精华内容
下载资源
问答
  • 截止,放大和饱和,du一般像音响是在放大装态,其它的基zhi本上都是在另dao外两个装态的,假如把三极管比作一个水龙头的话,那么,基极相当于是水龙上的可以扭动的开关,集电极相当于进水口,发射极相当于出水口。...

    技术交流QQ群【JAVA,C++,Python,.NET,BigData,AI】:170933152

    场效应管中的源极和漏极可以互用也就是电源脚!栅极就是接地的意思

    源极就是集电极

    漏极就是发射级

    栅极就是基级

    三极管有三个工作装bai态,截止,放大和饱和,du一般像音响是在放大装态,其它的基zhi本上都是在另dao外两个装态的,假如把三极管比作一个水龙头的话,那么,基极相当于是水龙上的可以扭动的开关,集电极相当于进水口,发射极相当于出水口。当你关上开关时水龙头是没有水出来的,相当于三极管的基极没有电流,那三极管是在截止装态;当你慢慢扭动水龙头是的开关时水会慢慢的变大,相当于你给三极管基极加上一个慢慢变大的电流,那这样流过三极管中的电流就慢慢变大。这就是三极管的三个极以及它们的作用。

    展开全文
  • 在共发射极电路中,在一定的集电极电压UCE下,集电极电流变化量△IC与基极电流变化量△IB的比值称为电流放大系数β即  由于β反映了变化量之比,在放大电路中变化量实际上是交流信号,因此把β值称为共发射极...
  • 四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。”下面让我们逐句进行解释吧。 1: 三颠倒,找基极 大家知道,三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分为...

      四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。”下面让我们逐句进行解释吧。
      1: 三颠倒,找基极
      大家知道,三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管。
      测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位。图2绘出了万用电表欧姆挡的等效电路。红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。
      假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试的第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基极。
      2:PN结,定管型
      找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的导电类型。将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被测管即为PNP型。
      3:顺箭头,偏转大
      找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO的方法确定集电极c和发射极e。
      (1) 对于NPN型三极管,穿透电流的测量电路。根据这个原理,用万用电表的黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c极→b极→e极→红表笔,电流流向正好与三极管符号中的箭头方向一致顺箭头,所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。
      (2) 对于PNP型的三极管,道理也类似于NPN型,其电流流向一定是:黑表笔→e极→b极→c极→红表笔,其电流流向也与三极管符号中的箭头方向一致,所以此时黑表笔所接的一定是发射极e,红表笔所接的一定是集电极c。
      4:测不出,动嘴巴
      若在“顺箭头,偏转大”的测量过程中,若由于颠倒前后的两次测量指针偏转均太小难以区分时,就要“动嘴巴”了。具体方法是:在“顺箭头,偏转大”的两次测量中,用两只手分别捏住两表笔与管脚的结合部,用嘴巴含住(或用舌头抵住)基电极b,仍用“顺箭头,偏转大”的判别方法即可区分开集电极c与发射极e。其中人体起到直流偏置电阻的作用,目的是使效果更加明显。
      M74VHC1GT126DF1G的参数
      湿气敏感性等级(MSL):3(168 小时)
      制造商标准提前期:4 周
      系列:ProASIC3
      零件状态:在售
      总RAM位数:36864
      I/O数:68
      栅极数:250000
      电源电压:1.425V~1.575V
      安装类型:表面贴装
      工作温度:0°C~85°C(TJ)
      封装/外壳:100-TQFP
      供应商器件封装:100-VQFP(14x14)
      类别:Integrated Circuits (ICs)
      系列:74VHC
      包装:Tape & Reel (TR)
      零件状态:Active
      逻辑类型:Buffer, Non-Inverting
      元件数:1
      每元件位数:1
      输入类型:-
      输出类型:Push-Pull
      电流 - 输出高,低:8mA, 8mA
      电压 - 电源:3 V ~ 5.5 V
      工作温度:-55°C ~ 125°C (TA)
      安装类型:Surface Mount
      封装/外壳:5-TSSOP, SC-70-5, SOT-353
      供应商器件封装:SC-88A (SC-70-5/SOT-353)
     

    转载于:https://my.oschina.net/u/3911785/blog/3053289

    展开全文
  • 1.在实际工作中,常用Ib*=V/R作为判断临界饱和的条件。根据Ib*=V/R算出的Ib值,只是使晶体管进入了初始饱和状态,实际上应该取该值的数倍以上,才能...集电极电阻 越大越容易饱和; 3.饱和区的现象就是:二个PN结......
  • 公共发射极,公共基极和公共集电极HBT之间的关系-关于公共发射极,公共基极和公共集电极异质结双极晶体管之间关系的建议分析表达式集
  •   在两篇关于通过二极管PN结测量Boltzmann常熟的博文中 PN结中存在的...但是在上面的测量关系中,存在一个平时没有注意到的问题,那么是三极管的发射极集电极电压的影响。   ■ 测量电路 将NPN晶体管.

     

    在两篇关于通过二极管PN结测量Boltzmann常熟的博文中 PN结中存在的Boltzmann常数 以及 利用二极管的P-N结的I-V特性测量Boltzmann常数给出了 使用NPN三极管来获得PN结的电压与电流之间的关系。而不是直接通过测量二极管的PN结的电压与电流的关系测量Boltzmann常数。其中具体的半导体内部的原因还需要后面进一步的文献调研。但是在上面的测量关系中,存在一个平时没有注意到的问题,那么是三极管的发射极对集电极电压的影响。

     

    ■ 测量电路


    将NPN晶体管的基极接地,通过电阻R1连接可调电压源。通过数控可调电压源来改变NPN晶体管的发射极的电流,进而改变了晶体管的发射极的电压。 使用万用表测量三极管集电极对地之间的电压VC。

    下面测量VALL,VR, VC之间的关系。

     

    01实验测量结果


    需要说明:下面测量过程中对于Vc的测试使用DM3068万用表。测量的Vcc与DM3068的不同档有关系。所以出现到的正向的0.75V的电压应该与DM3068本身的输入特性有关系。

    1. NPN:3904

    ▲ 发射极电压与集电极电压之间的关系

    ▲ 发射极电压与集电极电压之间的关系

    ▲ 发射极电压与集电极电压之间的关系

    ▲ 发射极电压与集电极电压之间的关系

    vr=[-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.01,-0.01,-0.01,-0.01,-0.02,-0.02,-0.02,-0.03,-0.03,-0.04,-0.04,-0.05,-0.05,-0.06,-0.06,-0.07,-0.07,-0.08,-0.08,-0.09,-0.10,-0.11,-0.11,-0.12,-0.13,-0.14,-0.14,-0.15,-0.16,-0.17,-0.17,-0.18,-0.19,-0.20,-0.20,-0.21,-0.22,-0.23,-0.24,-0.25,-0.25,-0.26,-0.27,-0.28]
    
    vall=[-0.00,-0.01,-0.02,-0.03,-0.04,-0.05,-0.06,-0.07,-0.08,-0.09,-0.10,-0.11,-0.12,-0.13,-0.14,-0.15,-0.16,-0.17,-0.18,-0.19,-0.20,-0.21,-0.22,-0.23,-0.24,-0.26,-0.27,-0.28,-0.29,-0.29,-0.31,-0.32,-0.33,-0.34,-0.34,-0.36,-0.37,-0.38,-0.39,-0.40,-0.41,-0.42,-0.43,-0.44,-0.45,-0.46,-0.47,-0.48,-0.49,-0.50,-0.51,-0.52,-0.53,-0.54,-0.55,-0.56,-0.57,-0.58,-0.59,-0.60,-0.61,-0.62,-0.63,-0.64,-0.65,-0.66,-0.67,-0.68,-0.69,-0.70,-0.71,-0.72,-0.73,-0.73,-0.74,-0.75,-0.76,-0.77,-0.78,-0.79,-0.80,-0.81,-0.83,-0.84,-0.84,-0.85,-0.86,-0.87,-0.88,-0.89,-0.90,-0.91,-0.92,-0.93,-0.94,-0.95,-0.96,-0.97,-0.98,-0.99]
    
    vc=[0.86,0.86,0.85,0.85,0.85,0.85,0.85,0.85,0.85,0.85,0.85,0.85,0.85,0.85,0.85,0.85,0.84,0.84,0.84,0.84,0.84,0.84,0.84,0.84,0.83,0.83,0.83,0.83,0.82,0.82,0.82,0.81,0.80,0.78,0.77,0.74,0.70,0.65,0.58,0.47,0.33,0.12,-0.07,-0.28,-0.37,-0.39,-0.40,-0.42,-0.43,-0.45,-0.46,-0.47,-0.49,-0.50,-0.51,-0.52,-0.53,-0.54,-0.55,-0.56,-0.57,-0.58,-0.58,-0.59,-0.60,-0.60,-0.61,-0.62,-0.62,-0.63,-0.63,-0.63,-0.64,-0.64,-0.64,-0.65,-0.65,-0.65,-0.66,-0.66,-0.66,-0.67,-0.67,-0.67,-0.68,-0.68,-0.68,-0.68,-0.68,-0.69,-0.69,-0.69,-0.69,-0.69,-0.70,-0.70,-0.70,-0.70,-0.70,-0.70]
    
    #!/usr/local/bin/python
    # -*- coding: gbk -*-
    #============================================================
    # TEST1.PY                     -- by Dr. ZhuoQing 2020-08-05
    #
    # Note:
    #============================================================
    from headm import *
    from tsmodule.tsvisa        import *
    from tsmodule.tsstm32       import *
    dp1308open()
    printf('Begin :\r\n\a')
    dp1308n25v(0)
    time.sleep(2)
    setv = linspace(0, 1, 100)
    vrdim = []
    valldim = []
    vcdim = []
    for v in setv:
        dp1308n25v(v)
        time.sleep(1.5)
        meter = meterval()
        vcdim.append(meter[2])
        valldim.append(meter[0])
        vrdim.append(meter[3])
    dp1308n25v(0)
    tspsave('data', vr=vrdim, vall=valldim, vc=vcdim)
    plt.plot(setv, valldim, label='VALL')
    plt.plot(setv, vcdim, label='VC')
    plt.plot(setv, vrdim, label='VR')
    plt.xlabel("Set Voltage(V)")
    plt.ylabel("Measure(V)")
    plt.grid(True)
    plt.tight_layout()
    plt.legend(loc='upper right')
    plt.show()
    #------------------------------------------------------------
    #        END OF FILE : TEST1.PY
    #============================================================
    

    1. NPN:1906

    ▲ 1906的发射极与集电极之间的关系

    ▲ 1906的发射极与集电极之间的关系

    vr=[-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0002,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0002,-0.0001,-0.0001,-0.0002,-0.0002,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0002,-0.0001,-0.0001,-0.0002,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0002,-0.0002,-0.0002,-0.0002,-0.0002,-0.0003,-0.0004,-0.0005,-0.0007,-0.0009,-0.0012,-0.0017,-0.0024,-0.0031,-0.0043,-0.0057,-0.0075,-0.0098,-0.0123,-0.0154,-0.0189,-0.0223,-0.0265,-0.0308,-0.0358,-0.0403,-0.0465,-0.0523,-0.0575,-0.0636,-0.0698,-0.0762,-0.0829,-0.0887,-0.0957,-0.1025,-0.1100,-0.1173,-0.1242,-0.1318,-0.1394,-0.1460,-0.1539,-0.1613,-0.1692,-0.1772,-0.1851,-0.1932,-0.2002,-0.2084,-0.2166]
    
    vall=[-0.0029,-0.0132,-0.0222,-0.0326,-0.0427,-0.0532,-0.0636,-0.0736,-0.0838,-0.0929,-0.1032,-0.1137,-0.1236,-0.1339,-0.1429,-0.1547,-0.1651,-0.1740,-0.1845,-0.1945,-0.2049,-0.2150,-0.2242,-0.2345,-0.2446,-0.2553,-0.2656,-0.2757,-0.2860,-0.2949,-0.3053,-0.3156,-0.3257,-0.3361,-0.3450,-0.3566,-0.3671,-0.3760,-0.3864,-0.3968,-0.4068,-0.4172,-0.4261,-0.4365,-0.4465,-0.4571,-0.4675,-0.4776,-0.4880,-0.4983,-0.5072,-0.5176,-0.5276,-0.5379,-0.5470,-0.5586,-0.5691,-0.5781,-0.5884,-0.5988,-0.6087,-0.6190,-0.6279,-0.6382,-0.6481,-0.6587,-0.6689,-0.6787,-0.6889,-0.6991,-0.7079,-0.7180,-0.7276,-0.7377,-0.7465,-0.7578,-0.7679,-0.7766,-0.7866,-0.7964,-0.8061,-0.8161,-0.8246,-0.8347,-0.8442,-0.8546,-0.8646,-0.8740,-0.8839,-0.8938,-0.9024,-0.9124,-0.9220,-0.9318,-0.9419,-0.9516,-0.9615,-0.9701,-0.9800,-0.9899]
    
    vc=[1.1074,1.1068,1.1070,1.1093,1.1085,1.1086,1.1087,1.1078,1.1084,1.1090,1.1074,1.1066,1.1072,1.1061,1.1069,1.1059,1.1051,1.1050,1.1058,1.1051,1.1033,1.1032,1.1027,1.1017,1.1019,1.1013,1.1008,1.1006,1.1003,1.0999,1.0998,1.0980,1.0979,1.0961,1.0944,1.0912,1.0885,1.0864,1.0807,1.0744,1.0671,1.0548,1.0390,1.0128,0.9774,0.9237,0.8504,0.7517,0.6048,0.4006,0.1686,-0.1239,-0.3786,-0.4589,-0.4730,-0.4885,-0.5019,-0.5132,-0.5247,-0.5362,-0.5465,-0.5568,-0.5654,-0.5749,-0.5840,-0.5930,-0.6015,-0.6091,-0.6164,-0.6233,-0.6290,-0.6349,-0.6401,-0.6452,-0.6494,-0.6544,-0.6586,-0.6620,-0.6656,-0.6690,-0.6721,-0.6752,-0.6776,-0.6804,-0.6829,-0.6855,-0.6878,-0.6899,-0.6921,-0.6941,-0.6958,-0.6977,-0.6994,-0.7012,-0.7029,-0.7045,-0.7060,-0.7073,-0.7088,-0.7102]
    

    3. NPN:8050

    ▲ 8050三级的发射极电压与集电极电压之间的关系

    ▲ 8050三级的发射极电压与集电极电压之间的关系

    vr=[-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0002,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0002,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0002,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0001,-0.0002,-0.0001,-0.0002,-0.0002,-0.0001,-0.0002,-0.0002,-0.0002,-0.0003,-0.0003,-0.0004,-0.0006,-0.0007,-0.0009,-0.0012,-0.0017,-0.0022,-0.0031,-0.0042,-0.0054,-0.0070,-0.0090,-0.0113,-0.0141,-0.0169,-0.0204,-0.0242,-0.0286,-0.0332,-0.0379,-0.0430,-0.0485,-0.0534,-0.0593,-0.0651,-0.0713,-0.0769,-0.0844,-0.0911,-0.0970,-0.1040,-0.1108,-0.1179,-0.1251,-0.1314,-0.1389,-0.1462,-0.1540,-0.1616,-0.1690,-0.1766,-0.1845,-0.1913,-0.1992,-0.2069,-0.2148,-0.2229,-0.2309,-0.2390,-0.2459,-0.2541,-0.2623]
    
    vall=[-0.0028,-0.0132,-0.0222,-0.0325,-0.0427,-0.0532,-0.0635,-0.0735,-0.0838,-0.0929,-0.1032,-0.1136,-0.1235,-0.1338,-0.1429,-0.1546,-0.1651,-0.1741,-0.1844,-0.1944,-0.2048,-0.2150,-0.2241,-0.2345,-0.2445,-0.2553,-0.2656,-0.2756,-0.2860,-0.2949,-0.3052,-0.3157,-0.3256,-0.3361,-0.3450,-0.3566,-0.3670,-0.3760,-0.3864,-0.3968,-0.4068,-0.4172,-0.4261,-0.4365,-0.4465,-0.4571,-0.4674,-0.4775,-0.4879,-0.4981,-0.5073,-0.5175,-0.5274,-0.5377,-0.5467,-0.5582,-0.5684,-0.5774,-0.5874,-0.5976,-0.6072,-0.6173,-0.6260,-0.6358,-0.6453,-0.6554,-0.6651,-0.6745,-0.6840,-0.6938,-0.7022,-0.7117,-0.7208,-0.7303,-0.7387,-0.7496,-0.7590,-0.7672,-0.7767,-0.7859,-0.7951,-0.8046,-0.8127,-0.8222,-0.8313,-0.8411,-0.8505,-0.8594,-0.8688,-0.8782,-0.8864,-0.8958,-0.9048,-0.9141,-0.9236,-0.9329,-0.9423,-0.9503,-0.9597,-0.9691]
    
    vc=[0.7587,0.7577,0.7565,0.7564,0.7565,0.7574,0.7572,0.7562,0.7545,0.7538,0.7533,0.7527,0.7516,0.7523,0.7513,0.7502,0.7500,0.7497,0.7479,0.7466,0.7440,0.7423,0.7396,0.7372,0.7357,0.7333,0.7290,0.7234,0.7169,0.7099,0.6989,0.6824,0.6613,0.6289,0.5900,0.5164,0.4210,0.3066,0.1305,-0.0908,-0.3017,-0.3925,-0.4078,-0.4216,-0.4344,-0.4478,-0.4602,-0.4718,-0.4830,-0.4935,-0.5027,-0.5127,-0.5224,-0.5323,-0.5409,-0.5515,-0.5606,-0.5684,-0.5770,-0.5851,-0.5925,-0.5999,-0.6058,-0.6123,-0.6180,-0.6238,-0.6289,-0.6336,-0.6382,-0.6424,-0.6459,-0.6496,-0.6530,-0.6564,-0.6591,-0.6624,-0.6652,-0.6675,-0.6700,-0.6724,-0.6746,-0.6767,-0.6785,-0.6806,-0.6824,-0.6843,-0.6861,-0.6878,-0.6893,-0.6910,-0.6922,-0.6938,-0.6951,-0.6965,-0.6978,-0.6991,-0.7003,-0.7014,-0.7026,-0.7037]
    

     

    02 测量8050 Ve,Vc电压


    ▲ 实验电路

    ▲ 实验电路

    ▲ 实验电路

    ▲ 实验电路

    ▲ Ve,Vc电压曲线

    ▲ Ve,Vc电压曲线

    ▲ Ve,Vce

    ▲ Ve,Vce

    setv=[0.00,0.02,0.04,0.06,0.08,0.10,0.12,0.14,0.16,0.18,0.20,0.22,0.24,0.26,0.28,0.30,0.32,0.34,0.36,0.38,0.40,0.42,0.44,0.46,0.48,0.51,0.53,0.55,0.57,0.59,0.61,0.63,0.65,0.67,0.69,0.71,0.73,0.75,0.77,0.79,0.81,0.83,0.85,0.87,0.89,0.91,0.93,0.95,0.97,0.99,1.01,1.03,1.05,1.07,1.09,1.11,1.13,1.15,1.17,1.19,1.21,1.23,1.25,1.27,1.29,1.31,1.33,1.35,1.37,1.39,1.41,1.43,1.45,1.47,1.49,1.52,1.54,1.56,1.58,1.60,1.62,1.64,1.66,1.68,1.70,1.72,1.74,1.76,1.78,1.80,1.82,1.84,1.86,1.88,1.90,1.92,1.94,1.96,1.98,2.00]
    ve=[0.00,-0.02,-0.04,-0.06,-0.08,-0.10,-0.12,-0.14,-0.16,-0.18,-0.20,-0.22,-0.24,-0.26,-0.28,-0.30,-0.32,-0.34,-0.36,-0.38,-0.40,-0.42,-0.44,-0.46,-0.48,-0.50,-0.52,-0.54,-0.56,-0.58,-0.60,-0.61,-0.63,-0.64,-0.65,-0.66,-0.67,-0.67,-0.68,-0.69,-0.69,-0.70,-0.70,-0.71,-0.71,-0.71,-0.72,-0.72,-0.72,-0.72,-0.73,-0.73,-0.73,-0.73,-0.74,-0.74,-0.74,-0.74,-0.74,-0.74,-0.75,-0.75,-0.75,-0.75,-0.75,-0.75,-0.75,-0.76,-0.76,-0.76,-0.76,-0.76,-0.76,-0.76,-0.76,-0.76,-0.76,-0.77,-0.77,-0.77,-0.77,-0.77,-0.77,-0.77,-0.77,-0.77,-0.77,-0.77,-0.77,-0.77,-0.78,-0.78,-0.78,-0.78,-0.78,-0.78,-0.78,-0.78,-0.78,-0.78]
    vc=[-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.00,-0.01,-0.01,-0.02,-0.04,-0.08,-0.15,-0.30,-0.39,-0.43,-0.45,-0.48,-0.50,-0.52,-0.54,-0.56,-0.57,-0.59,-0.61,-0.62,-0.64,-0.65,-0.66,-0.66,-0.67,-0.68,-0.69,-0.69,-0.69,-0.70,-0.70,-0.71,-0.71,-0.71,-0.72,-0.72,-0.72,-0.72,-0.73,-0.73,-0.73,-0.73,-0.73,-0.74,-0.74,-0.74,-0.74,-0.74,-0.74,-0.74,-0.75,-0.75,-0.75,-0.75,-0.75,-0.75,-0.75,-0.75,-0.75,-0.76,-0.76,-0.76,-0.76,-0.76,-0.76,-0.76,-0.76,-0.76,-0.76,-0.76,-0.76,-0.76,-0.77,-0.77,-0.77,-0.77,-0.77,-0.77,-0.77,-0.77,-0.77,-0.77,-0.77,-0.77,-0.77,-0.77,-0.77]
    
    #!/usr/local/bin/python
    # -*- coding: gbk -*-
    #============================================================
    # TEST3.PY                     -- by Dr. ZhuoQing 2021-02-17
    #
    # Note:
    #============================================================
    
    from headm import *
    from tsmodule.tsvisa        import *
    from tsmodule.tsstm32       import *
    
    dm3068open()
    dp1308open(110)
    
    setv = linspace(0, 2, 100)
    
    ve = []
    vc = []
    
    for v in setv:
        dp1308n25v(v)
        time.sleep(1)
    
        meter = meterval()
        ve.append(meter[0])
        volt = dm3068vdc()
    
        printff(v, meter[0], volt)
        vc.append(volt)
    
        tspsave('meas', setv=setv, ve=ve, vc=vc)
    
    plt.plot(ve, vc)
    plt.xlabel("Ve(V)")
    plt.ylabel("Vc(V)")
    plt.grid(True)
    plt.tight_layout()
    plt.show()
    
    #------------------------------------------------------------
    #        END OF FILE : TEST3.PY
    #============================================================
    

     

    ※ 结论


    通过实验研究可以看到三极管,在基极直接接地的情况下,发射极的电压与集电极之间具有很强的耦合关系。这一点本质上来自于三极管内部的特殊结构,也由此产生了独特的电流放大功能。

    在实验中也揭露了:

    1. 在发射极与基极都接地的情况下,空载的集电极电压表现出了一个高电压电位。那么这个点位是否能够对外输出电能呢?
    2. 不同的三极管上述控制关系也有所变化?那么这与三级的管特性(电流放大倍数、耐压等)有什么关系呢?
    展开全文
  • 那是一个上拉电阻,确保COM1没有输出时(比如高阻)8550会可靠截止。COM1输出为低时8550导通


    那是一个上拉电阻,确保COM1没有输出时(比如高阻)8550会可靠截止。COM1输出为低时8550导通

    展开全文
  • 发射极晶体管和多集电极晶体管

    千次阅读 2018-06-12 14:35:38
    发射极晶体管主要是用在TTL数字集成电路中,多集电极晶体管主要是用在I2L数字集成电路中。(1)多发射极晶体管:多发射极晶体管就是把多个发射结做在同一个发射区中的晶体管,实际上也就是多个晶体管并联在...
  • 本文主要介绍的是三极管三组状态下各级电流之间的关系
  • PNP型三极管的正常工作状态,是要发射极e,接正电压,但后面的基极b,和集电极c,接地的说法是不正确的。画一PNP三极管基本工作原理图供参考:   向左转|向右转  1、图中已显示了PNP管的工作条件; ...
  • 三极管的基极电流究竟做了什么?

    千次阅读 2014-10-02 20:06:56
    都是泛泛地说了射极电流中的电子会有一部分扩散到基极,并维持一个比例,也就是β。  这些书在解释场效应管的时候,都清晰地解释了门级电压对于载流子的影响,而载流子就决定了电流的通过能力。但对于晶体管就...
  • 半导体三极管极间的反向电流指的是集电极基极间反向电流ICBO和集电极发射极间反向电流ICEO。ICEO使用得较多,它是指三极管基极开路时,集电极C和发射极E之间的反向电流,又称为穿透电流或反向击穿电流。小功率锗...
  • 根据LC选频回路与三极管不同电极的连接点分为发射极调谐型、集电极调谐型和基极调谐型,在这三种电路中,互感的同名端必须满足振荡的起振条件。该电路的特点是:电路对三极管 值要求并不太高,主要变压器同名端接线...
  •   <div class="person-messagebox"> <div class="left-message"><a ...
  • 一个控制口给三个PNP的管子的基极供电,失效的时候是一个管子不能进入饱和区,由于每个管子的VBE和HFE的初始值不相同,且随着温度变化相差更大,由此引发的问题是三个管子不能正确的偏置,VBE比较低的管子的偏置电阻...
  • 三极管除了你知道的放大...集电结,即这时载流子(NPN是电子)从集电区发射,由发射区来收集载流子,这时集电区掺杂浓度不高故发射的电子少,同时发射区面积小故最终收集的电子也少,形成的电流很小。没有放大能力,...
  • 基本共发射极放大电路实验电路multisim源文件,multisim10及以上版本可以正常打开仿真,是教材上的电路,可以直接仿真,方便大家学习。
  • 有源滤波分为: 低通滤波(积分电路); 高通滤波(微分电路);...电路是共射极放大电路,R81基极偏置电阻,发射极旁路电容C52,滤波和退耦电容C98,输入耦合电容C8.,R104集电极负载电阻,C75高频退耦
  • 本文主要介绍了有关三极管基极下拉电阻接地的作用是什么。
  • 在共基极电路中,在一定的集电极基极电压UCB下,集电极电流的变化量△IC与发射极电流变化量△IE的比值称为电流放大系数α,即  α值一般接近1。α与hFE(β)的关系为:  
  • NPN和PNP 的电流方向 、大小关系 、电压偏置

    万次阅读 多人点赞 2021-01-22 11:51:04
    电流流向: NPN PNP 它最主要的功能是电流 ...发射极电流IE流出管子。且IC+IB=IE。 Icb+Ibe=Ice 即βIbe+Ibe=Ice PNP管,集电极电流IC和基极电流IB流出管子。发射极电流IE流入管子。同样IC+IB=IE。 无论管子...
  • 三极管作为电流源时的公式计算

    千次阅读 2020-09-14 09:47:06
    当三极管工作在放大区时,其集电极电流几乎取决于基极电流而与管压降无关,当基极电流是个恒定不变的直流电流时,集电极电流就是一个恒定的电流源。 如图所示,Q1为Q2提供的电流源,各个节点的工作电流和电压计算...
  • 由于集电极电流IC=β.IB,三极管的β值大时,IC也大,三极管集电极发射极之间的电阻会更小,万用表表针的偏转角就大,根据这一点便可估测出电流放大系数β的大小。万用表表针偏转角度的大小相对地代表着β值的...
  • PNP型半导体三极管和NPN型半导体三极管的基本工作原理完全一样,下面以NPN型半导体三极管为例来说明其内部的电流传输过程,进而介绍它的工作原理。半导体三极管常用的连接电路如图15-3(a)所示。半导体三极管内部的...
  • 只要集电极发射极的施加电压达到一定程度,集电极发射极电流就是基极发射极电流一定的的倍数,但这个倍数不是固定不变的,会有一定的波动,所以集电极电流基极电流并不是一次函数关系。所以如果这样直接...
  • 三极管除了你知道的放大,饱和和...集电结,即这时载流子(NPN是电子)从集电区发射,由发射区来收集载流子,这时集电区掺杂浓度不高故发射的电子少,同时发射区面积小故最终收集的电子也少,形成的电流很小。没有放大
  • 大家在一开始学习的时候有没有和博主一样的疑问:三极管中基极发射极连的电阻有啥作用? 在下面的博文中,我将和大家一一解答(如果有哪里不妥欢迎大家在评论区指正) 1. 集电极电阻的作用 我们先设 V C C = ...
  • 三极管基极调幅.ms13

    2019-05-09 15:08:57
    使三极管工作在欠压状态下,集电极电流的基波分量随着基极电压成正比变化。因此,集电极的回路输出高频电压振幅将随着调制信号的波形而变化,于是得到调幅波输出。共基电路的频率特性最好,因而它在高频电路中使用...
  • 模电复习笔记

    千次阅读 多人点赞 2018-11-21 19:36:23
    规律:确定三个极,基极发射极用rbe电阻代替,集电极发射极用可控电流源代替,电流大小为βib,电流要满足KCL,cb之间没有电气连接,出现一个缺口s。   共集放大电路 特点:射极跟随器,电压跟随,输入...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 3,083
精华内容 1,233
关键字:

发射极集电极基极电流关系