精华内容
下载资源
问答
  • 集中趋势和离散趋势的度量: 众数、中位数和平均数: 方差和标准差: 相对离散程度:离散系数的作用: 怎样理解置信区间 影响区间宽度的因素 解释95%的置信区间 ...参数估计和假设检验的区别和联系 假设检验的步骤
  • 推断统计:参数估计和假设检验

    千次阅读 多人点赞 2020-03-03 00:35:24
    目录 ...  3、参数估计(点估计和区间估计)    1)参数估计、点估计和区间统计的概念    2)点估计说明    3)区间估计说明   4、中心极限定理    1)中心极限定理的概念    2...

    目录

      1、总体、个体、样本和样本容量
       1)总体、个体、样本和样本容量的概念
       2)本文章使用的相关python库
      2、推断统计的概念
       1)推断统计的概念
       2)为什么要进行推断统计?
      3、参数估计(点估计和区间估计)
       1)参数估计、点估计和区间统计的概念
       2)点估计说明
       3)区间估计说明
      4、中心极限定理
       1)中心极限定理的概念
       2)中心极限定理的推导(手写推导)
       3)由中心极限定理得出的几个结论
       4)python实现中心极限定理
      5、参数估计中置信区间的推导
       1)什么是小概率事件?
       2)随机变量的分布的概念
       3)标准正态分布的概率密度函数和和分布函数
       4)随机变量的α分位数的概念
       5)标准正态的分位数表怎么得到的呢?
       6)区间估计的定义
       7)置信水平1-α的解释
       8)枢轴法求置信区间的步骤(手写推导)
      6、假设检验
       1)假设检验的概念
       2)假设检验的理论依据
       3)P-Value值与显著性水平
       4)假设检验的步骤
       5)单边检验和双边检验
       6)常用的假设检验

    1、总体、个体、样本和样本容量

    1)总体、个体、样本和样本容量的概念
    • 总体:我们所要研究的问题的所有数据,称为总体。
    • 个体:总体中的某个数据,就是个体。总体是所有个体构成的集合。
    • 样本:从总体中抽取的部分个体,就构成了一个样本。样本是总体的一个子集。
    • 样本容量:样本中包含的个体数量,称为样本容量。
    2)本文章使用的相关python库
    import numpy as np
    import pandas as pd
    import matplotlib as mpl
    import matplotlib.pyplot as plt
    import seaborn as sns
    import warnings
    from sklearn.datasets import load_iris
    from scipy import stats
    
    sns.set(style="darkgrid")
    mpl.rcParams["font.family"] = "SimHei"
    mpl.rcParams["axes.unicode_minus"] = False
    warnings.filterwarnings("ignore")
    

    2、推断统计的概念

    1)推断统计的概念

      “推断统计”研究的是用样本数据去推断总体数量特征的一种方法。它是在对样本数据进行描述的基础上,对统计总体的未知数量特征做出以概率形式表述的推断。

    2)为什么要进行推断统计?

      在实际研究中,总体数据的获取往往是比较困难的,总体参数一般也是未知的。因此,我们就需要利用总体的某个样本,通过样本统计量去估计总体参数。基于这个需求,我们就需要学习推断统计。
      通过上述叙述,我们给推断统计做一个说明。“推断统计”就是利用样本统计量,去推断总体参数的一种方法。
      

    3、参数估计(点估计和区间估计)

    1)参数估计、点估计和区间统计的概念
    • 参数估计:用样本统计量去估计总体的参数。比如,用样本均值去估计总体均值,用样本方差去估计总体方差。
    • 点估计:用样本统计量的某个取值,直接作为总体参数的估计值。
    • 区间估计:在点估计的基础之上,给出总体参数估计值的一个区间范围,该区间通常由样本统计量加减估计误差得到。
    2)点估计说明
    ① 怎么求鸢尾花的平均花瓣长度?

      事实上,世界上鸢尾花千千万,我们总不能说把所有的鸢尾花的数据信息,都统计出来。因此,这就需要我们用样本均值去估计总体均值。

    iris = load_iris()
    dt = np.concatenate([iris.data,iris.target.reshape(-1,1)],axis=1)
    df = pd.DataFrame(dt,columns=iris.feature_names + ["types"])
    display(df.sample(5))
    # 计算鸢尾花花瓣长度的均值
    df["petal length (cm)"].mean()
    

    结果如下:
    在这里插入图片描述
    结果分析:点估计有点简单粗暴,容易受到随机抽样的影响,很难保证结果的准确性。但是,点估计也不是一无是处,样本值是来自总体的一个抽样,在一定程度上还是可以反映出总体的一部分特征。同时,样本容量越接近总体容量,点估计值也会越准确。
      

    3)区间估计说明
    ① 什么是区间估计?

      当你碰到一个陌生人,我让你判断出这个人的年龄是多少?这里有两种方式完成你的推断。第一,这个人25岁。第二,这个人20-25岁之间。哪种结果更让你信服呢?很明显第二种更让人信服。对于第一种说法,相当于上述的点估计。第二种,相当于区间估计,就是给定一个区间,这个区间包含真值。
      统计学中对区间估计的定义:在点估计的基础之上,给出总体参数估计的一个区间范围,该区间通常由样本统计量加减估计误差得到。

    ② 问题:获取一个抽样样本后,如何确定置信区间和置信度?

    要确定置信区间和置信度,就需要知道样本和总体,在分布上有怎样的联系。中心极限定理给出了这个问题很好的回答。上述疑问将在下面为您一一揭晓。
      

    4、中心极限定理

    1)中心极限定理的概念

      设从均值为μ,方差为σ²的任意一个总体中,抽取样本量为n的样本。当n充分大的时候,样本均值X拔近似服从均值为μ,方差为σ²/n的正态分布。
    在这里插入图片描述
    注意:中心极限定理要求n充分大,但是多大才叫充分大呢?一般在统计学中n>=30称之为大样本(统计学中的一种经验说法)。因此在实际生产中,不用多想,肯定都是大样本。

    2)中心极限定理的推导(手写推导)

      设X1,X1,…,Xn是从总体中抽取出来的样本容量为n的随机样本,假设总体均值为μ,方差为σ²。那么很显然这n个样本是独立同分布的,“独立”指的就是每个个体被抽到的概率是相同的,每个球被抽到也不会影响其它球被抽到,“同分布”指的是每一个个体都和总体分布一样,均值为μ,方差为σ²。
      基于上述叙述,下面我们来推导样本均值X拔的分布。
    在这里插入图片描述

    3)由中心极限定理得出的几个结论
    • 不管进行多少次抽样,每次抽样都会得到一个均值。当每次抽取的样本容量n足够大时,样本均值总会围绕总体均值附近,呈现正态分布。
    • 当样本容量n足够大时,样本均值构成正态分布,样本均值近似等于总体均值μ,而样本方差等于总体方差σ²除以n,即σ²/n。
    • 样本均值分布的标准差,我们称之为标准误差,简称“标准误”。
    4)python实现中心极限定理
    # 设置一个随机种子,保证每次产生的随机数都是一定的
    np.random.seed(3)
    # 产生均值为50,标准差为80,大小为100000的一个总体
    all_ = np.random.normal(loc=50,scale=80,size=100000)
    # 创建一个样本均值数组
    mean_array = np.zeros(10000)
    for i in range(len(mean_array)):
        mean_array[i] = np.random.choice(all_,size=64,replace=True).mean()
    
    display("样本的均值:",mean_array.mean())
    display("样本的标准差:",mean_array.std())
    display("偏度:",pd.Series(mean_array).skew())
    sns.distplot(mean_array)
    

    结果如下:
    在这里插入图片描述
    从图中可以看出:样本均值近似等于总体均值50,而样本方差等于总体方差80除以8,即10。

    5、参数估计中置信区间的推导

      我们要知道什么是α值,什么是置信度,什么是置信区间,以及怎么求置信区间。首先要了解以下几方面的知识,才能有一个比较透彻的了解。

    • 1)什么是小概率事件?
    • 2)随机变量的分布的概念。
    • 3)标准正态分布的概率密度函数和和分布函数
    • 4)随机变量的α分位数的概念。
    • 5)标准正态的分位数表怎么得到的呢?
    • 6)区间估计的概念。
    • 7)置信水平1-α的解释
    • 8)枢轴法求置信区间的步骤。
    1)什么是小概率事件?
    • “小概率事件”指的就是在一次随机试验中,几乎不可能发生。
    • 假定参数是射击靶上10环的位置,随机进行一次射击,打在靶心10环的位置上的可能性很小,但是打中靶子的可能性确很大。然后用打在靶上的这个点画出一个区间,这个区间包含靶心的可能性就很大,这就是区间估计的基本思想。
    2)随机变量的分布的概念

    在这里插入图片描述

    3)标准正态分布的概率密度函数和和分布函数

    在这里插入图片描述

    4)随机变量的α分位数的概念

    在这里插入图片描述

    5)标准正态的分位数表怎么得到的呢?
    ① 标准正态分位数表的公式推导

    在这里插入图片描述
    注意:红色方框中的公式,就是标准正态分布分位数表的由来。

    ② 标准正态分布分位数表

    在这里插入图片描述

    6)区间估计的定义

    在这里插入图片描述

    7)置信水平1-α的解释

      对总体样本进行反复抽样(每次抽取到的样本容量都为n),那么每个样本均值都会确定一个区间(a,b),每个这样的区间要么包含总体参数,要么不包含总体参数,不能说成“以多大的概率包含总体的参数”。其中包含总体参数的区间有1-α个,而只有α个区间不包含总体参数,如下图所示(红色表示该样本构成的区间估计不包含总体参数,白色表示该样本构成的区间估计包含总体参数)。
      用一个详细的案例说明:如果对总体返回抽样10000次,每次抽样的样本量都是n,每个样本都会得到一个区间估计,那么10000次抽样,就会得到10000个区间。当置信水平1-α=95%时,那么就表示10000个区间中包含总体参数的有9500个抽样样本,只有500个样本不包含总体参数,这个不包含总体参数的样本就相当于我们估计错误。这个概率只有5%。这个5%在统计学中,就叫做小概率事件,也就是说在一次随机试验中,这个小概率事件不可能发生。
      即:当我们随机抽取一个样本容量为n的抽样样本,并且利用这个样本构造总体参数的置信区间,当指定了置信水平1-α=95%时,那么这个样本,基本就可以认为是包含了总体参数,也就是说,总体参数就在这个置信区间内。
    在这里插入图片描述

    8)枢轴法求置信区间的步骤(手写推导)
    ① 什么是枢轴量?
    • 枢轴量指的就是包含待估计参数,而不包含其它未知参数,并且分布已知的一个量。
    • 枢轴量设计到三个重要点:1、包含估计参数。2、不包含其它未知参数。3、该枢轴量的分布已知。
    ②以总体μ的置信区间为例(方差σ²已知),讲述枢轴量求置信区间的步骤。

    在这里插入图片描述

    6、假设检验

    1)假设检验的概念

      假设检验,也称为显著性检验,指通过样本的统计量,来判断与总体参数之间是否存在差异(差异是否显著)。我们事先对总体参数进行一定的假设,然后通过收集到的数据,来验证我们之前作出的假设(总体参数)是否合理。
      在假设检验中,我们会建立两个完全对立的假设,分别为原假设H0与备择假设H1。然后根据样本信息进行分析判断,是选择接受原假设,还是拒绝原假设(接受备择假设)。假设检验基于“反证法”。首先,我们会假设原假设为真,如果在此基础上,得出了违反逻辑与常理的结论,则表明原假设是错误的,我们就接受备择假设。否则,我们就没有充分的理由推翻原假设,此时我们选择去接受原假设。

    2)假设检验的理论依据(小概率事件)

      在假设检验中,违反逻辑与常规的结论,就是小概奉事件。我们认为,小概率事件在一次试验中是不会发生的。我们首先认为原假设为真,如果在此基础上,小概率事件发生,则我们就拒绝原假设,否则,我们就选择去接受原假设。
      假设检验遵循“疑罪从无”的原则,接受原假设,并不代表原假设一定是正确的,只是我们没有充分的证据,去证明原假设是错误的,因此只能维持原假设。那么,假设检验中的小概率事件是怎么得出的呢?想想之前讲到的置信区间,是不是一切都验然开朗了?
      “疑罪从无”很形象的说明的假设检验向我们传达的含义。也就是说,当我们没有充分的理由拒绝原假设,就必须接受原假设,即使原假设是错误的,但是你找不到证据证明原假设是错误的,你就只能认为原假设是对的。反之,经过一次随机试验,你如果找到了某个理由拒绝了原假设,那么原假设肯定就是错误的,这个是一定的。

    3)P-Value值与显著性水平

      假设检验,用来检验样本的统计量与总体参数,是否存在显著性差异。那么如何才算显著呢?我们就可以计算一个概率值(P-Value),该概率值可以认为就是支持原假设的概率,因为在假设检验中,通常原假设为等值假设,因此,P-Value也就表示样本统计量与总体参数无差异的概率。然后,我们再设定一个阈值,这个阈值叫做“显著性水平 ” (使用α表示),通常α的取值为0.05(1-α叫做置信度)。当P-Value的值大于α时,接受原假设。当P-Value的值小于α时,拒绝原假设。简单记为:p值越小越拒绝原假设。软件中一般都会展示这个p值,那里的p值,指的就是我们这里所叙述的p值。
      假设检验和参数估计是推断统计的两个组成部分,都是利用样本对总体进行某种推断,但是两者进行推断的角度不同。参数估计讨论的是用样本统计量估计总体参数的一种方法,总体参数在估计前是未知的。而假设检验,则是对总体参数先提出一个假设,然后用样本信息去检验这个假设是否成立。

    4)假设检验的步骤
    • ① 根据实际问题的要求,提出原假设和备择假设。
    • ② 给出显著性水平α以及样本容量n。
    • ③ 确定检验统计量和拒绝域。
    • ④ 计算出检验统计量的值,并作出决策。
    5)单边检验和双边检验

    在这里插入图片描述

    6)常用的假设检验
    ① 单个正态总体均值的假设检验法(Z检验:方差已知)

      Z检验用来判断样本均值是否与总体均值具有显著性差异。Z检验是通过正态分布的理论来推断差异发生的概率,从而比较两个均值的差异是否显著。Z检验适用于:

    • 总体呈正态分布。
    • 总体方差已知。
    • 样本容量较大。
      在这里插入图片描述
    ② 案例如下

    在这里插入图片描述

    ③ 有个人说:鸢尾花的平均花瓣长度为3.5cm,这种说法可靠吗?假设经过长期大量验证,鸢尾花花瓣长度总体的标准差为1.8cm,我们就可以使用Z检验来验证了。
    from scipy import stats
    
    iris = load_iris()
    dt = np.concatenate([iris.data,iris.target.reshape(-1,1)],axis=1)
    df = pd.DataFrame(dt,columns=iris.feature_names + ["types"])
    display(df.sample(5))
    
    mean = df["petal length (cm)"].mean()
    n = len(df)
    sigma = 1.8
    
    z = (mean - 3.5) / (sigma / np.sqrt(n))
    display(z)
    

    结果如下:
    在这里插入图片描述

    ④ 单个正态总体均值的假设检验法(t检验:方差未知)

      t检验,与Z检验类似,用来判断样本均值是否与总体均值具有显替性差异。不过,t检验是基于t分布的。检验适用于:

    • 总体呈正态分布。
    • 总体方差未知。
    • 样本容量较小。
      在这里插入图片描述
    ⑤ 案例说明

    在这里插入图片描述

    ⑥ 代码演示
    # 方法一
    iris = load_iris()
    dt = np.concatenate([iris.data,iris.target.reshape(-1,1)],axis=1)
    df = pd.DataFrame(dt,columns=iris.feature_names + ["types"])
    display(df.sample(5))
    
    mean = df["petal length (cm)"].mean()
    std = df["petal length (cm)"].std()
    n = len(df)
    display(mean,std)
    t = (mean - 3.5) / (std / np.sqrt(n))
    display(t)
    
    # 方法二
    from scipy import stats
    stats.ttest_1samp(df["petal length (cm)"],3.5)
    

    结果如下:
    在这里插入图片描述

    展开全文
  • 参数估计与假设检验的区别联系

    万次阅读 2019-05-11 18:09:08
    统计学方法包括统计描述和统计推断两种方法,其中,推断统计又包括参数估计和假设检验。 参数估计 参数估计就是用样本统计量去估计总体的参数的真值,它的方法有点估计和区间估计两种。 点估计就是直接以样本统计...

    参数估计与假设检验的区别和联系

    统计学方法包括统计描述和统计推断两种方法,其中,推断统计又包括参数估计和假设检验。

    参数估计

    参数估计就是用样本统计量去估计总体的参数的真值,它的方法有点估计和区间估计两种。

    点估计就是直接以样本统计量直接作为相应总体参数的估计值。点估计的缺陷是没法给出估计的可靠性,也没法说出点估计值与总体参数真实值接近的程度。

    区间估计是在点估计的基础上给出总体参数估计的一个估计区间,该区间是由样本统计量加减允许误差(极限误差)得到的。在区间估计中,由样本统计量构造出的总体参数在一定置信水平下的估计区间称为置信区间。

    在其它条件相同的条件下,区间估计中置信度越高,置信区间越大。置信水平为1-a,  a(显著性水平)为小概率事件或者不可能事件,常用的置信水平值为99%,95%,90%,对应的a为0.01,   0.05,  0.1

    置信区间是一个随机区间,它会因样本的不同而变化,而且不是所有的区间都包含总体参数。

    一个总体参数的区间估计需要考虑总体是否为正态分布,总体方差是否已知,用于估计的样本是大样本还是小样本等

    (1)来自正态分布的样本均值,总体方差已知,不论抽取的是大样本还是小样本,均服从正态分布。

    (2)总体不是正态分布,总体方差已知或未知,大样本的样本均值服从正态分布,小样本的不能进行参数估计。

    (3)来自正态分布的样本均值,如果总体方差未知,原则上都按t 分布来处理(但在大样本的情况下,可近似按正态分布处理)。

     

    假设检验

     假设检验假是根据样本统计量来检验对总体参数的先验假设是否成立,是推断统计的另一项重要内容,它与参数估计类似,但角度不同,参数估计是利用样本信息推断未知的总体参数,而假设检验则是先对总体参数提出一个假设值,然后利用样本信息判断这一假设是否成立。

    假设检验的基本思想:先提出假设,然后根据资料的特点,计算相应的统计量,来判断假设是否成立,如果成立的可能性是一个小概率的话,就拒绝该假设,因此称小概率的反证法。最重要的是看能否通过得到的概率去推翻原定的假设,而不是去证实它。

     

    参数估计与假设检验之间的相同点、联系与区别:

    (1)相同点:

      a.都是根据样本信息对总体的数量特征进行推断;

      b.都以抽样分布为理论依据,建立在概率论基础之上的统计推断,推断结果都有一定的可信程度或风险。

    (2)联系:  
    二者可相互转换,形成对偶性。对同一问题的参数进行推断,由于二者使用同一样本、同一统计量、同一分布,因而二者可以相互转换。区间估计问题可以转换成假设问题,假设问题也可以转换成区间估计问题。区间估计中的置信区间对应于假设检验中的接受区域,置信区间以外的区域就是假设检验中的拒绝域。

    (3)主要区别:

    a.参数估计是以样本资料估计总体参数的真值,假设检验是以样本资料检验对总体参数的先验假设是否成立;

    b.参数估计中的区间估计是求以样本统计量为中心的双侧置信区间,假设检验既有双侧检验,也有单侧检验;

    c.参数估计中的区间估计是以大概率为标准,通常以较大的把握程度(置信水平)1-α去保证总体参数的置信区间。而假设检验是以小概率原理为标准,通常是给定很小的显著性水平α去检验对总体参数的先验假设是否成立或对总体的分布的形式的假设进行判断。 

     

    https://blog.csdn.net/u013015687/article/details/45937027?utm_source=blogxgwz1

    展开全文
  • matlab参数估计与假设检验,亲测该程序可用
  • 参数估计与假设检验的通俗理解

    千次阅读 2020-05-19 22:58:09
    文章目录参数估计假设检验 参数估计 For 高手: 参数估计(parameter estimation),统计推断的一种。根据从总体中抽取的随机样本来估计总体分布中未知参数的过程。从估计形式看,区分为点估计与区间估计:从构造...

    参数估计

    For 高手:
    参数估计(parameter estimation),统计推断的一种。根据从总体中抽取的随机样本来估计总体分布中未知参数的过程。从估计形式看,区分为点估计与区间估计:从构造估计量的方法讲,有矩法估计、最小二乘估计、似然估计、贝叶斯估计等。要处理两个问题:(1)求出未知参数的估计量;(2)在一定信度(可靠程度)下指出所求的估计量的精度。信度一般用概率表示,如可信程度为95%;精度用估计量与被估参数(或待估参数)之间的接近程度或误差来度量。
    For 小白:
    人们常常需要根据手中的数据,分析或推断数据反映的本质规律。即根据样本数据如何选择统计量去推断总体的分布或数字特征等。统计推断是数理统计研究的核心问题。所谓统计推断是指根据样本对总体分布或分布的数字特征等作出合理的推断。它是统计推断的一种基本形式,是数理统计学的一个重要分支,分为点估计和区间估计两部分。
    For me:
    也就是说通常情况下我们只能拿到一个样本空间的数据,也就是部分数据,也就相当于是从总体中随机采样的数据。但是我们如何能知道全部数据,或者说总体的数据分布情况呢?这时候就是逆过程,由样本数据逆推断总体的数据服从的分布,以及其关键参数的取值。

    假设检验

    For 高手:
    假设检验(hypothesis testing),又称统计假设检验,是用来判断样本与样本、样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。显著性检验是假设检验中最常用的一种方法,也是一种最基本的统计推断形式,其基本原理是先对总体的特征做出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受做出推断。常用的假设检验方法有Z检验、t检验、卡方检验、F检验等
    For 小白:
    假设检验的基本思想是“小概率事件”原理,其统计推断方法是带有某种概率性质的反证法。小概率思想是指小概率事件在一次试验中基本上不会发生。反证法思想是先提出检验假设,再用适当的统计方法,利用小概率原理,确定假设是否成立。即为了检验一个假设H0是否正确,首先假定该假设H0正确,然后根据样本对假设H0做出接受或拒绝的决策。如果样本观察值导致了“小概率事件”发生,就应拒绝假设H0,否则应接受假设H0 [1] 。
    For me:

    • 提出原假设与备择假设
    • 从所研究总体中出抽取一个随机样本
    • 构造检验统计量
    • 根据显著性水平确定拒绝域临界值
    • 计算检验统计量与临界值进行比较
    展开全文
  • 概率统计6.1 参数估计与假设检验
  • 概率论 参数估计与假设检验 区分及例子动机区分概念假设检验基本思想小概率原理原理几种常见假设检验假设检验规则两类错误检验规则两类错误明确步骤 动机 国内本科教材重计算技巧,轻内在逻辑,大家学完容易忘记。...

    动机

    国内本科教材重计算技巧,轻内在逻辑,大家学完容易忘记。最近在补概率论相关知识,作如下总结希望共勉,不足之处,多多指教。

    区分概念

    假设检验和参数估计解决的是不同的问题,参数估计是对用样本统计量去估计总体的参数的真值,而假设检验则是根据样本统计量来检验对总体参数的先验假设是否成立。二者都是根据样本信息对总体的数量特征进行推断,但目的不同。
    例如:我们对45钢的断裂韧性作了测定,取得了一批数据,然后要求45钢断裂韧性的平均值,或要求45钢断裂韧性的单侧下限值,或要求45钢断裂韧性的分散度(即离散系数),这就是参数估计的问题。又如,经过长期的积累,知道了某材料的断裂韧性的平均值和标准差,经改进热处理后,又测得一批数据,试问新工艺与老工艺相比是否有显著差异,这就是假设检验的问题。

    假设检验

    基本思想

    小概率原理

    如果对总体的某种假设是真实的,那么不利于或不能支持这一假设的事件A(小概率事件)在一次试验中几乎不可能发生的;要是在一次试验中A竟然发生了,就有理由怀疑该假设的真实性,拒绝这一假设。

    原理

    假设检验使用了一种类似于“反证法”的推理方法,它的特点是:
    (1)先假设总体某项假设成立,计算其会导致什么结果产生。若导致不合理现象产生,则拒绝原先的假设。若并不导致不合理的现象产生,则不能拒绝原先假设,从而接受原先假设。
    (2)它又不同于一般的反证法。所谓不合理现象产生,并非指形式逻辑上的绝对矛盾,而是基于小概率原理:概率很小的事件在一次试验中几乎是不可能发生的,若发生了,就是不合理的。至于怎样才算是“小概率”呢?通常可将概率不超过0.05的事件称为“小概率事件”,也可视具体情形而取0.1或0.01等。在假设检验中常记这个概率为α,称为显著性水平。而把原先设定的假设成为原假设,记作H0。把与H0相反的假设称为备择假设,它是原假设被拒绝时而应接受的假设,记作H1。

    几种常见假设检验

    在这里插入图片描述

    假设检验规则和两类错误

    检验规则

    检验过程是比较样本观察结果与总体假设的差异。差异显著,超过了临界点,拒绝H0;反之,差异不显著,接受H0。
    在这里插入图片描述

    两类错误

    I型错误:弃真,概率为α
    II型错误:取伪,概率为β
    具体的:
    在这里插入图片描述
    基本原则:力求在控制α前提下减少β
    α——显著性水平,取值:0.1, 0.05, 0.001, 等。如果犯I类错误损失更大,为减少损失,α值取小;如果犯II类错误损失更大,α值取大。确定α,就确定了临界点c。

    举个例子
    在这里插入图片描述

    明确步骤

    在这里插入图片描述

    展开全文
  • 参数检验与非参数检验的区别

    千次阅读 2019-05-11 18:21:10
    1,参数检验是针对参数做的假设,非参数检验是针对总体分布情况做的假设,这个是区分参数检验和参数检验的一个重要特征。 2,二者的根本区别在于参数检验要利用到总体的信息(总体分布、总体的一些参数特征如方差...
  • MATLAB中的一些参数估计和假设检验,含数据表格
  • 本文来自读者投稿,作者:黄同学这是一篇关于推断统计、参数估计和假设检验等概念的全面讲解以及在python中的如何实现的文章,全文共5000字,建议收藏后阅读~1、总体、个体、样本和样本容量...
  • 参数估计、假设检验与回归

    万次阅读 2015-07-03 19:52:32
    总体架构 拟合(fitting)   ...已知某函数的若干离散函数值{f1,f2,…,fn},通过调整该函数中若干待定系数f(λ1, λ2,…,λn),使得该函数与已知点集的差别(最小二乘意义)最小。...参数估计 概念 在已知
  • 统计推断中的参数估计和假设检验

    千次阅读 2020-03-07 15:25:29
    多看数据的分布图(直方图柱形图一般就可以了),或者列联表分析图,然后基于对业务的理解,能看出来这个数据大概是个什么情况 错误值的处理方法: 1、首选是改对了(成本很高) 2、用缺失值替换 3、删...
  • 提供了AR模型参数估计完整matlab代码,与这篇文章中的原理部分组合https://blog.csdn.net/weixin_44846910/article/details/107311415,就是一篇完整的实验报告。...3.讨论AR模型阶数及白噪声方差对参数估计的影响。
  • 线性回归方程编码,包括线性回归关系显著性检验参数估计,预测等过程。
  • 实验三-用EXCEL进行参数估计和假设检验.docx
  • SPSS管理统计课程设计汇本参数估计和假设检验.doc
  • 统计学——参数估计与假设检验

    千次阅读 2019-02-13 17:15:04
    统计学(第六版)贾俊平 读书笔记 第 7 章 参数估计 7.1 参数估计的基本原理 参数估计就是用样本统计量去估计总体的参数。比如,用样本均值估计...参数估计的方法有点估计和区间估计两种。点估计就是中样本统计量的...
  • 文章目录1 参数检验与非参数检验2 非参数检验方法2.1 单样本总体分布检验2.1.1 卡方检验2.1.2 二项分布检验2.1.3 游程检验2.1.4 Kolmogorov—Smirnov检验2.2 两独立样本差异性检验2.2.1 Kolmogorov—Smirnov检验...
  • 参数检验与非参数检验

    千次阅读 2019-11-05 20:53:27
    参数检验:若样本所来自的总体为分布已知的数学形式(如正态分布),对其总体参数进行假设检验,则称为参数检验参数检验的特点: 分析目的:对总体参数(μ π)进行估计或检验。 分 布:要求总体分布已知,如:...
  • 掌握参数估计和假设检验这两个数理统计的最基本方法,方能有效地对数据进行描述和分析。在本文中,我们对这两种基本方法及它们在MATLAB中的运用进行简要介绍。
  • 参数估计(点估计和区间估计)

    万次阅读 多人点赞 2019-09-06 12:07:06
    1.点估计就是用样本统计量来估计总体参数。 概念理解:当我们想知道某一总体的某个指标的情况时,测量整体该指标的数值 的工作量太大,或者不符合实际,这时我们可以采用抽样的方法选取一部分样本测量出他们数值,...
  • 参数检验之t检验

    千次阅读 2019-09-07 23:07:05
    参数检验:包括参数估计、假设检验。参数检验即,在已知随机变量总体分布类型的前提下,估计随机变量总体分布的参数,如总体分布的均值、方差等,并对估计值进行假设检验,已判断估计值是否可信。 所谓假设检验,即...
  • 之后利用核密度估计的相关知识构造了一个渐近无偏的U统计量来估计参数, 该检验统计量的值过大时接受随机变量是DRE 的假设. 在一定条件下证明了检验统计量的渐近正态性, 从而得到检验的渐近临界值. 最后确定了核...
  • 如何提高非参数检验的功效,这是个不容易的问题。Wilcoxon是一个特异度很高的检验方法,但小样本时灵敏度较低。如果简单放宽检验水准,将会迅速损失特异度,并不是上上策。小样本的差异分析一直是个头疼的问题,对于...
  • 参数估计及假设检验案例.doc
  • MATLAB生参数估计与假设检验
  • 什么是参数估计

    千次阅读 2020-10-20 20:06:51
    参数估计(parameter estimation) 参数估计属于统计推断的范畴,是根据从总体中抽取的样本估计总体分布中包含的未知参数的方法。 统计推断是数理统计研究的核心问题,是指根据样本对总体分布或分布的数字特征等作出...
  • #SAS统计分析-参数估计与假设检验

    千次阅读 2019-09-18 10:36:58
    印象中,关于参数估计与假设检验先前也是有写过一丢丢,想要回顾的可以点击:由于有了之前的基础,今天的文章就会跳过一些比较简单的概念梳理与讲解,但是一些比较重要的点我还是会稍...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 27,061
精华内容 10,824
关键字:

参数检验和参数估计