精华内容
下载资源
问答
  • 参数估计方法

    千次阅读 2019-11-07 20:58:21
    参数估计有多种方法,下面简单和大家分享以下两种: 一、最大似然估计 原理: 最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大,也就是概率分布函数或者说是似然函数最大。 二、最小二乘法 当从...

    参数估计有多种方法,下面简单和大家分享以下两种:

    一、最大似然估计

    原理: 最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大,也就是概率分布函数或者说是似然函数最大。

    二、最小二乘法

    当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值和观测值之差的平方和最小。

    三、两者联系

    一般假设其满足正态分布函数的特性,在这种情况下,最大似然估计和最小二乘估计是等价的,也就是说估计结果是相同的,但是原理是不同的。最小二乘法以估计值与观测值的差的平方和作为损失函数,极大似然法则是以最大化目标值的似然概率函数为目标函数。

    四、总结

    最小二乘法的核心是权衡,因为你要在很多条线中间选择,选择出距离所有点之后最短的,而极大似然核心是自恋,要相信自己是天选之子,自己看到的,就是冥冥之中最接近真相的。当服从正态分布时,两都的结论相等。

    个人见解,欢迎批评指正!

    ————————————————
    版权声明:本文为CSDN博主「玲[逆流而上]」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
    原文链接:https://blog.csdn.net/qq_45734454/article/details/102961112

    展开全文
  • 根据前篇文章我们知道,贝叶斯分类器设计时,需要知道先验...因此,我们需要从已知的有限的样本中,尽可能地估计出类条件概率密度函数的参数,来方便我们设计分类器。换句话说,我们直接从样本出发,已知类概率密...

    根据前篇文章我们知道,贝叶斯分类器设计时,需要知道先验概率 和类概率密度函数 ,然后再按照最小错误率或者最小风险标准进行决策。

    但是,在实际的工程应用中,类概率密度函数往往是未可知的。即使把类概率密度函数近似为正态分布函数,其分布的均值和方差也是未知的。

    因此,我们需要从已知的有限的样本中,尽可能地估计出类条件概率密度函数的参数,来方便我们设计分类器。换句话说,我们直接从样本出发,已知类概率密度函数的形式,但是类条件概率密度函数的参数未知,依然能够设计出分类器。

    根据待分类数据的随机性,可以将这种参数估计的方法分为两类,即最大似然估计和贝叶斯估计。后者认为,待估计参数是完全随机、测不准的。而前者认为参数是固定的。

     

    最大似然估计

    已知:

           样本集$D= \{ x_1,x_2,...,x_n \} $,且每类样本都是从类条件概率密度函数P(X|\omega_ic)的总体中独立抽取出来的。

    求解目标:

          $\theta = arg max P(\theta|D) $

    对目标进行简化:

    P(\theta|D)=\frac{P(D|\theta)P(\theta)}{P(D)} $

    在最大似然估计中,认为θ 是确定的,即P(θ), 是一个常数。而P(D)是根据已有的数据得到,也是确定的。因此:

    $\theta = arg max P(D|\theta) $

    构造函数

    $l(\theta)=P(D|\theta)=P(x_1,x_2,...,x_n|\theta)=\prod\limits_{i=1}^{n}P(x_i|\theta) $

    $H(\theta)=ln(ln(l(\theta)))=ln \prod\limits_{i=1}^{n}P(x_i|\theta)=\sum\limits_{i=1}^{n}ln(P(x_i|\theta)) $

    $\widehat{\theta}=argmaxl(\theta) $ 或者$\widehat{\theta}=argmaxH(\theta) $

     

    贝叶斯估计与最大似然估计的不同之处在于,不认为θ是确定的常数,而认为θ是随机变量。

           这样一来

    P(\theta|D)=\frac{P(D|\theta)P(\theta)}{\int_\theta P(D|\theta)P(\theta)d\theta}=\frac {\prod \limits_{i=1}^n P(x_i|\theta)P(\theta)}{\int_\theta\prod \limits_{i=1}^n P(x_i|\theta)P(\theta)d\theta}=\alpha\prod\limits_{i=1}^n P(x_i|\theta)P(\theta)

    其中α 是无关量,则

    $\widehat{\theta}=\int_\theta \theta P(\tehta|D)d\theta $

     

     

    可以看出:

           最大似然估计和贝叶斯估计的不同之处在于:

            (1)前者认为待估参数是确定的。而后者认为待估参数是随机的。

            (2)有(1)造成了对目标进行简化时的不同,即对P(θ) 的处理方式不同。

            (3)对估计量 的计算方式不同。

     

    展开全文
  • 参数估计有点估计(point estimation)和区间估计(interval estimation)两种。 点估计是依据样本估计总体分布中所含的未知参数或未知参数的函数。通常它们是总体的某个特征值,如数学期望、方差和相关系数等。点...
    参数估计有点估计(point estimation)区间估计(interval estimation)两种。

    点估计是依据样本估计总体分布中所含的未知参数或未知参数的函数。通常它们是总体的某个特征值,如数学期望、方差和相关系数等。点估计问题就是要构造一个只依赖于样本的量,作为未知参数或未知参数的函数的估计值。
    例如,设一批产品的废品率为θ。为估计θ,从这批产品中随机地抽出n个作检查,以X记其中的废品个数,用X/n估计θ,这就是一个点估计。

    构造点估计常用的方法是:
      ①矩估计法。用样本矩估计总体矩,如用样本均值估计总体均值。
      ②最大似然估计法。于1912年由英国统计学家R.A.费希尔提出,用来求一个样本集的相关概率密度函数的参数。(在以后的文章中专门讨论)
      ③最小二乘法。主要用于线性统计模型中的参数估计问题。
      ④贝叶斯估计法。基于贝叶斯学派(见贝叶斯统计)的观点而提出的估计法。

    可以用来估计未知参数的估计量很多,于是产生了怎样选择一个优良估计量的问题。首先必须对优良性定出准则,这种准则是不唯一的,可以根据实际问题和理论研究的方便进行选择。优良性准则有两大类:一类是小样本准则,即在样本大小固定时的优良性准则;另一类是大样本准则,即在样本大小趋于无穷时的优良性准则。最重要的小样本优良性准则是无偏性及与此相关的一致最小方差无偏估计,其次有容许性准则,最小化最大准则,最优同变准则等。大样本优良性准则有相合性、最优渐近正态估计和渐近有效估计等。

    区间估计是依据抽取的样本,根据一定的正确度与精确度的要求,构造出适当的区间,作为总体分布的未知参数或参数的函数的真值所在范围的估计。例如人们常说的有百分之多少的把握保证某值在某个范围内,即是区间估计的最简单的应用。
    1934年统计学家 J.奈曼创立了一种严格的区间估计理论。求置信区间常用的三种方法:
      ①利用已知的抽样分布。
      ②利用区间估计与假设检验的联系。(请参考几种常见的参数估计)
      ③利用大样本理论。

    展开全文
  • 什么是参数估计

    千次阅读 2020-10-20 20:06:51
    参数估计属于统计推断的范畴,是根据从总体中抽取的样本估计总体分布中包含的未知参数的方法。 统计推断是数理统计研究的核心问题,是指根据样本对总体分布或分布的数字特征等作出合理的推断。 参数估计分为:点估计...

    参数估计(parameter estimation)

    目录

    参数估计(parameter estimation)

    点估计(point estimation)

    矩估计法(method  of  moments),

    区间估计(interval estimation)

    参数估计属于统计推断的范畴,是根据从总体中抽取的样本估计总体分布中包含的未知参数的方法。
    统计推断是数理统计研究的核心问题,是指根据样本对总体分布或分布的数字特征等作出合理的推断。
    参数估计分为:点估计、区间估计

    点估计(point estimation)

    点估计是依据样本估计总体分布中所含的未知参数或未知参数的函数。通常它们是总体的某个特征值,如数学期望、方差和相关系数等。点估计问题就是要构造一个只依赖于样本的量,作为未知参数或未知参数的函数的估计值。例如,设一批产品的废品率为θ。为估计θ,从这批产品中随机地抽出n 个作检查,以X记其中的废品个数,用X/n估计θ,这就是一个点估计。

    构造点估计常用方法:

    • 矩估计法:用样本矩估计总体矩,比如:用样本均值估计总体均值。
    • 最大似然估计法:于1912年由英国统计学家R.A.费希尔提出,利用样本分布密度构造似然函数来求出参数的最大似然估计。
    • 最小二乘法:主要用于线性统计模型中的参数估计问题。比如:Y=a0+a1X的参数估计就可以用最小乘法。
    • 贝叶斯估计法:基于贝叶斯学派的观点而提出的估计法。可以用来估计未知参数的估计量很多,于是产生了怎样选择一个优良估计量的问题。首先必须对优良性定出准则,这种准则是不唯一的,可以根据实际问题和理论研究的方便进行选择。优良性准则有两大类:一类是小样本准则,即在样本大小固定时的优良性准则;另一类是大样本准则,即在样本大小趋于无穷时的优良性准则。最重要的小样本优良性准则是无偏性及与此相关的一致最小方差无偏估计,其次有容许性准则, 最小化最大准则,最优同变准则等。大样本优良性准则有相合性、最优渐近正态估计和渐近有效估计等。

    点估计能够明确告知人们“未知参数是多少”,但不能反映估计的可信程度。

    矩估计法(method  of  moments),

    矩估计法也称"矩法估计",原理是用样本矩作为相应的总体矩估计来求出估计量的方法,其思想是如果总体中有 K个未知参数,可以用前 K阶样本矩估计相应的前k阶总体矩,然后利用未知参数与总体矩的函数关系,求出参数的估计量。
    矩法估计一般求的是一阶原点矩二阶中心矩

    假设总体X的k阶原点矩:

    令总体的k阶原点矩等于它样本的k阶原点矩
     


    注:矩法相比于极大似然法、最小二乘法,效率很低。目前很少使用。

     

     

    区间估计(interval estimation)

    区间估计是依据抽取的样本,根据一定的正确度与精确度的要求,构造出适当的区间,作为总体分布的未知参数或参数的函数的真值所在范围的估计。

    例如人们常说的有百分之多少的把握保证某值在某个范围内,即是区间估计的最简单的应用。

    求置信区间常用的三种方法:

    • 利用已知的抽样分布。
    • 利用区间估计与假设检验的联系。
    • 利用大样本理论。

    区间估计可以告知置信区间范围,但不能直接告知人们“未知参数是多少”。

    置信区间

    区间估计(interval estimation)是从点估计值和抽样标准误出发,按给定的概率值建立包含待估计参数的区间。其中这个给定的概率值称为置信度或置信水平(confidence level),这个建立起来的包含待估计参数的区间称为置信区间(confidence interval),指总体参数值落在样本统计值某一区内的概率。

    所谓置信水平就是给出一个区间的信心,这个信心以概率来表示,绝大多数情况下取 0.95,表示你对所估计的总体参数有95%的信心落在你所给的区间内。通常置信水平以1-α表 示,α称为显著性水平

    置信区间的建立就与中心极限定理和抽样分布有关了,在给定置信度的条件下,置信区间的宽度决定于抽样分布。 建立置信区间的意思是在设定的置信水平(如取0.95)下,总体参数落在这个区间的概率为 0.95,大致的理解是如果抽100次样,建立100个置信区间,大约95个区间包含总体参数,约5个区间不包含总体参数(注意不是一定有5个,可能会多,也可能会少)。

    划定置信区间的两个数值分别称为置信下限(lower confidence limit,lcl)和置信上限(upper confidence limit,ucl)

    置信区间最主要的应用是用于假设检验

    展开全文
  • 参数估计参数估计中,我们会遇到个主要问题:(1)如何去估计参数的value。(2)估计出参数的value之后,如何去计算新的observation的概率,即进行回归分析和预测。首先定义一些符号:数据集X中
  • 参数估计方法——OLS、MLE、MAP

    千次阅读 2019-07-31 15:17:22
    文章目录1、前言2、最大似然估计法 MLE3、最大后验估计 MAP4...在概率论中,参数估计有点估计(point estimation)和区间估计(interval estimation)两种。而 ML 中主要是构造点估计的方法常用的:①最大似然估计法,...
  • 机器学习中的参数估计方法

    千次阅读 2018-08-24 13:31:31
    对于参数估计,统计学界的个学派分别提供了不同的解决方案: 频率主义学派(Frequentist)认为参数虽然未知,但却是客观存在的固定值,因此,可通过优化似然函数等准则来确定参数值 贝叶斯学派(Beyesian)则...
  • 机器学习中的模型参数估计方法:极大似然估计、贝叶斯估计、最大后验估计。
  • 三大参数估计方法(MLE, MAP, BOA)

    千次阅读 2018-10-01 11:21:36
    以PLSA和LDA为代表的文本语言模型是当今统计自然语言处理研究的热点问题。...本文主要介绍文本分析的三类参数估计方法-最大似然估计MLE、最大后验概率估计MAP及贝叶斯估计。   1、最大似然估计MLE ...
  • 种参数估计方法(MLE,MAP,贝叶斯估计)
  • 线性参数估计方法之比较

    千次阅读 2014-09-11 17:54:13
    这里参与比较的线性参数估计算法LS、WLS、Ransac LS、LMedS(其实Ransac的使用并不局限于线性模型,LMedS的思想也可以扩展到非线性模型)。由于已经大量的文献从数学理论上对这些算法做了分析,所以此处只是用...
  • 参数估计的计算方法

    千次阅读 2020-05-27 19:21:58
    参数估计的计算方法极大后验(MAP)及拉普拉斯逼近基于马尔可夫链的蒙特卡洛参数推断(MCMC)期望极大化(EM) (参数估计所有内容) 极大后验(MAP)及拉普拉斯逼近 极大后验估计: MAP是通过确定后验分布的极大值得到的,...
  • 计量经济学几种参数估计方法

    千次阅读 2015-04-29 17:59:00
    比较普遍的参数估计方法: 1、普通最小二乘法:适用于满足经典假设条件的但方程模型; 2、加权最小二乘:适合于异方差数据,加权的实质是用一个变量除以误差项,使得误差项的方差变为常数; 3、工具变量法:适合...
  • 参数估计(点估计和区间估计)

    万次阅读 多人点赞 2019-09-06 12:07:06
    1.点估计就是用样本统计量来估计总体参数。 概念理解:当我们想知道某一总体的某个指标的情况时,测量整体该指标的数值 的工作量太大,或者不符合实际,这时我们可以采用抽样的方法选取一部分样本测量出他们数值,...
  • 1. 逻辑斯谛回归模型定义在 Andrew NG 的 Machine Learning 课程和李航的统计学习方法中,都对逻辑斯谛回归模型的介绍,然而二者却对模型有着不同的定义。1.1 决策函数Andrew NG 课程中,对二项逻辑回归模型的决策...
  • 参数估计

    千次阅读 2018-10-10 23:31:28
    一、参数估计内容 1.参数估计的requisites   我默认大家已经掌握了基本的概率论知识,例如了解概率空间、随机变量、概率的含义,会求随机变量的分布函数、数字特征,对基本的大数定理和中心极限定理...
  • 接上一篇文章:最大似估计贝叶斯估计: 参数估计 是最随机变量,根据观测数据对参数的分布进行估计,还要考虑先验分布最大似然估计: 参数估计 是未知的,根据观测数据来估计 的值。贝叶斯学习是把贝叶斯估计的...
  • 参数估计与非参数估计

    千次阅读 2017-10-12 15:48:45
    参数估计要求明确参数服从什么分布,明确模型的具体形式,然后给出参数的估计值。根据从总体中抽取的样本估计总体分布中包含的未知参数。非参数估计对解释变量的分布状况与模型的具体形式不做具体规定 ,运用核密度...
  • 我们观测世界,得到了一些数据,我们要从这些数据里面去找出规律来认识世界,一般来说,在概率上我们一个一般性的操作步骤 1. 观测样本的存在2. 每个样本之间是独立的3. 所有样本符合一个概率模型 我们最终想要...
  • 推断统计:参数估计和假设检验

    千次阅读 多人点赞 2020-03-03 00:35:24
    目录 ...  3、参数估计(点估计和区间估计)    1)参数估计、点估计和区间统计的概念    2)点估计说明    3)区间估计说明   4、中心极限定理    1)中心极限定理的概念    2...
  • 浅谈参数估计

    千次阅读 2019-09-03 09:38:34
    参数估计是推断统计的重要内容之一,它是在抽样及抽样分布的基础上,根据样本统计量来推断所关心的总体参数. 估计量 如果能够掌握总体的全部数据,那么只需要作一些简单的统计描述,就可以得到所关心的总体特征,比如,...
  •  参数估计是统计学中的经典问题,常用的方法是最大似然估计和贝叶斯估计。为什么机器学习中,也会用到参数估计呢?我们利用训练样本来估计先验概率和条件概率密度,并以此设计分类器。当假设数据符合某种分布时,其...
  • 参数估计:贝叶斯思想和贝叶斯参数估计

    万次阅读 多人点赞 2016-05-23 10:54:29
    http://blog.csdn.net/pipisorry/article/details/51471222贝叶斯与频率派思想频率派思想 长久以来,人们对一件事情发生或不发生,只有固定的0和1,即要么...比如如果问那时的人们一个问题:“一个袋子,里面装着
  • 我们最终想要得到的是一个概率密度的模型,如果我们已经对观测的对象了一些认识,对观测的现象属于那种类型的概率密度分布已经了解,只是需要确定其中的参数而已,这种情况就是属于参数估...
  • 参数估计:点估计和区间估计

    千次阅读 2020-02-28 10:49:49
    参数估计就是根据样本统计量的数值对总体参数进行估计的过程。根据参数估计的性质不同,可以分成两种类型:点估计和区间估计。 点估计 点估计就是用样本统计量的某一具体...对总体参数进行点估计常用的方法有两种...
  • 在现实生活中,由于被试者的能力不能通过可观测的数据进行描述,所以IRT模型用一个潜变量θθ来表示,并考虑与项目相关的一组参数来分析正确回答测试项目的概率。目前常见的IRT模型2-PL模型和3-PL模型。其具体...
  • 概率论 参数估计与假设检验 区分及例子动机区分概念假设检验基本思想小概率原理原理几常见假设检验假设检验规则和类错误检验规则类错误明确步骤 动机 国内本科教材重计算技巧,轻内在逻辑,大家学完容易忘记。...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 191,864
精华内容 76,745
关键字:

参数估计的方法有两种,分别是