精华内容
下载资源
问答
  • 宽带噪声雷达高速目标参数估计算法研究,对新体制雷达进行研究,针对噪声雷达两大痛点进行算法优化
  • 目标参数分布情况很复杂,我们想求相关的目标参数(f(x))很难,所以想通过MCMC从目标函数采取样本估计我们想要的结果,大致流程构造一条马尔可夫链去逼近目标函数,从其稳态装下抽取样本。
  • 目标进行检测、估计、跟踪是雷达与声纳应用的最终目的,其任务是对接收信号进行一定的处理、提取特征、分析识别,以检测目标的存在与否,进而通过对信号的处理与运算估计目标的方位、距离与速度,实现定位和跟踪...
  • 参数估计

    2015-10-31 10:34:50
    参数估计主要目的是借助总体X的一个样本来计算总体未知参数的近似值,即在已知总体X的分布函数的形式的情况下,同样本来估计未知参数的值。 1、最大似然估计法 假设已知总体X的分布律P={X=x}=p(x;θ)p(x;\theta)...

    参数估计主要目的是借助总体X的一个样本来计算总体未知参数的近似值,即在已知总体X的分布函数的形式的情况下,同样本来估计未知参数的值。
    1、最大似然估计法
    假设已知总体X的分布律P={X=x}= p(x;θ) X1 , X2 ,…, Xn 是来自X的n个样本, x1 , x2 ,…, xn 是样本相应的一个样本值,则 X1 , X2 ,…, Xn 的联合分布律,即事件 {X1=x1,X2=x2,...,Xn=xn} 发生的概率为

    L(θ)=L(x1,x2,...,xn;θ)=ni=1p(xi;θ)

    L(θ) 称为样本的似然函数。参数 θ 的最大似然估计值为 θ 的值使得 L(θ) 的取值最大,即
    L(x1,x2,...,xn;θ)=maxL(x1,x2,...,xn;θ)
    而相应的统计量 θ(X1,X2,...,Xn) 称为参数 θ 的最大似然估计量。

    展开全文
  • 概率密度函数非参数估计matlab代码代码-Matlab 2017a / Python 3.7-MSAL(多标准优化主动学习)算法 主动学习选择最关键的实例,并通过与Oracle的交互来获取它们的标签。 选择信息量大或代表性的未标记实例可能会...
  • 可以精确估计地面目标的运动目标参数,算法在X波段SAR平台实测数据上的参数估计精度可达99.54%。此外,该算法不含遍历搜索方法,运算复杂度远小于二阶Keystone法与Deramp-Keystone等传统参数估计方法。
  • 双频发射机的双基地MIMO雷达高速目标参数估计方法
  • 基于模型参数估计的通用特征基函数法快速求解目标宽带RCS
  • 针对包含多维微动参数的正弦调频项,提出改进的粒子滤波静态参数估计方法,通过设计自适应方差法和变化粒子数提升了算法效率,通过设计累积残差作为观测概率密度函数,实现了对非线性模型中多维参数的同时估计。...
  • 数理统计|参数估计

    千次阅读 2018-10-10 23:31:28
    参数估计目的   我们在统计中,总是想要通过样本去推断总体的性质,而引进统计量,就是对样本进行描述的过程。实际中,我们感兴趣的问题总是与总体分布中的未知参数有关系,所以,我们要对参数进行估计和检验。 ...

    前言

      学了很久数理统计,总觉得知识在脑海中没有清晰的轮廓,虽然也可以自己通过纸和笔整理,但也想要通过新的方式:用文字的方式输出,这一想法已经在我脑海里盘旋了好久,终于在今天落实。

    一、参数估计内容

    1.参数估计的requisites

      我默认大家已经掌握了基本的概率论知识,例如了解概率空间、随机变量、概率的含义,会求随机变量的分布函数、数字特征,对基本的大数定理和中心极限定理有一些了解,最好还要知道三大抽样分布的性质。

    但是还是简单提一下统计量的概念吧:统计量是从样本中得到的,是样本的函数,统计量不含有任何未知参数。

    2.参数估计的目的

      我们在统计中,总是想要通过样本去推断总体的性质,而引进统计量,就是对样本进行描述的过程。实际中,我们感兴趣的问题总是与总体分布中的未知参数有关系,所以,我们要对参数进行估计和检验。
    这里的参数是指:

    • 分布中的未知参数和未知参数的函数
    • 分布的各种特征函数

    3.参数估计的类型和使用

    在此之间,我们必须要明确一点,估计是一个方法,不是一个具体算出来的值;只是,在给定样本以后,用这种估计的方法,可以算出数值。

    3.1 点估计

      点估计,顾名思义是对某个未知参数的值的估计,就像是数轴上的一个点。因此我们的目的也就是找到一个未知参数的好的估计量。
      知道点估计的含义以后,我们先来看看常用的找估计量的方法:

    • 矩估计
    • 最大似然估计
    • 最小方差无偏估计
    • 贝叶斯估计

    3.1.1 矩估计

      矩估计的基本原理就是:替换原理通过样本的矩替换总体的矩,用样本矩的函数替换总体矩的函数。
      这么做的好处是:在总体分布函数未知的情况下,通过样本的特征数可以对各种参数进行估计。
      矩估计的实质是:用样本的经验分布函数去替换总体的分布,理论基础是格里纹科定理。
      具体的操作就是:

    1. 假设已知总体的概率密度函数,但其中的参数未知,通过这个带有未知参数的密度函数去求总体的各阶矩;
    2. 利用样本的数据,求各阶矩;
    3. 通过总体各阶矩和样本各阶矩相等,构造方程组,解出参数。

    3.1.2 最大似然估计(MLE)

      最大似然估计,也可以叫做极大似然估计,从字面理解非常到位就是,找到一个未知参数的估计,使得在这个估计的条件下,由总体概率密度函数推算的分布下,样本发生的可能性最大。即是,最大的像这样的估计。
    具体操作就是:

    1. 将未知参数的估计设为x,带入总体密度函数。
    2. 建立在样本的独立性的条件下,根据样本求出样本取得当下值的概率。
    3. 通过分析计算出使得概率达到最大的x,就是未知参数的极大似然估计。
      最大似然估计具有不变性。

    3.1.3 最小方差无偏估计

      首先引进均方误差(MSE)的概念,均方误差是用于衡量点估计好坏的一种标准,关于衡量点估计好坏的标准在后文还会详细介绍,这里为了需要,先简单提一下。首先明确一点,均方误差是对点估计进行的计算。具体的计算公式是,参数估计值与真实值之差的平方的期望,通过分解,也等于估计值的方差加估计值的期望与真实值之差的平方。
      一致最小均方误差估计,是需要在一个确定的估计类里,找到均方误差相对最小的那个。但由于是在估计类里找,如果不对估计加任何限制,则一致最小均方误差估计是不存在的,所以没有意义。
      最小方差无偏估计,这里是指一致最小方差无偏估计,就是对于一个参数的无偏估计而言,最小的均方误差就意味着最小的方差。对于参数空间中的任何无偏估计,具有最小方差的那个估计就称作是一致最小方差无偏估计(UMVUE)
    实际上,用于判断是否是UMVUE,可以通过一个定理方便地得到:未知参数的UMVUE必然与任一零的无偏估计不相关。也就是说,现在还有一个其他的随机变量X,均值是零,那么这个未知参数的UMVUE与这个随机变量X的相关系数(Cov)为零。

    3.1.4 贝叶斯估计

      前面介绍的三种办法是频率学派的理论,而贝叶斯估计是贝叶斯学派的观点。
      贝叶斯估计是建立在已经有关于参数的分布的信息的基础上,叫做先验信息,然后进行样本观测,推算后验分布。也可以理解为,用总体和样本对先验分布做出调整。
      具体做法是:

    1. 在参数未知的条件下,确定总体的分布
    2. 根据参数的先验信息确定先验分布 π(θ)
    3. 求出在通过先验分布得到的未知参数后,样本的联合分布 p(X|θ)
    4. 确定样本和未知参数的联合分布,也就是2.与3.得到的分布函数之积 h(X,θ)=p(X|θ)π(θ)。
    5. 对参数θ的贝叶斯推断,π(θ|X)= h(X,θ)/m(X),其中m(X) 是从h(X,θ)中对θ整个参数空间积分得到的,X的边际概率函数。

    3.2 点估计好坏的评价标准

      前面已经提到点估计的目的是找到未知参数的好的估计量,那么到底怎么定义“好”,也是我们需要关心的。在点估计中,有如下标准衡量:

    • 无偏性
    • 有效性
    • 相合性
    • 均方误差
    • 充分性原则
    • 有效估计

      我刚学参数估计的时候,脑子里总是记不住这些性质到底在描述什么QAQ
      好吧,其实现在也记不住,我也必须翻一下笔记了…

    • 无偏性
        无偏性是描述经过重复抽样以后,所有对这个未知参数的估计值的平均等于真实的参数值。具体判断也就是计算这个估计的均值,看它是否等于真实值。关于无偏性还有一些性质,最好能够记住:
      1. 样本的k阶中心距通常不是总体k阶中心矩的无偏估计
      2. 无偏性不具有不变性,也就是无偏估计的函数不一定是无偏估计
          无偏估计还有渐近无偏估计,就是当样本量趋近于无穷时,均值的极限趋近于真实值。也是用于衡量一个估计是一个好的估计的准则。
    • 有效性
        有效性是建立在两个无偏估计的基础上,比较两个无偏估计的方差,方差小的更有效。
    • 相合性
        与渐近无偏性从期望的极限角度理解不同,相合性是从概率的角度,即未知参数的估计,在样本量趋近于无穷大的时候,估计量依概率收敛到未知参数。也即是说,当样本量增大的时候,被估计的参数能够被估计到任意指定的精度。判断相合性,我们采用验证它的充分条件:
      1. 渐进无偏性
      2. 方差收敛到0
          由大数定理知道,矩估计一般都是相合的
    • 均方误差
        MSE,是通过计算参数估计值与真实值之差的平方的期望,其大小能够反映估计的好坏,在同一估计类里越小越好。
    • 充分性原则
        首先,要注意充分性原则和充分性是两个不同的东西!充分性是描述统计量不丢失关于样本的任何信息,则称这个统计量为充分统计量。那么,充分性原则和充分性一点关系都没有吗?也不是的。在比较两个无偏估计的好坏的时候,较好的那个无偏估计总是样本的充分统计量;并且,将不是样本充分统计量的统计量,关于充分统计量求期望,得到的估计,一定是充分统计量,并且新的估计的方差也得到了降低。
        换句话说,对于所有的统计推断问题,考虑未知参数的估计问题,只需要在基于充分统计量的函数中进行即可,这就是充分性原则。
        你可能还在想,怎么将不是样本充分统计量的统计量关于一个充分统计量求期望?利用随机过程讲义的第一章的内容,利用条件概率公式,连续函数求积分,离散函数求∑。
    • 有效估计
        有效估计是一个估计,它的方差达到了Cramer-Rao方程的下界,有效估计一定是UMVUE哈。具体计算来判断是否是有效估计的话:
      1. 根据总体密度函数(含参数)检验满足C-R方程的条件;
      2. 求费希尔信息量,找到C-R下界;
      3. 对无偏估计求方差,检验是否等于C-R下界。

    3.3 区间估计

      之前我们讨论的都是点估计,但是关于统计量的精度我们无法定量的回答,必须通过它们的分布来反映。在实际中,度量点估计精度直观方法就是给出未知参数的一个区间,这就是区间估计。
      区间估计是想要找到两个统计量,构成一个区间,这个区间盖住未知参数真值的可能性不确定,但是人们总是希望在尽可能小的区间下,区间盖住真值的可能性越大越好,由此得到置信区间的定义:
      置信区间,是一个有样本值得到的随机区间,未知参数真值落在这个随机区间中的概率大于等于1-a,或者理解为,未知参数真值不落在这个随机区间中的概率小于置信度,满足这个条件的随机区间称作置信区间。首先,置信水平是随机区间盖住真值的概率,置信水平等于置信度,然后,我自己理解置信度是这样的:当大量重复实验,用置信区间的计算方法,得到很多个N个随机区间的时候,有(N* 置信水平)的那么多个区间,包括了均值。
      那具体怎么做区间估计呢?我们通过构造区间估计的方法,使用最基本的枢轴量法:

    1. 什么是枢轴量?
        枢轴量是样本和未知参数的函数,它具有的性质是其分布不依赖与未知参数,或者说,它的概率密度函数与参数无关。
    2. 枢轴量有什么用?
        在参数未知的时候,没有办法直接凭空从置信水平找到随机区间的上下限,所以采用枢轴量的分布函数,以此为媒介,根据置信水平,先算出枢轴量的置信区间,再反解出上下限。
    3. 枢轴量怎么用?
        其实2.已经解答过了,从未知参数的好的点估计(MLE)出发,用它的性质和密度函数构造。根据置信水平,通常采用等尾置信区间保证区间长度最短,先算出枢轴量的置信区间,再反解出上下限。
    4. 有什么特别的检验的构造套路吗?
      • 单个正态总体参数:分为均值、方差是否已知,对均值和方差分别都有不同的枢轴量
      • 大样本置信区间:原理是中心极限定理,在样本方差已知的时候,很 ok;在样本方差未知的时候,中心极限定理的分布可以将方差换成它的相合估计。注意哦,大样本运用中心极限定理,最多只有样本的方差的相合估计代替方差,不可以用均值的无偏估计代替总体均值位置上的 μ 的!
      • 两独立正态总体下均值之差和方差之比的置信区间:类似于单个正态总体,在估计均值的时候,要看方差是否已知,或者方差成比例;在估计方差之比的时候,直接就有枢轴量,不需要讨论均值是否已知。

      除了这些,均匀分布的总体还有一些特别的构造方法,课后题和期中考试卷子也有涉及,供自己参考~
      注:区间估计构造枢轴量的时候,大量用到前面一章节的统计量及其分布、以及三大抽样分布的基础。

    二、整体学习思路

      参数的点估计—>穿插如何评价点估计的好坏—>参数的区间估计
      建议的学习思路:点估计—>评价点估计的好坏—>参数估计,感觉独立开会更清晰一些~

    三、声明

      全文是我的学习笔记,如有出现错误欢迎指正。小哥哥小姐姐看到这里给我点个赞叭~

    展开全文
  •  对目标进行检测、估计、跟踪是雷达与声纳应用的最终目的,其任务是对接收信号进行一定的处理、提取特征、分析识别,以检测目标的存在与否,进而通过对信号的处理与运算估计目标的方位、距离与速度,实现定位和...
  • 基于速度补偿的FMCW雷达多目标参数估计
  • 同时从理论上分析了应用中不同目标尺寸参数精度下目标运动参数估计的Cramer-Rao下界(CRLB).数字仿真分析和初步实测结果表明椭圆形水面目标跟踪的工程可行性,且椭圆目标跟踪系统较传统质点目标跟踪系统收敛速度加快,...
  • #资源达人分享计划#
  • 参数估计方法

    千次阅读 2019-11-07 20:58:21
    参数估计有多种方法,下面简单和大家分享以下两种: 一、最大似然估计 原理: 最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大,也就是概率分布函数或者说是似然函数最大。 二、最小二乘法 当从...

    参数估计有多种方法,下面简单和大家分享以下两种:

    一、最大似然估计

    原理: 最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大,也就是概率分布函数或者说是似然函数最大。

    二、最小二乘法

    当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值和观测值之差的平方和最小。

    三、两者联系

    一般假设其满足正态分布函数的特性,在这种情况下,最大似然估计和最小二乘估计是等价的,也就是说估计结果是相同的,但是原理是不同的。最小二乘法以估计值与观测值的差的平方和作为损失函数,极大似然法则是以最大化目标值的似然概率函数为目标函数。

    四、总结

    最小二乘法的核心是权衡,因为你要在很多条线中间选择,选择出距离所有点之后最短的,而极大似然核心是自恋,要相信自己是天选之子,自己看到的,就是冥冥之中最接近真相的。当服从正态分布时,两都的结论相等。

    个人见解,欢迎批评指正!

    ————————————————
    版权声明:本文为CSDN博主「玲[逆流而上]」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
    原文链接:https://blog.csdn.net/qq_45734454/article/details/102961112

    展开全文
  • 针对固体运动目标高速度、高加速度的特点,研究了高斯白噪声背景下激光多普勒测速回波信号的参数估计问题。通过计算参数矢量的费希尔(Fisher)信息矩阵,分析了实回波信号的多普勒频率和频率变化率估计方差的克拉末-...
  • 参数估计方法整理

    万次阅读 多人点赞 2018-08-06 10:33:27
    参数估计:是根据从总体中抽取的样本估计总体分布中包含的未知参数的方法。 参数估计包括点估计和区间估计。 常见点估计方法:矩估计、最小二乘估计、极大似然估计、贝叶斯估计 区间估计:利用已知的抽样分布、...

    参数估计:是根据从总体中抽取的样本估计总体分布中包含的未知参数的方法。

    参数估计包括点估计和区间估计

    常见点估计方法:矩估计、最小二乘估计、极大似然估计、贝叶斯估计

    区间估计:利用已知的抽样分布、利用区间估计与假设检验的联系、利用大样本理论

    一、点估计
    1、矩估计

    矩估计法的理论依据是大数定律。矩估计是基于一种简单的“替换”思想,即用样本矩估计总体矩
    优点:简单易行, 并不需要事先知道总体是什么分布。(根据均值方差来计算未知参数)
    缺点:当总体类型已知时,没有充分利用分布提供的信息(有一定随意性)

    2、最小二乘估计
    对于最小二乘估计来说,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值与观测值之差的平方和最小。
    目标最小化估计值与观测值之差的平方和。Q表示误差平方和,Yi表示估计值,Ŷ i表示观测值,即Q=∑(Yi−Ŷ i)^2 i = 1,2,……,n

    3、极大似然估计
    对于最大似然估计来说,最合理的参数估计量应该使得从模型中抽取该n组样本的观测值的概率最大,也就是概率分布函数或者似然函数最大。

    典型例题:
    这里写图片描述

    4、贝叶斯估计
    这里写图片描述
    这里写图片描述
    这里写图片描述

    二、区间估计

    区间估计 = 点估计 ± 边际误差
    根据样本求出未知参数的估计区间,并使这个区间包含未知参数的可靠程度达到预定要求(这个预定要求就是个置信度,用上α位分点来体现这个置信度)。

    步骤:

    1.构造合适的包含待估参数的统计量U,且统计量的分布已知。

    2.根据给定的置信度,按照P(U1

    展开全文
  • 该文在分析雷达回波稀疏特性的基础上,将参数估计问题转化为压缩感知理论中的稀疏信号重构问题,据此提出了一种基于压缩感知的2维GTD模型参数估计方法。该方法首先利用2维傅里叶变换成像确定目标散射中心的支撑区域,...
  • 浅谈参数估计

    万次阅读 2019-09-03 09:38:34
    参数估计是推断统计的重要内容之一,它是在抽样及抽样分布的基础上,根据样本统计量来推断所关心的总体参数. 估计量 如果能够掌握总体的全部数据,那么只需要作一些简单的统计描述,就可以得到所关心的总体特征,比如,...
  • 数理统计:参数估计

    千次阅读 2020-12-29 22:57:30
    learning why, thinking what, then forgetting how. 随着时间的流逝,知识总会被遗忘和...统计推断主要分为参数估计和假设检验,参数估计又分为点估计和区间估计。 2.1 参数的点估计 首先提出参数和参数的估计量的.
  • 现有的GM(2,1)模型计算较为复杂,且参数估计基于目标函数是原始序列一次差分序列的拟合误差平方和最小化来确定,同时,参数估计中微分到差分的转换以及背景值构造存在较大误差.针对这些问题,本文基于GM(2,1)...
  • 《统计学》学习笔记之参数估计

    千次阅读 2020-03-16 15:05:29
    文章目录参数估计参数估计的基本原理评价估计量的标准一个总体参数的区间估计两个总体参数估计 参数估计 参数估计是推断统计的重要内容之一。它是在抽样及抽样分布的基础上,根据样本统计量来推断所关心的总体参数...
  • 6 参数估计语言 实验R: 一实验目的; 1. 掌握矩法估计与极大似然估计的求法; R 软件完成一个和两个正态总体的区间估计2. 学会利用; 软件完成非正态总体的区间估计3. 学会利用R 软件进行单侧置信区间估计4. 学会利用R ...
  • 统计学之参数估计

    千次阅读 2019-12-29 22:48:48
    参数估计的基本原理 估计量与估计值 如果我们得到总体的全部数据,做统计描述即可得到总体特征,但现实是,难以得到全部数据。因而需要参数估计参数估计:用样本统计量去估计总体的参数。如样本均值估计总体均值。...
  • 参数估计方法简介

    千次阅读 2019-07-05 17:02:00
    1.参数估计和非参数估计  前面提到随机变量的分布不是很明确时,我们需要先对随机变量的分布进行估计。有一种情况是我们知道变量分布的模型,但是具体分布的参数未知,我们通过确定这些未知参数就可以实现对变量的...
  • 本文档介绍了MIMO雷达多目标参数估计的方法,可以根据文档提供的内容进行仿真,对大家非常有帮助
  • TMC2310 DSP芯片在水下目标检测与参数估计中的应用、电子技术,开发板制作交流
  • 参数估计与假设验证

    千次阅读 2021-01-14 11:07:50
    参数估计和假设的区别和联系; 相同点:假设检验与参数估计都bai是利用样本信息对总体进行某种推断。 不同点: 1、性质不同:参数估计根据从总体中抽取的随机样本来估计总体分布中未知参数的过程。假设检验是用来...
  • 最大似然估计目的就是:利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值。 原理:极大似然估计是建立在极大似然原理的基础上的一个统计方法,是概率论在统计学中的应用。 ... 记已知的样本集为...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 167,179
精华内容 66,871
关键字:

参数估计的主要目的是