精华内容
下载资源
问答
  • 针对超声电机速度驱动频率具有很强的非线性,理论建模困难,难以实现高精确控制的问题,采用辨识的方法建立了旋转行波超声电机的Hammerstein模型,并测量了该模型的参数摄动;针对电机参数在大范围内摄动,提出...
  • 交互式节点监视的水参数进行交互以控制其值。 在基站中,将分析收集的数据,并在设计的图形用户界面(GUI)上显示监视参数的实时值。 GUI是使用Matlab程序设计的。 通过GUI,操作员可以在自动和手动之间切换控制...
  • 因此,本研究旨在通过考虑退休和可能的控制标准来提供有关失业动态的理解。 目标是; 使用确定性模型和数学流行病学的概念制定数学模型; 然后,进行模型分析。 模型分析包括用于研究分析解决方案有效性的数值半...
  • 针对自动化控制系统中PID控制参数整定困难的问题,提出了基于粒子群算法的PID控制器的设计方法,给出了具体的实验架构。采用系统参数鉴定的方式得到直流伺服发电机的传递函数,并利用粒子群算法搜寻PID参数。实验...
  • 将图像进行预处理并提取图像的特征,计算出图像的不变矩,利用ART-2神经网络...通过实验证明ART-2神经网络具有较高的识别率,并很好地解决了神经网络在模式识别中面对识别对象出现新模式时,网络的可塑性稳定性的矛盾。
  • 论文研究-全变化参数的中位值-极差联合控制图.pdf, ...将其静态的中位值-极差联合控制图及其他动态的中位值-极差联合控制图做了比较.数据显示所设计的CVPx-R能较快发现过程的变化.
  • 针对衰减频率特性法的稳定控制参数判定方法,崔连杰,曹鸣,在某种控制参数整定方法的基础上进行大范围控制参数寻优时,往往会遇到计算量过大的问题,由于控制效果的好坏一般以系统响应
  • 对电加热锅炉进行系统辨识,辨识出一些参数后,然后再进行自适应控制,有图有分析!
  • 离散时间不确定线性参数时变系统的事件触发控制,黎善斌,胥布工,针对线性参数时变系统中参数的准确值未知,而仅仅参数的估计值已知的情况,研究了线性参数时变系统的事件触发器与控制器协同设计问�
  • 论文研究-少控制参数的分层式骨干粒子群优化算法.pdf, 针对传统粒子群优化易于早熟的缺点,提出一种少控制参数的改进骨干粒子群优化算法. 该算法利用关于粒子全局和个体...
  • 另一方面,量化器灵敏度参数的不匹配现象也会增加控制设计的复杂性难度。针对量化器灵敏度参数不匹配的不确定线性系统,研究监督策略下的量化反馈滑模镇定控制问题。应用监督控制策略,提出的鲁棒量化反馈滑模控制...
  • 传统的PID控制参数优化方法容易产生振荡和较大的超调量,因此智能算法如遗传算法(SGA)和粒子群算法(PSO)被用于参数优化,弥补传统算法的不足,但是遗传算法在进化过程中收敛速度慢,粒子群算法存在易于早熟的...
  • 本文在介绍PID控制系统参数的优化方面提出了一种新型的优化方式,即将粒子群PSO算法引进参数的优化设计中,本文具体做了以下几个方面的工作: (1)利用经典控制系统原理对PID控制算法的参数进行初步给定; (2)...
  • 01-现代控制论

    2020-11-22 22:58:03
    经典控制论主要是面向SISO(单输入单输出)的控制理论,而现代控制论则主要是面向于MIMO(多输入多输出)的控制理论。 内容简介 现代控制理论建立在基于矩阵的状态方程和观测方程之上,它引入了系统自身状态,认为...

    经典控制论主要是面向SISO(单输入单输出)的控制理论,而现代控制论则主要是面向于MIMO(多输入多输出)的控制理论。

    内容简介

    现代控制理论建立在基于矩阵的状态方程和观测方程之上,它引入了系统自身状态,认为外界的因素对系统的作用通常是改变了系统自身状态,其自身状态的改变才导致可观测的状态发生了改变。

    在这里插入图片描述

    研究分支主要有如下几方面:

    1、线性系统理论
    2、最优控制
    3、随机系统理论与最优估计
    4、系统辨识
    5、自适应控制
    6、非线性系统理论
    7、鲁棒控制与鲁棒性分析
    8、分布参数控制
    9、离散事件控制
    10、智能控制

    线性系统理论

    这个分支一直是研究重点,主要研究系统运动规律改变运动规律的可能性和方法,主要的方法有如下三种:

    1、以状态空间分析为基础的代数法
    2、以多项式理论为基础的多项式描述法
    3、以空间分解为基础的几何法

    最优控制

    这个分支主要研究的是在给定的约束和性能指标中寻找最佳的控制方法,常用的方法有:

    1、变分法
    2、庞特里亚金的极大值原理
    3、贝尔曼的动态规划方法

    随机系统理论与最优估计

    这个分支主要以概率统计,线性系统,最优控制为理论基础,研究如何根据系统的输入输出信息,估计出那些无法直接测量的状态变量

    其问题重点在于系统本身受到内外随机因素扰动,并且输入输出以及观测值均含有未知的误差。

    参数估计方法主要有如下两种:

    1、维纳滤波器
    2、卡尔曼滤波器

    系统辨识

    自适应控制

    非线性系统理论

    鲁棒控制与鲁棒性分析

    分布参数控制

    离散事件控制

    智能控制

    展开全文
  • 00-经典控制论

    2020-11-18 14:59:43
    主要基于控制论,构建感知-动作控制系统,如倒立摆控制等等,平衡车之类的,主要用于模仿行为。 符号主义: 主要基于逻辑表达式,用if-else或者case之类的去求解问题,逻辑或非等。如专家系统等等,主要用于模仿...

    人工智能三大学派

    行为主义:

    主要基于控制论,构建感知-动作控制系统,如倒立摆控制等等,平衡车之类的,主要用于模仿行为。

    符号主义:

    主要基于逻辑表达式,用if-else或者case之类的去求解问题,逻辑与或非等。如专家系统等等,主要用于模仿理性思维。

    连接主义:

    主要基于仿生学,模仿神经元连接。如神经网络等等,主要用于模仿自觉和感性思维。

    经典控制论简介

    通常我们叫自动控制理论,目的是使得系统(被控对象)的某些参数或状态按照预定的的规律运行,途径是通过控制器控制执行器。
    在这里插入图片描述
    控制器
    所谓控制器,通常就是指控制算法,控制算法的输出直接传递给执行器执行。以平衡车为例,控制器就是PD控制器。
    执行器
    所谓执行器,通常就是指各种驱动。通常搞电子和硬件需要区分它们。

    但是对于我这种软件工程师来说,我更喜欢将执行器、被控对象、测量合并起来作为一个黑箱,采用数据控制数据驱动的方式控制系统反馈量
    在这里插入图片描述

    这个通过测量得到的系统输出反馈量,通过偏差控制器反过来控制自己(反馈量)的过程,就称为反馈控制。闭环系统基本都是采用反馈控制的方式,控制系统输出。

    系统输入与输出的关系

    我们要做一个能够控制系统输出的控制器,得先知道系统输入到输出的映射关系,这样才能通过这个关系反推我们该怎么控制。对于离散线性系统,可以直接假设出差分方程:

    a0yn(t)+a1yn1(t1)+...+any0(tn)=b0un(t)+b1un1(t1)+...+bmu0(tm)a_0y^n(t)+a_1y^{n-1}(t-1)+...+a_ny^0(t-n) =b_0u^{n}(t)+b_1u^{n-1}(t-1)+...+b_mu^0(t-m)
    且其中有:
    n>=mn>=m

    建立该关系有两种方法:

    分析法:通过物理分析,然后建立系统数学模型。
    实验法:通过实验输入信号,得到系统的输出信号,然后用适当的数学模型去逼近两者函数关系,俗称系统辨识

    在自动控制原理书中,主要讲分析法建模,主要是基于拉氏变换和傅里叶变换,推断出系统模型,主要有如下三部曲:

    1、确定系统输入量与输出量
    2、确定系统各部分子环节的模型
    3、消去中间变量得到系统模型

    建立控制系统数学模型的目的之一是为了定量研究该系统特性,只要给定初始条件与输入量,就能通过求解微分方程,了解系统的输出量随时间的变化特性。

    系统的数学模型特性

    通过上述方法确定了系统的数学模型以后,我们得知道系统在纯扰动的情况下,会产生哪些变化,只要知道扰动对系统的作用,我们再调整系统输入与扰动作用相互抵消,就能维持系统输出保持稳定。

    系统性能指标分为动态性能指标稳态性能指标

    在经典控制论中,我们常有以下方法分析系统的两大性能指标:

    时域分析法:

    选择典型输入信号输入系统,直接在时域上分析系统的响应过程,比较直观。

    通常典型输入信号应选对系统最不利的信号,比如恒温控制则选阶跃函数。(扰动分析)
    典型信号应选与系统输入相适应的,如系统输入为周期函数,则选正弦函数。(控制分析)
    当实际输入是变化无常的随机信号,就不能用上述方法,得用随机过程理论去分析了。(随机过程)

    根轨迹法

    所谓的根,指的是系统的特征根。即研究系统特征方程的根,在平面上的轨迹。

    频域分析法

    将系统信号看做由不同频率的正弦信号合成,研究其在不同频率信号下的响应性能。
    由于正弦函数的正交性,并且对于一个线性系统,其输入是一个正弦函数,其输出也必然是正弦函数,只是幅值和相位发生了变化。

    系统控制与校正

    校正就是当系统参数偏离需求时,可以让系统参数自动调整以满足需求的。而如何校正就是我们控制器该做的事(校正方法便是控制器)。

    校正系统方式可分为如下四种:

    1、反馈校正
    2、串联校正
    3、前馈校正
    4、复合校正

    作为一个软件工程师,你常用到的是前面两种:

    在这里插入图片描述

    比如常用的单环PID串级PID

    在这里插入图片描述

    控制方法

    我们常用的控制器,就是PID控制器了,分别包含了比例、积分、微分控制,我们也可以用他们的组合来进行控制:

    位置PID
    u(k)=KPe(k)+KIi=0ke(i)+KD[e(k)e(k1)]u(k)=K_Pe(k)+K_I\sum_{i=0}^ke(i)+K_D[e(k)-e(k-1)]

    增量PID
    du(k)=KPde(k)+KIe(k)+KD[de(k)de(k1)]du(k)=K_Pde(k)+K_Ie(k)+K_D[de(k)-de(k-1)]
    其中:
    du(k)=u(k)u(k1)du(k)=u(k)-u(k-1)
    de(k)=e(k)e(k1)de(k)=e(k)-e(k-1)

    P控制器

    即只有比例控制,增大KPK_P系数可以增大系统响应速度,减小系统稳态误差,但会使得系统稳定性下降。

    PD控制器

    即只有比例控制和微分控制,由于微分控制能够一定程度反映信号变化趋势,所以能一定程度上抑制超调,但其只在动态过程起作用,而对稳态过程没有影响,且对噪声比较敏感,所以单独的D控制不宜与任意其他控制串联使用,通常采用PD或PID组合使用。

    I控制器

    即只有积分控制。串联校正时,I控制可以提高系统的无差度,有利于稳态性能提高,但过多增大KIK_I系数会使得系统静差消除时间变长,即系统会发生低频振荡。过分减小KIK_I也会使得系统静差消除时间变长,即响应速度太慢。

    PI控制器

    即只有比例控制和积分控制,PI控制器主要用来改善系统的稳态性能,能够消除单纯的P控制下系统的稳态误差。

    PID控制器

    即包含比例控制、积分和微分控制,PID控制器不仅可以提高系统的稳态性能,还能改善系统的动态性能。参数选择时,应使I控制部分发生在系统频率特性的低频段,以提高稳态性能,使D控制部分,发生在系统频率特性的中频段,以改善动态性能。

    单环PID参数整定:

    (1)确定比例系数Kp
    确定比例系数Kp时,首先去掉PID的积分项和微分项,可以令Ki=0、Kd=0,使之成为
    纯比例调节。输入设定为系统允许输出最大值的60%~70%,比例系数Kp由0开始逐渐增大,直至系统出现振荡;再反过来,从此时的比例系数Kp逐渐减小,直至系统振荡消失。记录此时的比例系数Kp,设定PID的比例系数Kp为当前值的60%~70%
    (2)确定积分时间常数Ki
    比例系数Kp确定之后,设定一个较大的积分时间常数Ti,然后逐渐减小Ti,直至系统出现振荡,然后再反过来,逐渐增大Ti,直至系统振荡消失。记录此时的Ti,设定PID的积分时间常数Ti为当前值的150%~180%
    (3)确定微分时间常数Td
    微分时间常数Td一般不用设定,为0即可,此时PID调节转换为PI调节。如果需要设定,则与确定Kp的方法相同,取不振荡时其值的30%
    (4)系统空载、带载联调
    对PID参数进行微调,直到满足性能要求。

    串级PID参数整定:

    原则上是先整内环,再整外环

    展开全文
  • 对一类参数不确定的时滞混沌系统的自适应延时同步进行讨论,以Lyapunov-Krasovskii泛函为理论基础,设计了时滞延时同步控制器,从理论上证明了当控制参数矩阵[K]满足[K-nE]为正定矩阵时,驱动系统响应系统趋于同步...
  • 以CARLA为基础,建立了CARLA和PSO的组合优化学习模型CARLA-PSO,该模型包含CARLA学习环路和PSO学习环路两个部分,通过优化策略选择器进行学习环路的选择,通过环境进行相互作用,获得最优控制。对连铸结晶器液位...
  • 针对标准粒子群算法寻优精度不高、易出现早熟收敛等缺陷, 提出一种自适应混沌移民变异粒子群算法IPSO。...仿真结果表明, IPSO算法在PID控制参数寻优问题上具有遗传算法和标准粒子群算法无法比拟的优势。
  • 我们已经成功地尝试在Ψ-ω公式框架内求解全MHD模型的方程,目的是评估一种新的高阶方案的性能,以预测更好的流量控制参数值。 特别是对于MHD流量,磁场和电导率是控制参数。 在这项工作中,将我们高效的高阶精确...
  • 在当前的液压领域中,存在“存在多种比例阀... 通过MCUPC的通讯,PC作为主机来设置,显示和管理比例阀控制器的参数。 实验表明,该控制器具有优异的灵活性,通用性,安装维护成本低,性价比高等特点,适合推广应用。
  • 基于遗传算法的LuGre摩擦模型参数辨识补偿,温玉芹,褚明,综述文章:文针对摩擦对伺服系统的干扰问题,提出基于遗传算法的LuGre摩擦模型的参数辨识方法及摩擦补偿控制方法。首先建立LuGre摩��
  • 基于改进遗传算法的时滞系统辨识与控制,王峰,,Smith预估是时滞系统的常见控制方法,它对系统模型的精度要求较高。为了准确辨识出时滞系统的动态模型参数特别是纯滞后时间,本文�
  • 可通过交互改变控制参数控制曲面的形状,使其能够更好地表示一些不规则实体的外型。实验表明,该方法的数学背景简单、易于控制、重复使用可以达到获得丰富变形效果的目的。可用于几何造型、计算机动画以及CAD/CAM...
  • 利用主动控制和预控制量方法,基于分数阶混沌系统稳定性理论和自适应控制理论,设计控制器,实现不同阶分数阶混沌系统之间的同步和参数辨识。理论和仿真结果实现了不同阶Chen 系统间的同步和辨识,表明了该方法的...
  • 因此,无人机主要取决于控制器设计和特定性能参数的要求。 然而,在现代技术中总有改进的余地。 以类似的方式,在本研究中实施和研究了无人机横向控制系统,该系统已使用比例,积分和微分(PID)控制器,相位超前...
  • 为了进一步使节点间时钟偏移达到同步,设计了最大一致性控制方案来补偿节点,并基于图论给出算法收敛性证明。仿真结果表明算法能够快速跟踪硬件时钟参数,较加权最大一致性时钟同步算法收敛速度更快,全局平均同步...
  • 提出了一种利用混沌映射产生的密钥序列控制混沌系统参数的新算法,并应用于四阶Lorenz超混沌系统,使系统能在混沌超混沌状态随机的切换,仿真实验结果表明,证实了该方法在极大提高系统保密性的同时仍能很好保持...
  • 为了控制恶意软件传播所引发的Hopf分岔,根据分岔控制理论设计了一类结合参数调节法状态反馈法的混合分岔控制策略,并深入研究控制参数对Hopf分岔点位置及极限环幅值的影响.数值仿真结果表明所设计的混合分岔控制...
  • 对于在低风速地区安装的涡轮机,最大化功率捕获是一个重要的问题。 在本文中,我们重点研究了变速风力涡轮机的... 最后,使用粒子群优化(PSO)获得最佳PI参数。 系统的仿真和控制已使用MATLAB / Simulink 2014完成。
  • 针对复平面上有理型Julia集的控制与同步问题进行了研究。在控制方面把∞当做一个被控制的不动点,采用选择控制法来控制有理型Julia集,得到控制后的Julia集随着控制参数的增大而逐渐收缩。在同步方面采用梯度控制法...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 809
精华内容 323
关键字:

参数与控制论