来说,耐压的要求和容量可以适当的降低一点。

    ESR的要求则高一点,因为这里要保证的是足够的电流通过量。但这里要注意的是ESR并不是越低越好,低ESR电容会引起开关电路振荡。而消振电路复杂同时会导致成本的增加。

    板卡设计中,这里一般有一个参考值,此作为元件选用参数,避免消振电路而导致成本的增加。

    (4)好电容代表着高品质

    “唯电容论”曾经盛极一时,一些厂商和媒体也刻意的把这个事情做成一个卖点。在板卡设计中,电路设计水平是关键。

    和有的厂商可以用两相供电做出比一些厂商采用四相供电更稳定的产品一样,一味的采用高价电容,不一定能做出好产品。

    衡量一个产品,一定要全方位多角度的去考虑,切不可把电容的作用有意无意的夸大。

    文章整理自EDA365电子论坛

    展开全文
  • 目前在许多手持设备、汽车以及计算机等设备只用单电源供电,但是单电源容易出现不稳定问题,因此需要在电路外围增加辅助器件以提高稳定性。
  • 去耦电路及其应用技巧 多级放大 噪声源处抑制噪音
  • ESR表示电容器中的电阻损耗。这个损耗包括金属电极分布电阻、内部电极间的接触电阻,以及外部端接电阻。高频下的趋肤效应会增加器件的引线电阻值,所以高频ESR大于直流下的ESR。  ESL也能表示电容器的损耗。...
  • 单片机中去耦电容在电路中的应用首先来看图 1,这是 USB 接口和供电电路。 图 1 USB 接口和供电电路左边这张图,过了保险丝以后,接了一个 470uF 的电容 C16,右边这张图,经过开关后,接了一个 100uF 的电容 C19...
  • 因为电容器的基本功能是储存电荷,所以理想的去耦电容器可以提供逻辑装置进行状态变换时所需的所有电流。  其中,ΔI为转换电流;ΔV为允许供电电压的改变(波动);ΔT为切换时间。  例:如果设计中允许供电...
  • 去耦和旁路电路特性

    2021-01-20 00:08:34
    在特定温度下,电容值大量改变可能导致运行性能的降低,或作为旁路和去耦电容作用时,失去部分运行性能c介质材料的温度特性越稳定,电容器的工作特性就越好。  除了介质材料的温度敏感性外,在所考虑的运行频率下...
  • 去耦和旁路可以防止能量从一个电路传播到另一个电路上去,进而提高电源分配系统的质量。  回顾前面章节的介绍,可知数字逻辑电路通常涉及两个可能的状态,“0”和“I”(参考图3-1所示数字信号电平模型)。设置和...
  • 当选择旁路和去耦电容时,会牵涉到计算电容器的充、放电自谐振频率,这可通过逻辑系列结合所使用的时钟速度计算。电容器的电容值选择还是必须根据该电容器在电路中的容抗。低于谐振频率以下,电容器表现为容性,高于...
  • 讲述如何设计单电源运算放大器去耦电路,减少共模干扰,等等。
  • 在含有耦合电感的情况下,我们首先要对该耦合进行分析,如能用法二等效,(即两电感简单串并联情况下则用之,如遇其他情况,则需比较分析,从本质来说法一和法三没有本质区别,但有时候含受控源电路较难处理一些,...
  • 继电器驱动电流一般需要20-40mA或更大,线圈电阻100-200欧姆,因此要加驱动电路。继电器驱动电路的原理及注意事项汇总如下。
  • 1.耦合机理及去耦需求 集成电路芯片都有电源引脚,有的甚至有多个电源电压和模拟数字混合电源。无论电源引脚数量如何,每路电源都有其允许范围,包括推荐工作范围和最大绝对值。为防止芯片损坏、保持正常工作,必须...

    1.耦合机理及去耦需求

    集成电路芯片都有电源引脚,有的甚至有多个电源电压和模拟数字混合电源。无论电源引脚数量如何,每路电源都有其允许范围,包括推荐工作范围和最大绝对值。为防止芯片损坏、保持正常工作,必须遵守这些限制条件。

    然而,由于噪声和电源纹波导致的电源电压微小变化——即便仍在推荐的工作范围内——也会导致器件性能下降。例如在集成运放中,微小的电源变化会产生输入和输出电压的微小变化,如下图所示:
     

    运放的电源抑制显示输出电压对电源轨变化的灵敏度标题

    运放对电源电压变化的灵敏度用电源抑制比(PSRR)来量化,其定义为电源电压变化与输出电压变化的比值。通常情况下,这个比值越大,则说明器件的稳定性越强。

    上图显示了典型高性能放大器(OP1177)的PSR随频率以大约20dB/10倍频程下降的情况。图中显示了采用正负电源两种情况下的曲线图。尽管PSRR在直流下是120dB,但较高频率下会迅速降低,此时电源线路上有越来越多的无用能量会直接耦合至输出。

    如果芯片驱动较大负载,并且在电源轨上存在分布阻抗(寄生),则负载电流会调制电源轨,在分布阻抗上形成压降,增加了交流信号中的噪声和失真。

    在高频数字电路中,高频IC的性能会随着电源上的噪声而变差,降低逻辑电平的噪声容限,时钟抖动产生错误时序。

    2.去耦原理

    典型的4层PCB通常设计为接地层、电源层、顶部信号层和底部信号层。表面贴装IC的接地引脚通过引脚上的过孔直接连接到接地层,从而最大限度地减少接地连接中的无用阻抗。
    电源轨通常位于电源层,并且路由到IC的各种电源引脚。显示电源和接地连接的简单IC模型如下图所示。
     

    显示走线阻抗和局部去耦电容IC模型

    IC内产生的电流表示为IT。流过走线阻抗Z的电流产生电源电压VS的变化。如上所述,根据IC的PSR,这会产生各种类型的性能降低。通过使用尽可能短的连接,将适当类型的局部去耦电容直接连接到电源引脚和接地层之间,可以最大限度地降低对功率噪声和纹波的灵敏度。去耦电容用作瞬态电流的电荷库,并将其直接分流到地,从而在IC上保持恒定的电源电压。虽然回路电流路径通过接地层,但由于接地层阻抗较低,回路电流一般不会产生明显的误差电压。

    下图显示了高频去耦电容必须尽可能靠近芯片的情况。否则,连接走线的电感将对去耦的有效性产生不利影响。
     

    高频去耦电容的正确和错误放置

    上图左侧,电源引脚和接地连接都尽可能短,是最有效的走线方式。但在上图右侧中, PCB走线内的寄生电感和电阻将造成去耦方案的有效性降低,且增加封闭环路可能造成干扰问题。

    3.选择去耦电容及磁珠

    低频噪声去耦通常需要用电解电容(典型值为1µF至100µF),以此作为低频瞬态电流的电荷库。将低电感表面贴装陶瓷电容(典型值为0.01µF至0.1µF)直接连接到IC电源引脚,可最大程度地抑制高频电源噪声。所有去耦电容必须直接连接到低电感接地层才有效。此连接需要短走线或过孔,以便将寄生串联电感降至最低。

    大多数IC数据手册在应用部分说明了推荐的电源去耦电路,用户应始终遵循这些建议,以确保器件正常工作。

    铁氧体磁珠(以镍、锌、锰的氧化物或其他化合物制造的绝缘陶瓷)也可用于在电源滤波器中去耦。铁氧体在低频下(<100kHz)为感性—因此对低通LC去耦滤波器有用。 100kHz以上,铁氧体成阻性(低Q)。铁氧体阻抗与材料、工作频率范围、直流偏置电流、匝数、尺寸、形状和温度成函数关系。

    铁氧体磁珠并不一定需要加,但可以增强高频噪声隔离和去耦。还有一点容易忽略,就是需要验证磁珠会不会饱和,特别是在运算放大器驱动高输出电流时。当铁氧体饱和时,它就会变为非线性,失去滤波特性。请注意,某些铁氧体甚至可能在完全饱和前已经呈非线性。因此,如果需要功率级,以低失真输出工作,当在磁珠饱和区域附近工作时,应检查磁珠的饱和性。最重要的参考参数是其通流电流,一般工作点放在磁珠额定电流的一半比较合适。典型铁氧体磁珠阻抗如下图所示。

    铁氧体磁珠的阻抗

    在为去耦应用选择合适的类型时,需要仔细考虑由于寄生电阻(ESR)和电感(ESL)产生的非理想电容性能。

    实际电容的等效图

    下图是实际电容的阻抗曲线:

    电容的阻抗曲线

     

    电容自谐振频率就是电容电抗(1/ωC)等于ESL电抗(ωESL)时的频率,这时电容阻抗等于ESR。
    对这一谐振频率等式求解得到下式:

    所有电容的阻抗曲线都与图示的大致形状类似(‘V’型)。虽然实际曲线图有所不同,但大致形状相同。最小阻抗由ESR决定,高频区域由ESL决定,而后者在很大程度上受封装样式影响。

    给大家一个去耦电容选型参考:

    频率范围(Hz)去耦电容取值
    DC-100K10uF以上的铝电解或钽电容
    100k - 10M100nF陶瓷电容
    10M - 100M10nF陶瓷电容
    >100M1nF陶瓷电容和PCB地平面与电源平面的电容

    一般运用中,100nF去耦合电容就可以了,但不是什么场合都放100nF去耦电容,而是应该根据工作环境选择,而且去耦电容都应该选择低ESL和ESR型电容。

    展开全文
  • 电源去耦的原因-和如何电源去耦

    万次阅读 多人点赞 2016-11-22 15:07:08
    浅谈电源去耦——电源去耦的原因【转载】 浅谈电源去耦系列第一篇,希望从定性的角度谈谈自己对电源去耦的理解。也是Andrew的第一篇博文,希望大家支持,不足之处也请各位多多指正浅谈电源去耦——电源去耦的原因1....

    浅谈电源去耦——电源去耦的原因【转载】
    浅谈电源去耦系列第一篇,希望从定性的角度谈谈自己对电源去耦的理解。也是Andrew的第一篇博文,希望大家支持,不足之处也请各位多多指正浅谈电源去耦——电源去耦的原因

    1.理想的电源
    “理想的电源”的电压是稳定不变的,没有任何噪声的,输出功率是不受限制的,并且响应速度是无限快的。即无论负载的消耗的电流如何变化、以怎样的速度变化,电源的电压都应该是一个稳定不变的值。不会受到负载的任何影响,也完全符合的负载的供电需求,不会影响负载的正常工作。

    2.实际电路常用电源器件的简单介绍:
    电子电路中经常使用的实际电源器件由两种:
    1.线性稳压器:
    这种电源的原理结构图一般如下所示
    这里写图片描述
    利用负反馈的原理,将输出的电压通过两个电阻分压之后反馈到“运放”的输入端,而运放的另一输入端接一固定的参考电压Vref,根据虚短虚断和负反馈的原理,运放会自动调节输出电压,从而调节调整管的导通电阻(图中的FET),使输出电压Vout和Vref之间满足Vout·R2/(R1+R2)=Vref。可见,线性稳压电源可以等效成为一个串联在电源和负载之间的可变电阻,当电源的电压或负载电流发生变化时,该电阻的阻值随之变化,从而使负载分到的电压保持不变

    2.开关电源:
    升压型开关电源为例,其一般结构如下图
    这里写图片描述
    图中的FET起开关作用,FET导通时电源对电感和电容充电,并且给负载提供能量,FET关断时,电感电容中储存的能量通过续流二极管形成回路,给负载提供电能。控制FET开关的占空比就可以调节输出电压的大小。
    电子电路中常用的电源就是以上两种,这两种各有优缺点,使用场合也有差别,并且每种都可继续细分为多种子类,这已经超出了本篇电源去耦的范畴。从上面简单的介绍中我们可以看出这两种实际的电源都是有局限性的。

    3. 实际电源与理想电源的差距:
    (1)实际电源器件的特性与理想电源之间有差距:
    响应速度:前面说线性稳压电源是通过负反馈来改变调整管的导通电阻实现稳压的。但运放的带宽都是有限的,并且负反馈的过程需要一定的时间。所以实际的线性稳压电源是需要一定的响应时间。换句话说,当输入电压或负载的电流变化速度过快或幅度过大时,电源器件来不及响应或不能完全消除这种变化,则负载的供电电压就会变化,影响负载的正常工作。
    噪声特性:开关电源由于工作在开关状态下,即电路内部有电流的急剧变化,所以噪声相对线性稳压器更大。并且电源内部的各种半导体器件自身也有噪声。这些噪声和电源的不理想特性都会对负载造成一定的影响。
    具体描述电源器件特性的参数有线性调整率、负载调整率、输出电压噪声等。
    (2)PCB走线对电源质量有影响:
    我们都知道,高速的PCB一般都是多层板,其中有专用的电源层,目的是减小电源线的寄生电感。电感的作用是阻碍电流的迅速变化,如果电源线的寄生电感很大,则当负载突然需要电流的时候,无法及时的从电源处获取。而宽大的电源平面可以将寄生电感最小化,提高电源的质量。
    而即使如此,寄生电感还是存在的。为了提供芯片需要的瞬时电流,经常在芯片引脚处放置去耦电容(电容的电流可突变,电压不可突变)。
    (3)外界干扰对电源质量有影响:
    电源线在走线过程中也会受到板上其他信号和空间的电磁干扰的影响从而噪声变大。去耦电容可以有效的滤除这些噪声
    总结:电源去耦的最终目标是为了负载能够正常工作,使电源特性更加接近理想电源——能快速响应负载的电流需求、电压稳定、干净无噪声。使电路各部分之间通过电源产生的耦合干扰降至最小。

    浅谈电源去耦——如何电源去耦

    1.常用于电源去耦的元件组合
    (1)不同容值的电容组合
    小容值的电容可以滤除电源线上的高频噪声,使电源更加干净,并且负责提供负载的高频电流需求。
    大电容同样起到蓄流的作用,响应负载的低频电流需求,滤除电源线上的低频波动。
    理论上,对于任意固定频率,容值越大的电容阻抗越小。但由于电容本身也有寄生电感,而且往往容值越大寄生电感越大,在高频处,电容最终都会显现出感性,阻抗随频率的升高而升高。小电容的转折点(下图中的阻抗曲线的最低点)频率值较之大电容更大。所以大电容对高频电流的响应特性没有小电容好。
    下图是不同容值电容的阻抗随频率变化的曲线。但是大电容可以响应频率相对较低,电流需求大的电流变化。
    不同容值电容的阻抗随频率变化的曲线
    (2)不同封装的电容组合:
    普遍来说,贴片电容比直插电容的寄生电感小,长宽比小的比长宽比大的封装寄生电感小(同容值,0612的电容比1206电容寄生电感小,高频特性更好)。
    (3)不同种类的电容组合:
    贴片陶瓷电容:高频特性最好,但容值较小,常用的最大容值为10uF。常用于高频电路的电源滤波去耦。
    钽电解电容:高频特性较好,相同体积下可以实现最大的容值。确定是耐压值较低,容易损坏。
    铝电解电容:高频特性最差,但是容值最大,可以做到几千微法。常用于电源入板处的滤波和去耦,此处的电容需要有容量大的特点,但对响应速度要求不高。
    因此,各种类型的电容在电源去耦中担当的角色一般是这样的:陶瓷电容最靠近芯片,负责提供负载高频的电流需求和噪声过滤,容值一般几nF到几uF之间。钽电容和铝电解电容因为容量大、响应速度较慢,一般用于板级的电源去耦和滤波,或者是大功率电路的电源去耦。当即要求速度,有要求容量的时候一般用多个瓷片电容并联或瓷片电容与钽电容并联。选择钽电容,耐压值要留有一定的裕量,因为电源上电瞬间一般会有一定的过冲,容易损坏钽电容。电源处并联上稳压管或TVS管可以抑制过冲,是很有效的解决办法、
    (注:各种电容的ESR、ESL等参数之间有差异,详细可百度华为公司的内部资料:无源滤波器件——电容的介绍与深入认识
    (4)电容和电感、磁珠的组合:
    一般的电源去耦只需要去耦电容即可满足实际需求,但对电源质量要求很高的模拟电路等,仅仅使用去耦电容可能效果有限,因为如论并联多少个电容,都只能形成单个极点,响应曲线的滚将速度只有20dB/10倍频。因此,可以在电源线上串联电感或磁珠。这样可以进一步减少电源波动对负载的影响,也能防止一些高噪声的负载通过电源线将噪声耦合到其他敏感的电路上。
    2.不同电路中的电源去耦
    (1)小功率电路
    模拟电路
    比如信号处理电路,中常用10uF和100nF贴片瓷片电容去耦。有的时候受到电路板空间的限制,可以多个芯片公用一个10uF的电容,但应保证每个芯片的电源引脚处都就近放置一个100nF的电容。
    高精度的模拟电路中,经常放置多个容值梯度的电容(如10uF、100nF、1nF并联),保证去耦电容可以过滤很宽频率范围内的电源噪声。并且电源线串联磁珠会进一步减小噪声。
    数字电路
    数字电路工作在高速开关状态下,电源电流变化迅速,并且数字信号中有丰富的高频成分,会对电源造成干扰,因此常用100nF的贴片陶瓷电容进行电源去耦。
    电路板的电源入板接口处通常放置容值较大的电解或钽电容。此用途为电源滤波。
    (2)大功率电路
    大功率的电路的电源去耦(如电机驱动H桥的电源去耦)要用到更大容值的电容,比如470uF甚至几千微法的电解电容,但是除了用电解电容之外,还需要并联上几个瓷片的小电容,提高高频响应特性,过滤MOSFET高速开关因此的电源毛刺。
    3.去耦元件的放置原则
    (1)就近原则
    去耦电容应尽可能的靠近芯片的电源引脚。减小去耦电容和芯片之间走线的寄生电感,去耦效果更好。
    (2)越小越近的原则
    小容值电容最靠近芯片,然后按照容值递增的原则依次远离芯片(远离是相对的,前提是遵循就近原则)。小电容负责高频响应,应该更靠近芯片缩短响应的时间。并且小电容可以滤除高频噪声,若距离芯片太远,则电容和芯片之间的走线会重新拾取噪声,削弱去噪效果。
    (3)电源线先经过去耦电容再连接至芯片引脚:

    展开全文
  • 因为电容器的基本功能是储存电荷,所以理想的去耦电容器可以提供逻辑装置进行状态变换时所需的所有电流。  其中,ΔI为转换电流;ΔV为允许供电电压的改变(波动);ΔT为切换时间。  例:如果设计中允许供电...
  • 降压起动电路图 当按下启动按钮SB2时,接触器KM1或KM2的线圈先后获电吸合,电动机串自变压器降压启动,时间继电器KT的线圈与KM2线圈同时获电吸合,KT动断(常闭)触头延时断开,KM1线圈断电释放,KT动合(常...
  • 十分透彻:电容去耦原理

    千次阅读 2018-11-03 10:56:06
    一、电容退原理   采用电容退是解决电源噪声问题的主要方法。这种方法对提高瞬态电流的响应速度,降低电源分配系统的阻抗都非常有效。   对于电容退,很多资料中都有涉及,但是阐述的角度不同。有些是从...


    一、电容退耦原理

     

    采用电容退耦是解决电源噪声问题的主要方法。这种方法对提高瞬态电流的响应速度,降低电源分配系统的阻抗都非常有效。

     

    对于电容退耦,很多资料中都有涉及,但是阐述的角度不同。有些是从局部电荷存储(即储能)的角度来说明,有些是从电源分配系统的阻抗的角度来说明,还有些资料的说明更为混乱,一会提储能,一会提阻抗,因此很多人在看资料的时候感到有些迷惑。其实,这两种提法,本质上是相同的,只不过看待问题的视角不同而已。为了让大家有个清楚的认识,本文分别介绍一下这两种解释。

     

    二、从储能的角度来说明电容退耦原理。

     

    在制作电路板时,通常会在负载芯片周围放置很多电容,这些电容就起到电源退耦作用。其原理可用图1说明。

    图 1 去耦电路

    当负载电流不变时,其电流由稳压电源部分提供,即图中的 I0,方向如图所示。此时电容两端电压与负载两端电压一致,电流 Ic 为 0,电容两端存储相当数量的电荷,其电荷数量和电容量有关。当负载瞬态电流发生变化时,由于负载芯片内部晶体管电平转换速度极快,必须在极短的时间内为负载芯片提供足够的电流。但是稳压电源无法很快响应负载电流的变化,因此,电流 I0 不会马上满足负载瞬态电流要求,因此负载芯片电压会降低。但是由于电容电压与负载电压相同,因此电容两端存在电压变化。对于电容来说电压变化必然产生电流,此时电容对负载放电,电流 Ic 不再为 0,为负载芯片提供电流。

     

    根据电容等式:

    (公式 1)

    只要电容量 C 足够大,只需很小的电压变化,电容就可以提供足够大的电流,满足负载瞬态电流的要求。这样就保证了负载芯片电压的变化在容许的范围内。这里,相当于电容预先存储了一部分电能,在负载需要的时候释放出来,即电容是储能元件。储能电容的存在使负载消耗的能量得到快速补充,因此保证了负载两端电压不至于有太大变化,此时电容担负的是局部电源的角色。

     

    从储能的角度来理解电源退耦,非常直观易懂,但是对电路设计帮助不大。从阻抗的角度理解电容退耦,能让我们设计电路时有章可循。实际上,在决定电源分配系统的去耦电容量的时候,用的就是阻抗的概念。
     

    三、从阻抗的角度来理解退耦原理。

     

    将图 1 中的负载芯片拿掉,如图 2 所示。从 AB 两点向左看过去,稳压电源以及电容退耦系统一起,可以看成一个复合的电源系统。这个电源系统的特点是:不论 AB 两点间负载瞬态电流如何变化,都能保证 AB 两点间的电压保持稳定,即 AB 两点间电压变化很小。

    图片 2 电源部分


    我们可以用一个等效电源模型表示上面这个复合的电源系统,如图 3

    图 3 等效电源


     


    对于这个电路可写出如下等式:

    (公式 2)

    我们的最终设计目标是,不论 AB 两点间负载瞬态电流如何变化,都要保持 AB 两点间电压变化范围很小,根据公式 2,这个要求等效于电源系统的阻抗 Z 要足够低。在图 2 中,我们是通过去耦电容来达到这一要求的,因此从等效的角度出发,可以说去耦电容降低了电源系统的阻抗。另一方面,从电路原理的角度来说,可得到同样结论。电容对于交流信号呈现低阻抗特性,因此加入电容,实际上也确实降低了电源系统的交流阻抗。

     

    从阻抗的角度理解电容退耦,可以给我们设计电源分配系统带来极大的方便。实际上,电源分配系统设计的最根本的原则就是使阻抗最小。最有效的设计方法就是在这个原则指导下产生的。

     

    正确使用电容进行电源退耦,必须了解实际电容的频率特性。理想电容器在实际中是不存在的,这就是为什么经常听到“电容不仅仅是电容”的原因。

    实际的电容器总会存在一些寄生参数,这些寄生参数在低频时表现不明显,但是高频情况下,其重要性可能会超过容值本身。图 4 是实际电容器的 SPICE 模型,图中,ESR 代表等效串联电阻,ESL 代表等效串联电感或寄生电感,C 为理想电容。



    图 4 电容模型

    等效串联电感(寄生电感)无法消除,只要存在引线,就会有寄生电感。这从磁场能量变化的角度可以很容易理解,电流发生变化时,磁场能量发生变化,但是不可能发生能量跃变,表现出电感特性。寄生电感会延缓电容电流的变化,电感越大,电容充放电阻抗就越大,反应时间就越长。等效串联电阻也不可消除的,很简单,因为制作电容的材料不是超导体。

     

    讨论实际电容特性之前,首先介绍谐振的概念。对于图 4 的电容模型,其复阻抗为:

    (公式 3)
     

     

    电容器此时表现为电感性,因此“高频时电容不再是电容”,而呈现为电感。当时,

    此时容性阻抗矢量与感性阻抗之差为 0,电容的总阻抗最小,表现为纯电阻特性。该频率点就是电容的自谐振频率。自谐振频率点是区分电容是容性还是感性的分界点,高于谐振频率时,“电容不再是电容”,因此退耦作用将下降。因此,实际电容器都有一定的工作频率范围,只有在其工作频率范围内,电容才具有很好的退耦作用,使用电容进行电源退耦时要特别关注这一点。寄生电感(等效串联电感)是电容器在高于自谐振频率点之后退耦功能被消弱的根本原因。图 5 显示了一个实际的 0805 封装 0.1uF 陶瓷电容,其阻抗随频率变化的曲线。


    图 5 电容阻抗特性

     

    电容的自谐振频率值和它的电容值及等效串联电感值有关,使用时可查看器件手册,了解该项参数,确定电容的有效频率范围。下面列出了 AVX 生产的陶瓷电容不同封装的各项参数值。

    电容的等效串联电感和生产工艺和封装尺寸有关,同一个厂家的同种封装尺寸的电容,其等效串联电感基本相同。通常小封装的电容等效串联电感更低,宽体封装的电容比窄体封装的电容有更低的等效串联电感。

    既然电容可以看成 RLC 串联电路,因此也会存在品质因数,即 Q 值,这也是在使用电容时的一个重要参数。

    电路在谐振时容抗等于感抗,所以电容和电感上两端的电压有效值必然相等,电容上的电压有效值 UC=I*1/ωC=U/ωCR=QU,品质因数 Q=1/ωCR,这里 I 是电路的总电流。电感上的电压有效值 UL=ωLI=ωL*U/R=QU,品质因数 Q=ωL/R。因为:UC=UL 所以 Q=1/ωCR=ωL/R。

    电容上的电压与外加信号电压 U 之比 UC/U=(I*1/ωC)/RI=1/ωCR=Q。电感上的电压与外加信号电压 U 之比 UL/U=ωLI/RI=ωL/R=Q。从上面分析可见,电路的品质因数越高,电感或电容上的电压比外加电压越高。



    图 6 Q 值的影响


    Q值影响电路的频率选择性。当电路处于谐振频率时,有最大的电流,偏离谐振频率时总电流减小。我们用 I/I0 表示通过电容的电流与谐振电流的比值,即相对变化率。 表示频率偏离谐振频率程度。图 6 显示了 I/I0 与ω/ω0关系曲线。这里有三条曲线,对应三个不同的 Q 值,其中有 Q1>Q2>Q3。从图中可看出当外加信号频率 ω 偏离电路的谐振频率 ω0时,I/I0 均小于 1。Q 值越高在一定的频偏下电流下降得越快,其谐振曲线越尖锐。也就是说电路的选择性是由电路的品质因素 Q 所决定的,Q 值越高选择性越好。

    在电路板上会放置一些大的电容,通常是坦电容或电解电容。这类电容有很低的 ESL,但是 ESR 很高,因此 Q 值很低,具有很宽的有效频率范围,非常适合板级电源滤波。


    当电容安装到电路板上后,还会引入额外的寄生参数,从而引起谐振频率的偏移。充分理解电容的自谐振频率和安装谐振频率非常重要,在计算系统参数时,实际使用的是安装谐振频率,而不是自谐振频率,因为我们关注的是电容安装到电路板上之后的表现。

    电容在电路板上的安装通常包括一小段从焊盘拉出的引出线,两个或更多的过孔。我们知道,不论引线还是过孔都存在寄生电感。寄生电感是我们主要关注的重要参数,因为它对电容的特性影响最大。电容安装后,可以对其周围一小片区域有效去耦,这涉及到去耦半径问题,本文后面还要详细讲述。现在我们考察这样一种情况,电容要对距离它 2 厘米处的一点去耦,这时寄生电感包括哪几部分。首先,电容自身存在寄生电感。从电容到达需要去耦区域的路径上包括焊盘、一小段引出线、过孔、2 厘米长的电源及地平面,这几个部分都存在寄生电感。相比较而言,过孔的寄生电感较大。可以用公式近似计算一个过孔的寄生电感有多大。
     

    公式为

    其中:L 是过孔的寄生电感,单位是 nH。h 为过孔的长度,和板厚有关,单位是英寸。d为过孔的直径,单位是英寸。下面就计算一个常见的过孔的寄生电感,看看有多大,以便有一个感性认识。设过孔的长度为 63mil(对应电路板的厚度 1.6 毫米,这一厚度的电路板很常见),过孔直径 8mil,根据上面公式得:

    这一寄生电感比很多小封装电容自身的寄生电感要大,必须考虑它的影响。过孔的直径越大,寄生电感越小。过孔长度越长,电感越大。下面我们就以一个 0805 封装 0.01uF 电容为例,计算安装前后谐振频率的变化。参数如下:容值:C=0.01uF。电容自身等效串联电感:ESL=0.6 nH。安装后增加的寄生电感:Lmount=1.5nH。
     

    电容的自谐振频率:

    安装后的总寄生电感:0.6+1.5=2.1nH。注意,实际上安装一个电容至少要两个过孔,寄生电感是串联的,如果只用两个过孔,则过孔引入的寄生电感就有 3nH。但是在电容的每一端都并联几个过孔,可以有效减小总的寄生电感量,这和安装方法有关。

     

    安装后的谐振频率为:




     

    可见,安装后电容的谐振频率发生了很大的偏移,使得小电容的高频去耦特性被消弱。在进行电路参数设计时,应以这个安装后的谐振频率计算,因为这才是电容在电路板上的实际表现。

    安装电感对电容的去耦特性产生很大影响,应尽量减小。实际上,如何最大程度的减小安装后的寄生电感,是一个非常重要的问题。

    四、从电源系统的角度进行去耦设计 

     

    这一节就来讲讲另一种方法,从电源系统的角度进行去耦设计。该方法本着这样一个原则:在感兴趣的频率范围内,使整个电源分配系统阻抗最低。其方法仍然是使用去耦电容。


    电源去耦涉及到很多问题:总的电容量多大才能满足要求?如何确定这个值?选择那些电容值?放多少个电容?选什么材质的电容?电容如何安装到电路板上?电容放置距离有什么要求?下面分别介绍。
     

    1、目标阻抗

    -------------------------

    目标阻抗(Target Impedance)定义为:

    该定义可解释为:能满足负载最大瞬态电流供应,且电压变化不超过最大容许波动范围的情况下,电源系统自身阻抗的最大值。超过这一阻抗值,电源波动将超过容许范围。如果你对阻抗和电压波动的关系不清楚的话,请回顾“电容退耦的两种解释”一节。
     

    对目标阻抗有两点需要说明:

    1、目标阻抗是电源系统的瞬态阻抗,是对快速变化的电流表现出来的一种阻抗特性。
    2、目标阻抗和一定宽度的频段有关。在感兴趣的整个频率范围内,电源阻抗都不能超过这个值。阻抗是电阻、电感和电容共同作用的结果,因此必然与频率有关。感兴趣的整个频率范围有多大?这和负载对瞬态电流的要求有关。顾名思义,瞬态电流是指在极短时间内电源必须提供的电流。如果把这个电流看做信号的话,相当于一个阶跃信号,具有很宽的频谱,这一频谱范围就是我们感兴趣的频率范围。


    如果暂时不理解上述两点,没关系,继续看完本文后面的部分,你就明白了。
     

    2、需要多大电容量 

    -------------------------

    有两种方法确定所需的电容量。第一种方法利用电源驱动的负载计算电容量。这种方法没有考虑 ESL 及 ESR 的影响,因此很不精确,但是对理解电容量的选择有好处。第二种方法就是利用目标阻抗(Target Impedance)来计算总电容量,这是业界通用的方法,得到了广泛验证。你可以先用这种方法来计算,然后做局部微调,能达到很好的效果,如何进行局部微调,是一个更高级的话题。下面分别介绍两种方法。

    方法一:利用电源驱动的负载计算电容量
     
    设负载(容性)为 30pF,要在 2ns 内从 0V 驱动到 3.3V,瞬态电流为:

    如果共有 36 个这样的负载需要驱动,则瞬态电流为:36*49.5mA=1.782A。假设容许电压波动为:3.3*2.5%=82.5 mV,所需电容量为C=I*dt/dv=1.782A*2ns/0.0825V=43.2nF

    说明:所加的电容实际上作为抑制电压波纹的储能元件,该电容必须在2ns 内为负载提供1.782A 的电流,同时电压下降不能超过 82.5 mV,因此电容值应根据 82.5 mV 来计算。记住:电容放电给负载提供电流,其本身电压也会下降,但是电压下降的量不能超过 82.5mV(容许的电压波纹)。这种计算没什么实际意义,之所以放在这里说一下,是为了让大家对去耦原理认识更深。
     

    方法二:利用目标阻抗计算电容量(设计思想很严谨,要吃透)


     

    为了清楚的说明电容量的计算方法,我们用一个例子。要去耦的电源为 1.2V,容许电压波动为 2.5%,最大瞬态电流 600mA,

    第一步:计算目标阻抗


    第二步:确定稳压电源频率响应范围。

    和具体使用的电源片子有关,通常在 DC 到几百 kHz 之间。这里设为 DC 到 100kHz。在100kHz 以下时,电源芯片能很好的对瞬态电流做出反应,高于 100kHz 时,表现为很高的阻抗,如果没有外加电容,电源波动将超过允许的 2.5%。为了在高于 100kHz 时仍满足电压波动小于 2.5%要求,应该加多大的电容?

    第三步:计算 bulk 电容量
    当频率处于电容自谐振点以下时,电容的阻抗可近似表示为:频率 f 越高,阻抗越小,频率越低,阻抗越大。在感兴趣的频率范围内,电容的最大阻抗不能超过目标阻抗,因此使用 100kHz 计算(电容起作用的频率范围的最低频率,对应电容最高阻抗)。




     

    第四步:计算 bulk 电容的最高有效频率

    当频率处于电容自谐振点以上时,电容的阻抗可近似表示为:

    第五步:计算频率高于 1.6MHz 时所需电容



    假设使用 AVX 公司的 0402 封装陶瓷电容,寄生电感约为 0.4nH,加上安装到电路板上后过孔的寄生电感(本文后面有计算方法)假设为 0.6nH,则总的寄生电感为 1 nH。为了满足总电感不大于 0.16 nH 的要求,我们需要并联的电容个数为:1/0.016=62.5 个,因此需要 63 个 0402 电容。

     

    为了在 1.6MHz 时阻抗小于目标阻抗,需要电容量为:



    因此每个电容的电容量为 1.9894/63=0.0316 uF。

     

    综上所述,对于这个系统,我们选择 1 个 31.831 uF 的大电容和 63 个 0.0316 uF 的小电容即可满足要求。
     

    3、相同容值电容并联

    -------------------------

    使用很多电容并联能有效地减小阻抗。63 个 0.0316 uF 的小电容(每个电容 ESL 为 1 nH)并联的效果相当于一个具有 0.159 nH ESL 的 1.9908 uF 电容。


    图 10 多个等值电容并联

    单个电容及并联电容的阻抗特性如图 10 所示。并联后仍有相同的谐振频率,但是并联电容在每一个频率点上的阻抗都小于单个电容。

    但是,从图中我们看到,阻抗曲线呈 V 字型,随着频率偏离谐振点,其阻抗仍然上升的很快。要在很宽的频率范围内满足目标阻抗要求,需要并联大量的同值电容。这不是一种好的方法,造成极大地浪费。有些人喜欢在电路板上放置很多 0.1uF 电容,如果你设计的电路工作频率很高,信号变化很快,那就不要这样做,最好使用不同容值的组合来构成相对平坦的阻抗曲线。
     

    4、不同容值电容的联与反谐振

    -------------------------

    容值不同的电容具有不同的谐振点。图 11 画出了两个电容阻抗随频率变化的曲线。


    图 11 两个不同电容的阻抗曲线

     

    左边谐振点之前,两个电容都呈容性,右边谐振点后,两个电容都呈感性。在两个谐振点之间,阻抗曲线交叉,在交叉点处,左边曲线代表的电容呈感性,而右边曲线代表的电容呈容性,此时相当于 LC 并联电路。对于 LC 并联电路来说,当 L 和 C 上的电抗相等时,发生并联谐振。因此,两条曲线的交叉点处会发生并联谐振,这就是反谐振效应,该频率点为反谐振点。


    图 12 不同容值电容并联后阻抗曲线

     

    两个容值不同的电容并联后,阻抗曲线如图 12 所示。从图 12 中我们可以得出两个结论:

    a 不同容值的电容并联,其阻抗特性曲线的底部要比图 10 阻抗曲线的底部平坦得多(虽然存在反谐振点,有一个阻抗尖峰),因而能更有效地在很宽的频率范围内减小阻抗。

    b 在反谐振(Anti-Resonance)点处,并联电容的阻抗值无限大,高于两个电容任何一个单独作用时的阻抗。并联谐振或反谐振现象是使用并联去耦方法的不足之处。

     

    在并联电容去耦的电路中,虽然大多数频率值的噪声或信号都能在电源系统中找到低阻抗回流路径,但是对于那些频率值接近反谐振点的,由于电源系统表现出的高阻抗,使得这部分噪声或信号能量无法在电源分配系统中找到回流路径,最终会从 PCB 上发射出去(空气也是一种介质,波阻抗只有几百欧姆),从而在反谐振频率点处产生严重的 EMI 问题。

    因此,并联电容去耦的电源分配系统一个重要的问题就是:合理的选择电容,尽可能的压低反谐振点处的阻抗。

    ESR 对反谐振(Anti-Resonance)的影响Anti-Resonance 给电源去耦带来麻烦,但幸运的是,实际情况不会像图 12 显示的那么糟糕。

    实际电容除了 LC 之外,还存在等效串联电阻 ESR。

    因此,反谐振点处的阻抗也不会是无限大的。实际上,可以通过计算得到反谐振点处的阻抗,X 为反谐振点处单个电容的阻抗虚部(均相等)。

    展开全文
  • 去耦和旁路可以防止能量从一个电路传播到另一个电路上去,进而提高电源分配系统的质量。  回顾前面章节的介绍,可知数字逻辑电路通常涉及两个可能的状态,“0”和“I”(参考图3-1所示数字信号电平模型)。设置和...
  • 在特定温度下,电容值大量改变可能导致运行性能的降低,或作为旁路和去耦电容作用时,失去部分运行性能c介质材料的温度特性越稳定,电容器的工作特性就越好。  除了介质材料的温度敏感性外,在所考虑的运行频率下...
  • 选定的电容该放在什么位置。先看一个很形象的动图,直观体会一下一个电容放置位置不同起到的作用有多大...2. “电源 – 去耦电容 – 地”三点一线的距离越近,则去耦的效果越好; 3. 相同材料的电容,即便电容容量减...
  • 在直流电源回路中,负载的变化会引起电源噪声。例如在数字电路中,当电路从一个状态转换为另一种状态时...配置去耦电容可以抑制因负载变化而产生的噪声,是印制电路板的可靠性设计的一种常规做法,本文讲述其配置原则。
  • 当选择旁路和去耦电容时,会牵涉到计算电容器的充、放电自谐振频率,这可通过逻辑系列结合所使用的时钟速度计算。电容器的电容值选择还是必须根据该电容器在电路中的容抗。低于谐振频率以下,电容器表现为容性,高于...
  • 去耦电容的应用背景——电磁干扰EMI 现实生活中的电磁干扰种类很多,包括静电放电ESD、快速瞬间群脉冲EFT、浪涌Surge等等。电磁干扰是我们在电路分析和设计中必须要注意的问题,比如一个简单的静电放电,我们用手...
  • 首先来看图 1,这是 USB 接口和供电电路。    图 1 USB 接口和供电电路  左边这张图,过了保险丝以后,接了一个 470uF 的电容 C16,右边这张图,经过开关后,接了一个 100uF 的电容 C19,并且并联了一...
  • 数字电路输出信号电平转换过程中会产生很大的冲击电流,在供电线和电源内阻上产生较大的压降,使供电电压产生跳变,产生阻抗噪声(亦称开关噪声),形成干扰源。

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 6,134
精华内容 2,453
关键字:

去耦电路