精华内容
下载资源
问答
  • 1,原理在图像的仿射变换中,很多地方需要用到插值运算,常见的插值运算包括最邻近插值,双线性插值,双三次插值,兰索思插值等方法,OpenCV提供了很多方法,其中,双线性插值由于折中的插值效果和运算速度,运用...

    1,原理

    在图像的仿射变换中,很多地方需要用到插值运算,常见的插值运算包括最邻近插值,双线性插值,双三次插值,兰索思插值等方法,OpenCV提供了很多方法,其中,双线性插值由于折中的插值效果和运算速度,运用比较广泛。

    越是简单的模型越适合用来举例子,我们就举个简单的图像:3*3 的256级灰度图。假如图像的象素矩阵如下图所示(这个原始图把它叫做源图,Source):

    234 38 22

    67 44 12

    89 65 63

    这个矩阵中,元素坐标(x,y)是这样确定的,x从左到右,从0开始,y从上到下,也是从零开始,这是图象处理中最常用的坐标系。

    如果想把这副图放大为 4*4大小的图像,那么该怎么做呢?那么第一步肯定想到的是先把4*4的矩阵先画出来再说,好了矩阵画出来了,如下所示,当然,矩阵的每个像素都是未知数,等待着我们去填充(这个将要被填充的图的叫做目标图,Destination):

    ? ? ? ?

    ? ? ? ?

    ? ? ? ?

    ? ? ? ?

    然后要往这个空的矩阵里面填值了,要填的值从哪里来来呢?是从源图中来,好,先填写目标图最左上角的象素,坐标为(0,0),那么该坐标对应源图中的坐标可以由如下公式得出srcX=dstX* (srcWidth/dstWidth) , srcY = dstY * (srcHeight/dstHeight)

    好了,套用公式,就可以找到对应的原图的坐标了(0*(3/4),0*(3/4))=>(0*0.75,0*0.75)=>(0,0),找到了源图的对应坐标,就可以把源图中坐标为(0,0)处的234象素值填进去目标图的(0,0)这个位置了。

    接下来,如法炮制,寻找目标图中坐标为(1,0)的象素对应源图中的坐标,套用公式:

    (1*0.75,0*0.75)=>(0.75,0) 结果发现,得到的坐标里面竟然有小数,这可怎么办?计算机里的图像可是数字图像,象素就是最小单位了,象素的坐标都是整数,从来没有小数坐标。这时候采用的一种策略就是采用四舍五入的方法(也可以采用直接舍掉小数位的方法),把非整数坐标转换成整数,好,那么按照四舍五入的方法就得到坐标(1,0),完整的运算过程就是这样的:(1*0.75,0*0.75)=>(0.75,0)=>(1,0) 那么就可以再填一个象素到目标矩阵中了,同样是把源图中坐标为(1,0)处的像素值38填入目标图中的坐标。

    依次填完每个象素,一幅放大后的图像就诞生了,像素矩阵如下所示:

    234 38 22 22

    67 44 12 12

    89 65 63 63

    89 65 63 63

    这种放大图像的方法叫做最临近插值算法,这是一种最基本、最简单的图像缩放算法,效果也是最不好的,放大后的图像有很严重的马赛克,缩小后的图像有很严重的失真;效果不好的根源就是其简单的最临近插值方法引入了严重的图像失真,比如,当由目标图的坐标反推得到的源图的的坐标是一个浮点数的时候,采用了四舍五入的方法,直接采用了和这个浮点数最接近的象素的值,这种方法是很不科学的,当推得坐标值为 0.75的时候,不应该就简单的取为1,既然是0.75,比1要小0.25 ,比0要大0.75 ,那么目标象素值其实应该根据这个源图中虚拟的点四周的四个真实的点来按照一定的规律计算出来的,这样才能达到更好的缩放效果。

    双线型内插值算法就是一种比较好的图像缩放算法,它充分的利用了源图中虚拟点四周的四个真实存在的像素值来共同决定目标图中的一个像素值,因此缩放效果比简单的最邻近插值要好很多。

    双线性内插值算法描述如下:

    对于一个目的像素,设置坐标通过反向变换得到的浮点坐标为(i+u,j+v) (其中i、j均为浮点坐标的整数部分,u、v为浮点坐标的小数部分,是取值[0,1)区间的浮点数),则这个像素得值 f(i+u,j+v) 可由原图像中坐标为 (i,j)、(i+1,j)、(i,j+1)、(i+1,j+1)所对应的周围四个像素的值决定,即:f(i+u,j+v) = (1-u)(1-v)f(i,j) + (1-u)vf(i,j+1) + u(1-v)f(i+1,j) + uvf(i+1,j+1)

    其中f(i,j)表示源图像(i,j)处的的像素值,以此类推。

    比如,象刚才的例子,现在假如目标图的象素坐标为(1,1),那么反推得到的对应于源图的坐标是(0.75 , 0.75), 这其实只是一个概念上的虚拟象素,实际在源图中并不存在这样一个象素,那么目标图的象素(1,1)的取值不能够由这个虚拟象素来决定,而只能由源图的这四个象素共同决定:(0,0)(0,1)(1,0)(1,1),而由于(0.75,0.75)离(1,1)要更近一些,那么(1,1)所起的决定作用更大一些,这从公式1中的系数uv=0.75×0.75就可以体现出来,而(0.75,0.75)离(0,0)最远,所以(0,0)所起的决定作用就要小一些,公式中系数为(1-u)(1-v)=0.25×0.25也体现出了这一特点。

    2,计算方法

    首先,在X方向上进行两次线性插值计算,然后在Y方向上进行一次插值计算。

    在图像处理的时候,我们先根据

    srcX=dstX* (srcWidth/dstWidth) ,

    srcY = dstY * (srcHeight/dstHeight)

    来计算目标像素在源图像中的位置,这里计算的srcX和srcY一般都是浮点数,比如f(1.2, 3.4)这个像素点是虚拟存在的,先找到与它临近的四个实际存在的像素点

    (1,3) (2,3)

    (1,4) (2,4)

    写成f(i+u,j+v)的形式,则u=0.2,v=0.4, i=1, j=3

    在沿着X方向差插值时,f(R1)=u(f(Q21)-f(Q11))+f(Q11)

    沿着Y方向同理计算。

    或者,直接整理一步计算,f(i+u,j+v) = (1-u)(1-v)f(i,j) + (1-u)vf(i,j+1) + u(1-v)f(i+1,j) + uvf(i+1,j+1) 。

    3,加速以及优化策略

    单纯按照上文实现的插值算法只能勉强完成插值的功能,速度和效果都不会理想,在具体代码实现的时候有些小技巧。参考OpenCV源码以及网上博客整理如下两点:

    源图像和目标图像几何中心的对齐。

    将浮点运算转换成整数运算

    3.1 源图像和目标图像几何中心的对齐

    方法:在计算源图像的虚拟浮点坐标的时候,一般情况:

    srcX=dstX* (srcWidth/dstWidth) ,

    srcY = dstY * (srcHeight/dstHeight)

    中心对齐(OpenCV也是如此):

    SrcX=(dstX+0.5)* (srcWidth/dstWidth) -0.5

    SrcY=(dstY+0.5) * (srcHeight/dstHeight)-0.5

    原理:

    双线性插值算法及需要注意事项这篇博客解释说“如果选择右上角为原点(0,0),那么最右边和最下边的像素实际上并没有参与计算,而且目标图像的每个像素点计算出的灰度值也相对于源图像偏左偏上。”我有点保持疑问。

    将公式变形,srcX=dstX* (srcWidth/dstWidth)+0.5*(srcWidth/dstWidth-1)

    相当于我们在原始的浮点坐标上加上了0.5*(srcWidth/dstWidth-1)这样一个控制因子,这项的符号可正可负,与srcWidth/dstWidth的比值也就是当前插值是扩大还是缩小图像有关,有什么作用呢?看一个例子:假设源图像是3*3,中心点坐标(1,1)目标图像是9*9,中心点坐标(4,4),我们在进行插值映射的时候,尽可能希望均匀的用到源图像的像素信息,最直观的就是(4,4)映射到(1,1)现在直接计算srcX=4*3/9=1.3333!=1,也就是我们在插值的时候所利用的像素集中在图像的右下方,而不是均匀分布整个图像。现在考虑中心点对齐,srcX=(4+0.5)*3/9-0.5=1,刚好满足我们的要求。

    3.2 将浮点运算转换成整数运算

    参考图像处理界双线性插值算法的优化

    直接进行计算的话,由于计算的srcX和srcY 都是浮点数,后续会进行大量的乘法,而图像数据量又大,速度不会理想,解决思路是:浮点运算→→整数运算→→”<

    放大的主要对象是u,v这些浮点数,OpenCV选择的放大倍数是2048“如何取这个合适的放大倍数呢,要从三个方面考虑,第一:精度问题,如果这个数取得过小,那么经过计算后可能会导致结果出现较大的误差。第二,这个数不能太大,太大会导致计算过程超过长整形所能表达的范围。第三:速度考虑。假如放大倍数取为12,那么算式在最后的结果中应该需要除以12*12=144,但是如果取为16,则最后的除数为16*16=256,这个数字好,我们可以用右移来实现,而右移要比普通的整除快多了。”我们利用左移11位操作就可以达到放大目的。

    4,代码

    uchar* dataDst =matDst1.data;int stepDst =matDst1.step;

    uchar* dataSrc =matSrc.data;int stepSrc =matSrc.step;int iWidthSrc =matSrc.cols;int iHiehgtSrc =matSrc.rows;for (int j = 0; j < matDst1.rows; ++j)

    {float fy = (float)((j + 0.5) * scale_y - 0.5);int sy =cvFloor(fy);

    fy-=sy;

    sy= std::min(sy, iHiehgtSrc - 2);

    sy= std::max(0, sy);short cbufy[2];

    cbufy[0] = cv::saturate_cast((1.f - fy) * 2048);

    cbufy[1] = 2048 - cbufy[0];for (int i = 0; i < matDst1.cols; ++i)

    {float fx = (float)((i + 0.5) * scale_x - 0.5);int sx =cvFloor(fx);

    fx-=sx;if (sx < 0) {

    fx= 0, sx = 0;

    }if (sx >= iWidthSrc - 1) {

    fx= 0, sx = iWidthSrc - 2;

    }short cbufx[2];

    cbufx[0] = cv::saturate_cast((1.f - fx) * 2048);

    cbufx[1] = 2048 - cbufx[0];for (int k = 0; k < matSrc.channels(); ++k)

    {*(dataDst+ j*stepDst + 3*i + k) = (*(dataSrc + sy*stepSrc + 3*sx + k) * cbufx[0] * cbufy[0] +

    *(dataSrc + (sy+1)*stepSrc + 3*sx + k) * cbufx[0] * cbufy[1] +

    *(dataSrc + sy*stepSrc + 3*(sx+1) + k) * cbufx[1] * cbufy[0] +

    *(dataSrc + (sy+1)*stepSrc + 3*(sx+1) + k) * cbufx[1] * cbufy[1]) >> 22;

    }

    }

    }

    cv::imwrite("linear_1.jpg", matDst1);

    cv::resize(matSrc, matDst2, matDst1.size(),0, 0, 1);

    cv::imwrite("linear_2.jpg", matDst2);

    展开全文
  • 双线性插值

    2016-05-20 10:50:48
    图像的缩放很好理解,就是图像的放大和缩小。...在本文中,我们所说的图像都是指点阵图,也就是用一个像素矩阵来描述图像的方法,对于另一种图像:用函数来描述图像的矢量图,不在本文讨论之列。 越是简单的模型

    图像的缩放很好理解,就是图像的放大和缩小。传统的绘画工具中,有一种叫做“放大尺”的绘画工具,画家常用它来放大图画。当然,在计算机上,我们不再需要用放大尺去放大或缩小图像了,把这个工作交给程序来完成就可以了。下面就来讲讲计算机怎么来放大缩小图象;在本文中,我们所说的图像都是指点阵图,也就是用一个像素矩阵来描述图像的方法,对于另一种图像:用函数来描述图像的矢量图,不在本文讨论之列。
    越是简单的模型越适合用来举例子,我们就举个简单的图像:3X3 的256级灰度图,也就是高为3个象素,宽也是3个象素的图像,每个象素的取值可以是 0-255,代表该像素的亮度,255代表最亮,也就是白色,0代表最暗,即黑色。假如图像的象素矩阵如下图所示(这个原始图把它叫做源图,Source):
    234   38    22
    67     44    12
    89     65    63
     
    这个矩阵中,元素坐标(x,y)是这样确定的,x从左到右,从0开始,y从上到下,也是从零开始,这是图象处理中最常用的坐标系,就是这样一个坐标:
     
      ---------------------->X
      |
      |
      |
      |
      |
    ∨Y
     
    如果想把这副图放大为 4X4大小的图像,那么该怎么做呢?那么第一步肯定想到的是先把4X4的矩阵先画出来再说,好了矩阵画出来了,如下所示,当然,矩阵的每个像素都是未知数,等待着我们去填充(这个将要被填充的图的叫做目标图,Destination):
    ?        ?        ?       ?
    ?        ?        ?       ?
    ?        ?        ?       ?
    ?        ?        ?       ?

    现在从最简单的情况说起

    1.最近邻插值

    该算法是最简单的插值算法,就只是把放大后缺失的点的像素值用最靠近的原图的像素值直接填进去就可以了,比如坐标为(0,0),那么该坐标对应源图中的坐标可以由如下公式得出:

    放大系数t=dstWidth/srcWidth=4/3
    srcX=dstX/t, srcY = dstY/t
    好了,套用公式,就可以找到对应的原图的坐标了(0/(4/3),0/(4/3))=>(0,0)
    ,找到了源图的对应坐标,就可以把源图中坐标为(0,0)处的234象素值填进去目标图的(0,0)这个位置了。

    接下来,如法炮制,寻找目标图中坐标为(1,0)的象素对应源图中的坐标,套用公式:
    (1/0.75,0*0.75)=>(0.75,0)
    结果发现,得到的坐标里面竟然有小数,这可怎么办?计算机里的图像可是数字图像,象素就是最小单位了,象素的坐标都是整数,从来没有小数坐标。这时候采用的一种策略就是采用四舍五入的方法(也可以采用直接舍掉小数位的方法),把非整数坐标转换成整数,好,那么按照四舍五入的方法就得到坐标(1,0),完整的运算过程就是这样的:
    (1*0.75,0*0.75)=>(0.75,0)=>(1,0)
    那么就可以再填一个象素到目标矩阵中了,同样是把源图中坐标为(1,0)处的像素值38填入目标图中的坐标。
            
    依次填完每个象素,一幅放大后的图像就诞生了,像素矩阵如下所示:
    234    38     22     22 
    67      44     12     12 
    89      65     63     63 
    89      65     63     63  

    这种放大图像的方法叫做最临近插值算法,这是一种最基本、最简单的图像缩放算法,效果也是最不好的,放大后的图像有很严重的马赛克,缩小后的图像有很严重的失真;效果不好的根源就是其简单的最临近插值方法引入了严重的图像失真,比如,当由目标图的坐标反推得到的源图的的坐标是一个浮点数的时候,采用了四舍五入的方法,直接采用了和这个浮点数最接近的象素的值,这种方法是很不科学的,当推得坐标值为 0.75的时候,不应该就简单的取为1,既然是0.75,比1要小0.25 ,比0要大0.75 ,那么目标象素值其实应该根据这个源图中虚拟的点四周的四个真实的点来按照一定的规律计算出来的,这样才能达到更好的缩放效果。

    2 双线性插值

    双线型内插值算法就是一种比较好的图像缩放算法,它充分的利用了源图中虚拟点四周的四个真实存在的像素值来共同决定目标图中的一个像素值,因此缩放效果比简单的最邻近插值要好很多。在双线性插值方法中源图片与目标图片的坐标转换关系和最近邻一样
     
    双线性内插值算法描述如下:
      对于一个目的像素,设置坐标通过反向变换得到的浮点坐标为(i+u,j+v) (其中i、j均为浮点坐标的整数部分,u、v为浮点坐标的小数部分,是取值[0,1)区间的浮点数),则这个像素得值 f(i+u,j+v) 可由原图像中坐标为 (i,j)、(i+1,j)、(i,j+1)、(i+1,j+1)所对应的周围四个像素的值决定,即:
     
      f(i+u,j+v) = (1-u)(1-v)f(i,j) + (1-u)vf(i,j+1) + u(1-v)f(i+1,j) + uvf(i+1,j+1)                        
     
    其中f(i,j)表示源图像(i,j)处的的像素值,以此类推。
     

    比如,象刚才的例子,现在假如目标图的象素坐标为(1,1),那么反推得到的对应于源图的坐标是(0.75 , 0.75), 这其实只是一个概念上的虚拟象素,实际在源图中并不存在这样一个象素,那么目标图的象素(1,1)的取值不能够由这个虚拟象素来决定,而只能由源图的这四个象素共同决定:(0,0)(0,1)(1,0)(1,1),而由于(0.75,0.75)离(1,1)要更近一些,那么(1,1)所起的决定作用更大一些,这从公式1中的系数uv=0.75×0.75就可以体现出来,而(0.75,0.75)离(0,0)最远,所以(0,0)所起的决定作用就要小一些,公式中系数为(1-u)(1-v)=0.25×0.25也体现出了这一特点。

     

     

    双三次插值 用4*4个点赋予权重来构造 (未完待续。。。)


    继续写 

     

    双三次插值(也称协调板元),二元双三次插值公式共有(31216个系数,其一般形式可写成[9]

     a00 + a10x + a01y + a20x2 + a11xy + a02y2 + a21x2y + a12xy2 + a22x2y2 + a30x3 + a03y3a31x3y + a13xy3 + a32x3y2 + a23x2y3 + a33x3y3                           

    或者更简单的形式 sum_{i=0}^3 sum_{j=0}^3 a_{ij} x^i y^j

    双三次插值方法能够克服双线性插值和最邻近插值算法的缺点。计算精度比较高,插值效果较最近邻插值法和双线性插值法好,但是计算量大。在图像领域中,该方法考虑一个浮点坐标(i+u,j+v)周围的16个邻点,目标像素值f(i+u,j+v)可由如下插值公式得到:

        f(i+u,j+v)=[A]×[B]×[C]

        [A]=[S(u+1)  S(u+0)  S(u-1)  S(u-2)]

    [转载]常见插值算法

    展开全文
  • 图像的缩放很好理解,就是图像的放大和缩小。...在本文中,我们所说的图像都是指点阵图,也就是用一个像素矩阵来描述图像的方法,对于另一种图像:用函数来描述图像的矢量图,不在本文讨论之列。越是简单的模型越适合...

    图像的缩放很好理解,就是图像的放大和缩小。传统的绘画工具中,有一种叫做“放大尺”的绘画工具,画家常用它来放大图画。当然,在计算机上,我们不再需要用放大尺去放大或缩小图像了,把这个工作交给程序来完成就可以了。下面就来讲讲计算机怎么来放大缩小图象;在本文中,我们所说的图像都是指点阵图,也就是用一个像素矩阵来描述图像的方法,对于另一种图像:用函数来描述图像的矢量图,不在本文讨论之列。

    越是简单的模型越适合用来举例子,我们就举个简单的图像:3X3 的256级灰度图,也就是高为3个象素,宽也是3个象素的图像,每个象素的取值可以是 0-255,代表该像素的亮度,255代表最亮,也就是白色,0代表最暗,即黑色 。假如图像的象素矩阵如下图所示(这个原始图把它叫做源图,Source):

    234   38    22

    67     44    12

    89     65    63

    这个矩阵中,元素坐标(x,y)是这样确定的,x从左到右,从0开始,y从上到下,也是从零开始,这是图象处理中最常用的坐标系,就是这样一个坐标:

    ---------------------->X

    |

    |

    |

    |

    |

    ∨Y

    如果想把这副图放大为 4X4大小的图像,那么该怎么做呢?那么第一步肯定想到的是先把4X4的矩阵先画出来再说,好了矩阵画出来了,如下所示,当然,矩阵的每个像素都是未知数,等待着我们去填充(这个将要被填充的图的叫做目标图,Destination):

    ?        ?        ?       ?

    ?        ?        ?       ?

    ?        ?        ?       ?

    ?        ?        ?       ?

    然后要往这个空的矩阵里面填值了,要填的值从哪里来来呢?是从源图中来,好,先填写目标图最左上角的象素,坐标为(0,0),那么该坐标对应源图中的坐标可以由如下公式得出:

    srcX=dstX* (srcWidth/dstWidth) , srcY = dstY * (srcHeight/dstHeight)

    好了,套用公式,就可以找到对应的原图的坐标了(0*(3/4),0*(3/4))=>(0*0.75,0*0.75)=>(0,0)

    ,找到了源图的对应坐标,就可以把源图中坐标为(0,0)处的234象素值填进去目标图的(0,0)这个位置了。

    接下来,如法炮制,寻找目标图中坐标为(1,0)的象素对应源图中的坐标,套用公式:

    (1*0.75,0*0.75)=>(0.75,0)

    结果发现,得到的坐标里面竟然有小数,这可怎么办?计算机里的图像可是数字图像,象素就是最小单位了,象素的坐标都是整数,从来没有小数坐标。这时候采用的一种策略就是采用四舍五入的方法(也可以采用直接舍掉小数位的方法),把非整数坐标转换成整数,好,那么按照四舍五入的方法就得到坐标(1,0),完整的运算过程就是这样的:

    (1*0.75,0*0.75)=>(0.75,0)=>(1,0)

    那么就可以再填一个象素到目标矩阵中了,同样是把源图中坐标为(1,0)处的像素值38填入目标图中的坐标。

    依次填完每个象素,一幅放大后的图像就诞生了,像素矩阵如下所示:

    234    38     22     22

    67      44     12     12

    89      65     63     63

    89      65     63     63

    这种放大图像的方法叫做最临近插值算法,这是一种最基本、最简单的图像缩放算法,效果也是最不好的,放大后的图像有很严重的马赛克,缩小后的图像有很严重的失真;效果不好的根源就是其简单的最临近插值方法引入了严重的图像失真,比如,当由目标图的坐标反推得到的源图的的坐标是一个浮点数的时候,采用了四舍五入的方法,直接采用了和这个浮点数最接近的象素的值,这种方法是很不科学的,当推得坐标值为 0.75的时候,不应该就简单的取为1,既然是0.75,比1要小0.25 ,比0要大0.75 ,那么目标象素值其实应该根据这个源图中虚拟的点四周的四个真实的点来按照一定的规律计算出来的,这样才能达到更好的缩放效果。双线型内插值算法就是一种比较好的图像缩放算法,它充分的利用了源图中虚拟点四周的四个真实存在的像素值来共同决定目标图中的一个像素值,因此缩放效果比简单的最邻近插值要好很多。

    双线性内插值算法描述如下:

    对于一个目的像素,设置坐标通过反向变换得到的浮点坐标为(i+u,j+v) (其中i、j均为浮点坐标的整数部分,u、v为浮点坐标的小数部分,是取值[0,1)区间的浮点数),则这个像素得值 f(i+u,j+v) 可由原图像中坐标为 (i,j)、(i+1,j)、(i,j+1)、(i+1,j+1)所对应的周围四个像素的值决定,即:

    f(i+u,j+v) = (1-u)(1-v)f(i,j) + (1-u)vf(i,j+1) + u(1-v)f(i+1,j) + uvf(i+1,j+1)                          公式1

    其中f(i,j)表示源图像(i,j)处的的像素值,以此类推。

    比如,象刚才的例子,现在假如目标图的象素坐标为(1,1),那么反推得到的对应于源图的坐标是(0.75 , 0.75), 这其实只是一个概念上的虚拟象素,实际在源图中并不存在这样一个象素,那么目标图的象素(1,1)的取值不能够由这个虚拟象素来决定,而只能由源图的这四个象素共同决定:(0,0)(0,1)(1,0)(1,1),而由于(0.75,0.75)离(1,1)要更近一些,那么(1,1)所起的决定作用更大一些,这从公式1中的系数uv=0.75×0.75就可以体现出来,而(0.75,0.75)离(0,0)最远,所以(0,0)所起的决定作用就要小一些,公式中系数为(1-u)(1-v)=0.25×0.25也体现出了这一特点;

    最邻近插值和双向性内插值缩放图片的效果对比:

    原始图片

    c491328b640b7894af9c1440b19b2052.png

    最邻近插值放大图片

    feace902e60be2c95398c379579452da.png

    双线型内插值放大图

    e71bc2b15bf9925b4e23a1ac8b226ed9.png

    展开全文
  • 引入注意力机制的方法是解决上述问题的常见策略,为此,在双线性卷积神经网络模型的基础上,提出一种改进的双线性残差注意力网络:将原模型的特征函数替换为特征提取能力更强的深度残差网络,并在残差单元之间分别添加...
  • 双线性插值算法

    千次阅读 2013-09-10 16:37:05
    图像的缩放很好理解,就是图像的放大和缩小。...在本文中,我们所说的图像都是指点阵图,也就是用一个像素矩阵来描述图像的方法,对于另一种图像:用函数来描述图像的矢量图,不在本文讨论之列。 越是简单的模型

    图像的缩放很好理解,就是图像的放大和缩小。传统的绘画工具中,有一种叫做“放大尺”的绘画工具,画家常用它来放大图画。当然,在计算机上,我们不再需要用放大尺去放大或缩小图像了,把这个工作交给程序来完成就可以了。下面就来讲讲计算机怎么来放大缩小图象;在本文中,我们所说的图像都是指点阵图,也就是用一个像素矩阵来描述图像的方法,对于另一种图像:用函数来描述图像的矢量图,不在本文讨论之列。
    越是简单的模型越适合用来举例子,我们就举个简单的图像:3X3的256级灰度图,也就是高为3个象素,宽也是3个象素的图像,每个象素的取值可以是0-255,代表该像素的亮度,255代表最亮,也就是白色,0代表最暗,即黑色。假如图像的象素矩阵如下图所示(这个原始图把它叫做源图,Source):
    234  38    22
    67    44    12
    89    65    63
     
    这个矩阵中,元素坐标(x,y)是这样确定的,x从左到右,从0开始,y从上到下,也是从零开始,这是图象处理中最常用的坐标系,就是这样一个坐标:
     
      ---------------------->X
      |
      |
      |
      |
      |
    ∨Y
     
    如果想把这副图放大为4X4大小的图像,那么该怎么做呢?那么第一步肯定想到的是先把4X4的矩阵先画出来再说,好了矩阵画出来了,如下所示,当然,矩阵的每个像素都是未知数,等待着我们去填充(这个将要被填充的图的叫做目标图,Destination):
    ?       ?       ?      ?
    ?       ?       ?      ?
    ?       ?       ?      ?
    ?       ?       ?      ?

    现在从最简单的情况说起

    1.最近邻插值

    该算法是最简单的插值算法,就只是把放大后缺失的点的像素值用最靠近的原图的像素值直接填进去就可以了,比如坐标为(0,0),那么该坐标对应源图中的坐标可以由如下公式得出:

    放大系数t=dstWidth/srcWidth=4/3
    srcX=dstX/t, srcY = dstY/t
    好了,套用公式,就可以找到对应的原图的坐标了(0/(4/3),0/(4/3))=>(0,0)
    ,找到了源图的对应坐标,就可以把源图中坐标为(0,0)处的234象素值填进去目标图的(0,0)这个位置了。

    接下来,如法炮制,寻找目标图中坐标为(1,0)的象素对应源图中的坐标,套用公式:
    (1/0.75,0*0.75)=>(0.75,0)
    结果发现,得到的坐标里面竟然有小数,这可怎么办?计算机里的图像可是数字图像,象素就是最小单位了,象素的坐标都是整数,从来没有小数坐标。这时候采用的一种策略就是采用四舍五入的方法(也可以采用直接舍掉小数位的方法),把非整数坐标转换成整数,好,那么按照四舍五入的方法就得到坐标(1,0),完整的运算过程就是这样的:
    (1*0.75,0*0.75)=>(0.75,0)=>(1,0)
    那么就可以再填一个象素到目标矩阵中了,同样是把源图中坐标为(1,0)处的像素值38填入目标图中的坐标。
            
    依次填完每个象素,一幅放大后的图像就诞生了,像素矩阵如下所示:
    234   38    22    22 
    67     44    12    12 
    89     65    63    63 
    89     65    63    63  

    这种放大图像的方法叫做最临近插值算法,这是一种最基本、最简单的图像缩放算法,效果也是最不好的,放大后的图像有很严重的马赛克,缩小后的图像有很严重的失真;效果不好的根源就是其简单的最临近插值方法引入了严重的图像失真,比如,当由目标图的坐标反推得到的源图的的坐标是一个浮点数的时候,采用了四舍五入的方法,直接采用了和这个浮点数最接近的象素的值,这种方法是很不科学的,当推得坐标值为0.75的时候,不应该就简单的取为1,既然是0.75,比1要小0.25 ,比0要大0.75,那么目标象素值其实应该根据这个源图中虚拟的点四周的四个真实的点来按照一定的规律计算出来的,这样才能达到更好的缩放效果。

    2 双线性插值

    双线型内插值算法就是一种比较好的图像缩放算法,它充分的利用了源图中虚拟点四周的四个真实存在的像素值来共同决定目标图中的一个像素值,因此缩放效果比简单的最邻近插值要好很多。在双线性插值方法中源图片与目标图片的坐标转换关系和最近邻一样
     
    双线性内插值算法描述如下:
      对于一个目的像素,设置坐标通过反向变换得到的浮点坐标为(i+u,j+v)(其中i、j均为浮点坐标的整数部分,u、v为浮点坐标的小数部分,是取值[0,1)区间的浮点数),则这个像素得值 f(i+u,j+v)可由原图像中坐标为 (i,j)、(i+1,j)、(i,j+1)、(i+1,j+1)所对应的周围四个像素的值决定,即:
     
      f(i+u,j+v) = (1-u)(1-v)f(i,j) + (1-u)vf(i,j+1) + u(1-v)f(i+1,j) +uvf(i+1,j+1)                        
     
    其中f(i,j)表示源图像(i,j)处的的像素值,以此类推。
     

    比如,象刚才的例子,现在假如目标图的象素坐标为(1,1),那么反推得到的对应于源图的坐标是(0.75 , 0.75),这其实只是一个概念上的虚拟象素,实际在源图中并不存在这样一个象素,那么目标图的象素(1,1)的取值不能够由这个虚拟象素来决定,而只能由源图的这四个象素共同决定:(0,0)(0,1)(1,0)(1,1),而由于(0.75,0.75)离(1,1)要更近一些,那么(1,1)所起的决定作用更大一些,这从公式1中的系数uv=0.75×0.75就可以体现出来,而(0.75,0.75)离(0,0)最远,所以(0,0)所起的决定作用就要小一些,公式中系数为(1-u)(1-v)=0.25×0.25也体现出了这一特点。

     

     

    双三次插值 用4*4个点赋予权重来构造 (未完待续。。。)


    继续写 

     

    双三次插值(也称协调板元),二元双三次插值公式共有(3+1)2=16个系数,其一般形式可写成[9]

     a00 +a10x +a01y +a20x2 + a11xy + a02y2 +a21x2y + a12xy2 + a22x2y2 +a30x3 + a03y3 +a31x3y + a13xy3 + a32x3y2 +a23x2y3 +a33x3y3                           

    或者更简单的形式 \sum_{i=0}^3 \sum_{j=0}^3 a_{ij} x^i y^j

    双三次插值方法能够克服双线性插值和最邻近插值算法的缺点。计算精度比较高,插值效果较最近邻插值法和双线性插值法好,但是计算量大。在图像领域中,该方法考虑一个浮点坐标(i+u,j+v)周围的16个邻点,目标像素值f(i+u,j+v)可由如下插值公式得到:

        f(i+u,j+v)=[A]×[B]×[C]

        [A]=[S(u+1) S(u+0)  S(u-1) S(u-2)]

    展开全文
  • 图像的缩放很好理解,就是图像的放大和缩小。...在本文中,我们所说的图像都是指点阵图,也就是用一个像素矩阵来描述图像的方法,对于另一种图像:用函数来描述图像的矢量图,不在本文讨论之列。 越是简单的模型越适...
  • 图像的缩放很好理解,就是图像的放大和缩小。...在本文中,我们所说的图像都是指点阵图,也就是用一个像素矩阵来描述图像的方法,对于另一种图像:用函数来描述图像的矢量图,不在本文讨论之列。 越是简单的模型
  • 图像的缩放很好理解,就是图像的放大和缩小。...在本文中,我们所说的图像都是指点阵图,也就是用一个像素矩阵来描述图像的方法,对于另一种图像:用函数来描述图像的矢量图,不在本文讨论之列。 越是简单的模型
  • glove是一个全局对数双线性回归模型(global log bilinear regression model)。顾名思义,该模型用到了语料库的全局特征,即单词的共现频次矩阵,并且,其优化目标函数是对数线性的,并用回归的形式进行求解。
  • 在本文中,我们所说的图像都是指点阵图,也就是用一个像素矩阵来描述图像的方法,对于另一种图像:用函数来描述图像的矢量图,不在本文讨论之列。 越是简单的模型越适合用来举例子,我们就举个简单的图像:3X3 ...
  • 本文研究了以Takagi-Sugeno(TS)... 将稳定性结果表述为线性程序(LP)和线性矩阵不等式(LMI),并且可以通过求解一组双线性矩阵不等式(BMI)来获得控制律。 数值算例和实际工厂进行了研究,以证明该方法的有效性。
  • 传递函数如何转化为差分方程

    千次阅读 2020-11-20 10:56:11
    前言:我们在Matlab/Simulink做实验仿真的对象一般习惯使用传递函数,但是真正转化到单片机中时,又无法识别传递函数,因此需要转化为差分方程来...假设当前我们获得的传递函数模型如下: 采用方法一: 将模型中的s用
  • GloVe损失函数的理解

    2018-04-07 12:57:00
    与复杂的word2vec相比,其是一个log双线性模型,仅通过一个简单的损失函数就能够得到很好的结果。 (1)J=∑i,jNf(Xi,j)(viTvj+bi+bj−log(Xi,j))2 其中,vi和vj是i和j的词向量,bi和bj是两个偏差项,f是一个...
  • 双线性内插法 三次内插法 基于重建的方法 概率论、集合类 凸集投影法(POCS) 贝叶斯分析法 迭代反投影法(IBP) 后验概率方法 正规化方法 混合方法 基于机器学习的方法(非深度学习) Example-based方法 ...
  • 在当前的工作中,我们考虑一个模型,该模型具有一个在远平行重力框架内非最小耦合... 通过采用这种方法,对于弗里德曼-罗伯逊-沃克度量,我们获得了各自的势和耦合函数,作为双线性Ψ的线性和幂律形式。 此外,我们搜寻

空空如也

空空如也

1 2 3 4 5
收藏数 90
精华内容 36
关键字:

双线性函数模型