精华内容
下载资源
问答
  • 目标:在开发陶瓷复合材料的过程中,我们不仅经常遇到高机械应力,而且还会遇到热负荷和... 结论:基于裂纹发展机理,考虑了临界应力条件下裂纹的发展速度,建立了工件总能量与质量的通用关系。 提供了失效应力能公式
  • 只不过,随着雷达技术的发展,现代雷达的作用已远超出探测和定位的范畴,雷达不仅可以对目标进行定位,还可以测量目标的速度、对目标进行成像甚至测量目标的大小和材料特性。 二、雷达的工作原理 小时候我们就知道...

    史上最浅显易懂的雷达基础知识


    一、什么是雷达

    d6c73eb6528751664effc09ce301ee88.png

    小时候看西游记,觉得里面的千里眼、顺风耳非常神奇,要是人类也能拥有这个能力就好了。其实当时不知道,人类在二战的时候就已经拥有了这种能力,只不过借助的不是神话,而是科技。人类发明的雷达远在百公里、千公里之外就能发现敌方并对其进行精确定位,它已是现代战争核心装备,被称为现代战争的 “眼睛”。

    本文将以非常浅显易懂的方式解释雷达的工作原理,了解雷达是如何发现并定位目标的。但是在了解雷达原理之前,首先我们得搞清楚什么是雷达。雷达一词其实是英文“Radar”的音译,源于Radio Detection and Ranging,原意是无线电探测和测距。即用无线电(电磁波)方法发现目标并测定其空间位置的装置就称之为“雷达”。只不过,随着雷达技术的发展,现代雷达的作用已远超出探测和定位的范畴,雷达不仅可以对目标进行定位,还可以测量目标的速度、对目标进行成像甚至测量目标的大小和材料特性。


    二、雷达的工作原理

    34b06aba163b3a1459fc243788e0b7ca.png

    小时候我们就知道“回声”现象,当你对着大山或高大的建筑大喊一声后,只要在合适的距离上(该距离最近你能把回声和原声分开,最远回声还没衰减到你的听力之下)你就能听到回声。假如你手上有一个精确的定时器,能分别将你发声的时间t1和听到回声的时间t2记录下来,那么你就可以根据声音在空气中的传播速度计算出大山或高大建筑与你的距离:

    R=vt/2

    其中v为声波在空气中的传播速度,t=t2-t1为回声和发声之间的时间延迟。之所以要除以2,是因为声波从你到反射体,再从反射体反射回来一共跑了两趟。

    人靠声音对目标进行定位,而雷达是通过电磁波对目标进行定位。其实电磁波和声波相似,都是自然界的一种波动现象,波的反射、折射、衍射、散射等现象,电磁波一个不落,全部具有。回声现象利用声波遇到障碍物产生反射对其定位,那么雷达就是利用电磁波遇到目标产生反射(或称为二次散射)来对其定位。通过与回声现象产生机理进行类比,雷达要发现目标至少需要3个装置,即发射机,用于产生和发射电磁波,相当于人的嘴巴用来产生声波;接收机,用于接收目标反射回来的电磁波,相当于人的耳朵来收听回波声音;另外一个就是精确的计时系统,用于记录电磁波从发射到接收之间的时间差。然后根据相同的计算公式来计算目标的距离

    R=ct/2

    其中c=30万公里/s,是电磁波在空中的传播速度,其实就是光速。

    其中发射和接收电磁波还要必须用到另一个非常重要的装置——雷达天线。雷达天线实际上是一个能量转换装置。能实现电信号和电磁波信号之间的转换,发射天线能将发射机产生的电信号转换为电磁波向空间辐射出去,接收天线能将从空间中接收到的电磁波信号转换为电信号送入接收机。天线除了作为能量转换器,还有另外一个作用,将电磁波以特定的角度定向发射出去,或者只接收特定角度的电磁波。通常发射天线和接收天线指向同一个方向(实际上大多数雷达发射和接收就是同一个天线,通过收发开关进行收发切换)。天线越大,其指向性越好,在某些大型雷达中,天线能将电磁波的绝大部分能量聚集于1度甚至更小的角度内,如果目标在此角度内,雷达能接收到目标的回波,否则不能。因此可以利用天线的指向来测量目标的角度。

    2c51907f0e43a31fb7fc16f9f966295f.png

    雷达除了能测量目标的距离和角度(方位、俯仰)之外,还可以测量目标的速度。雷达是利用运动目标产生的多普勒效应来测速的。初中物理告诉我们,当火车朝我们驶来的时候,其声音更加尖锐,当火车远离我们而去时,其声音更加低沉。这都是因为火车的运动会使声音的频率发生变化,其实这就是多普勒效应。当火车靠近我们时,声音的频率变高所以听起来更尖锐,而当火车远离我们时,声音的频率减小,所以声音变得低沉。这些因为火车运动增加或减小的频率就称为多普勒频率。同样,运动的目标会改变电磁波的频率,即产生多普勒频率。和声波一样,多普勒频率与目标运动速度的关系可表示为

    fd=2v/ l

    其中v就是目标运动的速度(速度具有正负号,靠近为正,远离为负,因此多普勒频率也具有正负),l为电磁波或声波的波长。因此可以根据多普勒频率与速度的关系,通过测量多普勒频率而测量目标的速度。简单点说,设雷达发射的电磁波频率为f0,而接收到的频率变为f1,那么多普勒频率fd=f1-f0,然后根据公式

    V=fd*l/2

    计算得到目标的速度。需要说明的是,通过多普勒频率测得的速度并非是目标的绝对速度,而是绝对速度在目标与雷达连线上的投影。如果目标的运动方向与连线一致,则速度刚好等于绝对速度,如果不一致,则所测速度要小于绝对速度。

    多普勒效应不但可以用来测量目标的运动速度,还可以用来区分动目标和静目标。我们常常听说的动目标显示雷达(MTI)和脉冲多普勒(PD)雷达就是利用运动目标和静止目标的多普勒频率的差别来区分动静目标的,在雷达中设计一个滤波器,这个滤波器只显示多普勒频率比较大的运动目标而抑制多普勒频率为零或很小的静止目标或慢速目标。这就是为什么雷达能在复杂的大地或海洋背景中检测高速运动目标(飞机、导弹、坦克等)的原因。

    因此,总的来说,雷达利用电磁波遇到目标会产生反射的现象来确定目标的位置,即利用发射信号和接收信号之间的时间延迟来确定目标距离,利用雷达天线的方向性来确定目标方向。然后利用运动目标的多普勒效应来测量目标的速度。

    小伙伴们,感觉雷达是不是很简单啊!!雷达虽然原理很简单,可是做起来就很复杂了哦!

    展开全文
  • 泰勒公式的展开细节解析

    万次阅读 多人点赞 2017-08-05 08:58:22
    进一步,以上这样发展会持续多久呢?好吧,求5阶导数吧,可以再推进一步。我们对曲线走势的掌握离开检测点随着越来越高阶导数的求解渐行渐远,6阶导数,7阶,8阶,9阶…我们对曲线走势的预测将越来越接近原先的函数...

    上周写完了《《三体》读后思考-泰勒展开/维度打击/黑暗森林》后收到一些邮件,进一步思考了关于泰勒展开的意义。也许我掌握的那些网络技术比如Linux Netfilter,NAT之类,太过底层太过小众,所以大家几乎都是没有感兴趣的,倒是这种科普性质的文章和那些吐槽类的文章,会引发一系列的互动,这对我来讲是好事,因为我喜欢跟人交流技术和思想。

    声明

    本来这篇文章应该添加在《三体》读后感后的“补遗”一节呢,后来觉得太长了,有点喧宾夺主的意思,就单独写了一篇文章。
      其实吧,这篇文章已经跟《三体》小说没有太大的关系了,这纯粹是一篇关于数学的文章,但是由于本文要涉及大量关于“趋势的趋势的趋势”,“走势的走势的走势的走势”,“导数的导数的导数的导数的导数…”,为了保持一致性,我将本文的题目写成了“《三体》读后感的读后感…”,可能后面还有,未完待续!

    第一部分.泰勒展开解释

    很多人对我解释的泰勒展开提出了自己的疑问,这些疑问大致都是对下面的问题表示不解:
    为什么可以从一个单独的点不断求导就可以画出整个函数的曲线?即“一点是如何蕴含整个世界”的。
    诚然,这个问题其实在数学上是及其容易证明的,在定量的角度,随便找出一本讲微积分或者数学分析的书都可以得到令人满意的回答,我在文章《《三体》读后思考-泰勒展开/维度打击/黑暗森林》中也给出了一个简易的推导。然而,在满足了逻辑上的自洽后,我们很多人对一件逻辑上合情合理的事情便有了探索其实际意义的欲望,比如我们会问,它的物理意义是什么,它的几何意义是什么,甚至更基本的,它的意义是什么?就这么问着问着,便似乎有了一点哲学探索的味道,在我看来,这便是最精彩的!
       很多人都看过双截棍表演,但现如今很少有人了解鞭术了,其实你可以把鞭子看成是N趋近于无穷大时的N截棍,玩起来更难。其实我也不是很懂,就是为了解释这个泰勒展开才稍微看了一点关于鞭术的东西,具体来讲,执鞭人手执鞭子在原地只是上下左右按照一定的规则甩鞭,一条很长的鞭子就会整体展现成各种漂亮的曲线,他是怎么做到的?
       当然,从物理上讲,这当然是若干列波从执鞭处向鞭子的另一端传播,传播的过程在不同的点产生了定向的效果,然而似乎不是一个很好的足以让人满意的解释,我们的问题是,那个执鞭人的手需要怎么个动作,才能让鞭子整体上看来是那种效果?
      这个问题我是回答不了,因为我不懂鞭术,身边也没有懂的人,但是这个问题似乎和本文一开始的那个问题讲的是同一回事,即从一个点来蕴含整体的行为。

      我的观点是:既然走势可以让人预测曲线上邻接的下一点的大致位置,那么走势的走势便可以相对精确地预测邻接下一点的具体位置,紧接着,走势的走势的走势便可以告诉人们这种趋势可以延续到什么时候,再继续…这似乎超出了人们的想象力…我们还是用简单的数学来表示吧。我们先从1阶导数,2阶导数,3阶导数的几何意义说起。
      先看1阶导数,我们知道,它是经过曲线上某点的切线的斜率:

    这里写图片描述

    我们来看这个1阶导数可以预测到多远处呢?如果我们仅仅知道该点的坐标以及有这么一个该点的1阶导数的值,我们几乎什么都预测不了,除了知道在该点处有沿着切线向上的趋势之外,这没能为我们画出这个曲线带来帮助,似乎下面的曲线都能满足,然而真正正确的只有一个:

    这里写图片描述

    换句话说,1阶导数只能将邻接的下面的点定位到两个范围中的一个:

    这里写图片描述

    so,我们需要进一步的信息,我们继续求2阶导数,看看能挖掘出什么新玩意儿。
      2阶导数是1阶导数的导数,换句话说,它代表了检测点切线的变化趋势,有了这个趋势,我们是不是可以相对精确地预测邻接的点的位置了呢?我们先看2阶导数的几何意义为何。学过数学的都知道,2阶导数表示了曲线的凸凹,对于凸函数,2阶导数是负数,它表示切线的斜率会越来越小,而对于凹函数,2阶导数是正数,它表示切线的斜率越来越大:

    这里写图片描述

    因此,有了2阶导数,我们对接下来的曲线走势定位就更加精确了,我们可以进一步缩小邻接的点的取值范围:

    这里写图片描述

    具体的坐标由2阶导数的具体值来约束。
      到了这一步,进一步将曲线往前延伸似乎是无望的,因为:

    1.首先,我们不知道代表检测点凸凹性的2阶导数的值在将来会不会逆转,即我们不知道曲线会不会由凸变凹或者由凹变凸;
    2.其次,即便假设函数的凸凹性不变,我们也不知道接下来曲线是越来越凸/凹呢?还是反过来呢?

    毕竟,我们只求得了检测点的1阶和2阶导数,注意,它们都只是一个数字,而不是一个带有自变量的新的函数,所以我们通过1阶导数和2阶导数,得到仅仅是2个值,仅此而已,如果我们能得到关于曲线任意一点的2阶导数的函数表达式,那么我们当然可以预测曲线2阶函数的走势,但在本文中,我不会那么做,我就假设,我们没有这个函数表达式,只有一个检测点的2阶导数的值!怎么办?
      我们继续看3阶导数。在此之前,我必须要澄清一个我的观点。
      我在知乎上查过相关资料,另外还特意请教过一些搞数学的老师或者朋友,得到的解答可能都是从哪个地方看到的一致性解答,说3阶,4阶,5阶…导数这些没有几何意义和物理意义,数学只追求逻辑上的完整,自包容,而不是去追求什么几何意义,物理意义。我并不赞成这个说法,以霍金为例,它的虚时间模型虽然只是数学上的技巧,但是最终的目标却是为他的有限无界的宇宙几何模型服务,这说明,完成逻辑完整性证明和寻找其意义同等重要,可能后者还会更重要,我没有看到哪一个伟大的物理学发现背后仅仅是纯粹的思辨性的数学,不管是牛顿的引力场,还是爱因斯坦的引力场,还是霍金的量子引力,在逻辑严谨性支撑的前脸,都有一个漂亮得体的几何模型作为表象。

      3阶导数不难求,继续对2阶导数表达式求导,然后代入检测点的x值即可,然而3阶导数的意义是什么?其实仔细想想,并不难理解,这正如2阶导数主导1阶导数的变化从而把1阶导数自认为正确的“以直代曲”的直线模拟拉成弯曲的或者凸或者凹的曲线一样,3阶导数同样主导2阶导数的变化,它可以表示“曲线是继续凸下去或者继续凹下去,还是会在某一个x值后逆转,由凸变凹或者由凹变凸”。用语言表示比较苍白难以理解,于是我画个图示:

    这里写图片描述

    好了,有了3阶导数,我们似乎进一步将曲线向前推进了,至少是预测出了一种趋势,然而这个趋势是必然的吗?考虑到一种情况,比如当前检测点的2阶导数值为1,表示曲线在检测点是凹的,而同时3阶导数的值为-1,这表示可能接下来邻接点的2阶导数会比1小一点,最终会变成0甚至负数,这意味着曲线会由凹变凸,即经历一个拐点,但这种预测一定会发生吗?
      不一定!But why?
      虽然当前检测点的3阶导数值为-1,但这并不意味着它会一直保持-1,如果它一直保持-1,那么我们的预测正确,但是如果曲线的3阶导数在该检测点是递增的呢?这意味着会发生下面的情况:
    在曲线从检测点 x0 开始,2阶导数变为0甚至负数之前,其3阶导数就已经从-1递增到0以上了,这说明虽然曲线的凹性越来越显得不那么凹,有变平变凸的趋势,但这种趋势的趋势越来越弱,还没等曲线变成凸的,这种作用便消失了,曲线将会继续保持凹型发展下去…
      上面的判断简直可以弥补3阶导数的误差,曲线进一步前进,很帅!那么如何判断3阶导数的走势呢?简单,求4阶导数!
    进一步,以上这样发展会持续多久呢?好吧,求5阶导数吧,可以再推进一步。我们对曲线走势的掌握离开检测点随着越来越高阶导数的求解渐行渐远,6阶导数,7阶,8阶,9阶…我们对曲线走势的预测将越来越接近原先的函数。

      我来画一个实际的例子结束讨论:

    这里写图片描述


    这是不是有点像鞭术大师执鞭表演,力道和甩鞭模式从大师的手掌开始沿着鞭体传播,模式的频率越低,影响的越远。除了鞭术,还有双截棍,如果玩双截棍的时候打到了自己,那么一定是哪个导数没有求好,比如4阶导数搞错了…
      在了解了曲线的走势后,剩下的就是用二项式去拟合了。其实,这种二项式叠加的拟合方式并没有什么特殊的含义,只是因为它是可以做到的而已,你同样可以用傅立叶变换的方式将一个函数在频域上展开,因为那也是一种可能的方式。其实任何两个或者多个带有实际效应的表达式叠加在一起,整体而言都会表现出各个叠加体局部的性质,这里重要的是一个纯数学上的技巧,即如何确定二项式的系数,可以肯定的是系数跟各阶导数是相关的,剩下的问题就是待定系数法求解了,这并不是需要赘述的内容。
      综上,在这个待定系数的角度,二项式拟合任何曲线实属凑出来的,因为凑出来的二项式叠加表达式的各阶导数值恰好等于原函数的各阶导数值。
      然而这并不能让不断寻找意义的人满意,如果非要在纯数学之外去寻找这样做的意义,那么我们可以从中值定理入手去理解。说好了不谈这些诸如中值定理的,但事实上,想彻底理解一个数学概念,这些概念是避不开的,问题是,我们如何更简单地(而不是更复杂地)去理解它们。
      以拉格朗日中值定理为例,它的中值定理是这样的:

    f(x)x0,x,[x0,x],ξ[x0,x]使:f(x)=f(x0)+f(ε)(xx0)

    按照这个思路展开,既然在直观的1阶导数情形下,拉格朗日中值定理拥有的几何意义,那么在2阶导数均拟合的情况下,是不是可以有下面的描述呢:

    f(x)x0,x,[x0,x],ξ[x0,x]使:f(x)=f(x0)+f(x0)(xx0)+f(x0)2!(xx0)2+f(ε)3!(xx0)3

    这个式子可以推广到 N 阶,这是一种很常见的思路,把一个式子一般化后推广,然后小心求证其合理性,待到证明完成,便可以进一步地解释现象,这种思路承接了近代绝大部分的科学技术进步!
      我来给出上式子的一个几何解释,虽然我们想象不到2阶导数依照其几何意义如何画出来,但是我们可以把原始的函数本身升一个维度,然后用积分的思想去理解2阶导数的几何意义。
      理解我在说什么了吗?我的意思简单点说,就是积分式的1阶导数(其实是导函数)就是被积函数,被积函数的1阶导数就是积分式的2阶导数,而我们知道积分式是有几何意义的,它表示面积,而被积函数则表示曲线,再进一步积分式的2阶导数则表示曲线上某点切线的斜率…这样,相当于我们将2阶导数看成了切线斜率,将1阶导数看成了曲线本身,而原始函数看成了曲线与x轴围成的面积:

    Farea=f(x)=x0g(x)dx
    f=g(x)
    f=g=线

    这样我们就可以用拼接图形求总面积的方式来在更高的维度表达类似拉格朗日中值定理的式子了。我们看一个图示:

    这里写图片描述

    我们依照上面的图示,试着求一下 OxDA 的总面积,首先我们将其表示成各个小块的和的形式:

    SOxDA=SOx0P0A+Sx0xCP0+SP0CB+SP0BD

    然后我们依照图示中的几何关系来分别求各个小块的面积,幸运的是,以直代曲的思想在此体现的淋漓尽致,我们要求的只是简单的三角形,矩形的面积,而我们知道这些完全用加减乘除四则混合运算就足够了,是不是很符合二项式叠加的思想呢?殊途同归!首先看 SOx0P0A ,由定义,我们知道它就是 f(x0) ,接下来看 Sx0xCP0 ,它是个矩形,变长分别为 xx0 LP0x0 ,而 LP0x0 按照定义,它就是 g(x0) ,而 g(x0) 又是什么呢?很显然根据上面的微积分关系,他就是 f(x0) ,到此为止我们可以把面积求和算式写成如下的样子了:

    SOxDA=f(x)=f(x0)+f(x0)(xx0)+SP0CB+SP0BD

    还剩下两项,现在来看 SP0CB ,它是个三角形,我们知道它的底边长就是 xx0 ,而高则是 LCB ,同时我们知道切线的斜率就是 f(x0) ,那么 LCB 显然就是 f(x0)(xx0) 咯!我们把它代入到上面的式子:

    SOxDA=f(x)=f(x0)+f(x0)(xx0)+12f(x0)(xx0)+SP0BD

    最后还剩一下一项了,即 SP0BD ,它太小了,并且貌似不是很容易计算,因为它不是三角形,也不是任何用直线围成的,它的上沿是一条曲线…这可怎么办?我们注意到,当 x x0趋于接近的时候,这块小面积就趋近于 0 了,这便是可以忽略不计了,这就是极限的思想,当然这不是本文的主题咯。我在画上面的示意图的时候,特意将x x0 拉开了一定的距离,这是为了直观,在真正的微积分运算中,这段距离就是无穷小,那么图形 SP0BD 的面积也就是无穷小了,暂且记为 O(SP0BD) ,最终的式子为:

    SOxDA=f(x)=f(x0)+f(x0)(xx0)+12f(x0)(xx0)+O(SP0BD)

    这样,当切分的区间越来越细致时, O(SP0BD) 越来越趋向于 0 (这个很容易用积分中值定理从直观上看出来,事实上,O(SP0BD)的值就等于 f(ε)3!(xx0)3 ).
      好了,这就是一个在2阶情况下,中值定理大致的几何印象。循着这个思路推广下去,泰勒公式就在眼前了。
      虽然我们想象不出来 N 阶中值定理的几何意义,但是正像物理学中经常提及超维一样,我们也可以把二维的笛卡尔坐标系拓展成“无限维度空间中的超立方体”。这样的假设下,似乎还不是特别令人满意,但也就只能这样了。
      事实上,我这里可以给出一点提示,利用积分中值定理可以证明泰勒公式在意义层面的合理性,利用分部积分从我上面给出的2阶导数直观几何意义开始,可以逐渐导出完整的泰勒公式!我不会在本文正文中去表达这些内容,因为怕公式太多。当你看线条找不出线条,夹角之间的关系时,试试面积,升个维度试试。
      最后,记住一个结论,N阶导数的几何意义物理意义要比如何用泰勒多项式表达任意表达式更加重要,后者只是说明它“恰好能做到”而已,除了泰勒多项式,傅立叶展开也可以达到同样的效果,另外,还可能有别的。
      在观察二项式拟合任意函数的时候,我们知道“它恰恰可以做到”,现在的问题是如何感性的认识到这一点,即“它为什么就可以做到?”,我们以下面的两个多项式为例,来点感性认识:

    f(x)=x2
    f(x)=x3

    我们把它们画在一个图里:

    这里写图片描述

    可以看得出,2次多项式的曲线表明它是关于 y 轴对称,而3次多项式的曲线表明它是关于O对称的。这个时候,我们试试两个二项式加和的图像时什么,为了保持对比,我把原始的两个二项式留在了图里:

    这里写图片描述

    感觉2次的多项式完全被3次多项式碾压覆盖,表现不出任何它自己的特征,我们可以清晰地看到,在 x 取值小于0的时候,根本表现不出2次曲线的行为,这似乎不是一个好消息,因为直观地看,次数越高的多项式在整体的求和表达式中越占据主导地位,那些次数较低的多项式都只是配角,负责曲线水平或者垂直的移动而已…这似乎打破了“任意次多项式求和表达式”可以拟合任何曲线的神话。
      然而,我们没有考虑缩放。
      直观地看,虽然3次曲线在x变化时,其 y 值的变化剧烈程度要大于2次曲线(从其1阶导数上便能看得出,2次曲线是2x,3次曲线是 3x2 ),如果我们能适当地,恰到好处的把二者的差异通过缩放平滑掉,那么结果如何呢?考虑到我们只能用四则混合运算,非常简单,给3次多项式除以一个大于1的系数,减小它的 y 效应,或者给2次多项式乘以一个大于1的系数,从而增加它的y效应,我们来看看结果如何。先看缩小3次曲线效应的结果:

    这里写图片描述

    再看增加2次曲线效应的结果:

    这里写图片描述

    这基本上达到了我们的预期。
      到这里,我们知道,二项式的加和表达式是“可以”拟合任何曲线的,而泰勒展开式的那些系数则是一组“恰到好处”的系数,它保证了原表达式和展开表达式的各阶导数都是相等的!

      我想,我终于把该表述的都说完了,有人提到说让我用动画去表示曲线的拟合,这个确实要比用图形和文字更加震撼,然而It is beyond my ability,我并不会这些东西,我所用的gnuplot都要折腾好久,我并没有什么更好的简单的工具来帮我做更加直观的东西,所以就只能通过画草图和文字加以赘述,实为能力所限,实在抱歉。
      我们考虑一个形象的表述来结束关于这个话题的讨论,那就是牛顿定律的 公式:

    v=at
    s=f(t)=v0t+12at2

    我们知道, 的1阶导数就是速度,2阶导数就是加速度,在恒力 F0 作用下,2阶导数是一个不随时间变化的定值,那么问题是,时间 t 后的位移由谁决定,仔细想想就会明白,如果我们忽略恒力导致的加速度a,即忽略 的2阶导数,那么时间t后的位移为:

    st=vt0t

    很显然,在恒力的作用下,这与真实的位移结果差很多,距离当前时间越远,结果误差就越大,很显然,在离当前时间 t0 的适当远 t 处,位移/时间的2阶导数便派上了用场,在恒力作用下,它可以精确计算相对于当前时间的位移。
      以上的讨论仅仅是在恒力作用下牛顿第二定律导出的结论,然而如果施加的力不是恒定的,而是一个关于时间t变化的变力 F=f(t) ,那么此时仅仅2阶导数便不足以刻画时间 t 后精确的位移了,此时要想预测时间t后的位移,随着 t 距离当前时间的远去,的3阶导数,4阶导数…便派上了用场,注意,变化率的变化率使得我们能在越来越远的地方预测趋势,这个正是和上文中关于泰勒展开的讨论是一致的。

    值得一提的是,牛顿在当初导出微积分重要结论的时候,就是为了研究物理运动的,特别是天体的运动,因此关于位移/时间在微积分上的结论应该是从《自然哲学的数学原理》中可以看到的第一手结论。

    第二部分.另外一种刻画的方式

    一般而言,我们在画一个函数的图像时,基本就两点:

    1.首先求解各阶导数,判断其增减性,凸凹性,极值,拐点等,并且描出这些点;
    2.其次,拟合若干个可以判断的具体点。

    这样,大致的曲线就画出来了,可以看到,这种画法跟素描的方式非常像,简直就是素描!先画轮廓,然后进一步细化。然而我觉得这不是云天明故事中针眼画师的画法,这也不是我的画法。
      不管怎样,虽然两种不同的画法在操作细节上是截然不一致的,但是结果是,两种方案的结论是完全一致的,函数被刻画了,性质坦然地舒展了,还有什么性质没有暴露呢?嗯,也许在无穷远处的无穷小的误差可能会引发逻辑上的争论。但此事并不经常,也不绝对。
      在正文中我是通过一个单独的点来蕴含整体模式的,然而在数学上,多数的建议却是,采用了素描的方式从粗到细地去刻画。两类的效果是一致的。

    第三部分.关于导数和频率

    我们知道,1阶导数就是函数在 x 变化时,对应到y变化的效应,而2阶导数则是 x 变化时,对应到函数1阶导数的变化效应,以此类推。最后我们发现,整个N阶导数对应是一系列不同频率的变化效应,而整个原始的函数曲线正是这些不同频率的效应的叠加,用这个思路去解释傅立叶展开是非常合理的,然而我们发现它竟然也可以对应地去解释泰勒展开!
      随着求导阶数的增加,效应频率也在不断降低,最终这些不同频率的效应将反馈到函数曲线上的任意一点,而这就完整勾勒出了整条曲线。如果能掌握了这个道理,那么那些执鞭者便可以从单点甩出任意曲线了,我们都知道,频率越高,传播距离越短,频率越低,传播距离越长,当然执鞭者也知道这个道理。这一切在数学上的反映,那就是:
    求导越深,频率越低,影响越远,曲线越拟合。
    爆炸!旋转升降座椅一定会爆炸!赶紧换椅子。

    很多人在看了这些文章后,都给了一些建议,比如说加入一些动画,我起初是不擅长这些的,然而主音吉他手告诉我说gnuplot里做gif超级简单,于是我在周一下班后仔细研究了一下,确实很简单,虽然还没有完全掌握关键的语法,但是比葫芦画瓢还是可以的。
      以下是一个 y=sin(x) 的泰勒展开的gif动画,红色代表原始的 y=sin(x) ,绿色曲线的每一帧表示多了一阶的导数,也就是展开式中多了一项,可以看得出,随着求导的深入,绿色曲线将越来越拟合原始的正弦曲线,能拟合到什么程度呢?答案是“你想到什么程度,就能到什么程度”
    这里写图片描述

    附录

    A. 分部积分法推导泰勒公式

    我们从正文中提到的的中值定理的变形体入手:

    f(x)=f(x0)+f(x0)(xx0)+

    为了简单起见,我忽略掉了余项 O(SP0BD) ,注意,只是在写法上忽略了余项,事实上它是会一直存在的,这个余项会随着推导的进行,一直往后逼,越来越小。
      我们首先希望推倒多米诺骨牌的第一块试试看,升个维度,把导数写成积分的形式,我们有:

    f(x)=f(x0)+xx0f(xr)dr

    请注意, r 是计算积分使用的变量,它和计算整个叠加和所用的x是不同的。以上就是整个多米诺骨牌布景了,现在该推倒第一块了!使用分部积分法则:

    udv=uvvdu

    u=f(xr)
    v=r

    xx0f(xr)dr=(f(xr)r)xx0xx0rdf(xr)

    xx0f(xr)dr=f(x0)(xx0)+xx0f(xr)2dr2

    f(x)=f(x0)+f(x0)(xx0)+xx0f(xr)2dr2

    好了,多米诺骨牌的第一块已然推倒了…接下来就观测吧!给出点提示:注意上面式子的第三部分:

    f(xr)2dr2

    如果我们再次设 u=f(xr) v=r2 呢,继续享受上面的分部积分过程吧
      大致意思就是这样,过程就不详细写了。

    B.泰勒公式失效的场景(这个附录会很长)

    是滋补鸡汤还是慢性毒药,刚刚喝完的时候是无法获知的,然而,当你喝下去这碗汤后3天,如果它是鸡汤,你无法在这么短的时间内体会到它带给你的益处,如果它是毒药,你将死去…
      是时候把物理意义扯出来了。
      在正文中,我强调的那些可以“从一点窥见整个世界”的曲线其实有有条件的,那就是它的定义域必须是全体实数,且处处可导,若不是这样的话,情况就会复杂得多,这些复杂的情况在本附录讨论。在详细讨论前,有个声明。
      由于本文并不是在同一时间写的,中间间隔了一个工作周,在这一周中我学会并喜欢上了Geogebra,所以我放弃了gnuplot,以下的图示全部来自于Geobebra。让我们开始吧!
      首先看一个简单的反比例函数 y=1x ,我们看下它的图像:

    这里写图片描述

    且问曲线如何从A点“按照趋势”延伸到B点?A点和B点之间有一堵墙,该墙不可逾越!因为分母不能是 0 ,所以y轴理所当然就是这堵不可逾越的墙了,换句话说, y 轴左右两边是隔离的两个世界,在数学上,这个x=0的点就叫做奇点
      奇点的意义在于,在该点,曲线是没有定义的,在这种点处,求导什么的都是毫无意义的,这些点真的就是“奇异”的点,任何计算,任何公式,定律都毫无意义(下文中将会赋予奇点以意义!)。
      知道了奇点的概念后,再说一个例子。
      有一天我微信上问温州皮鞋厂老板有没有什么好玩的东西,老板说算 5 比较好玩,然后我便犯了一个低级的错误。我信口开河“把 y=x12 泰勒展开,把 5 代入不就可以了吗”,为了在计算中不引入根号,瞬间想到了在x=1处展开…计算是简便了,然而结果对吗?
      我们先来看一段动画,即在 x=1 处展开 y=x12 的最多 n=50 阶逼近的过程(Geogebra做这个非常帅!简单直接易上手!):

    这里写图片描述

    n=1 n=50 ,把 x=5 代入均得不到正确的结果。可见,结论并不是我们之前预期的那样,在“ x=1 这一个点窥见整条曲线”,显然“能窥见”的曲线范围仅仅局限在大致 (0,2) 这个区间里。到底发生了什么?在进一步阐释物理意义之前,我还有点建议,如果你没有接触过复分析,收敛圆,收敛半径,审敛法这些,那么正好,如果你接触过这些但只是懂概念,能推导,那么建议暂时忘掉,如果你精通这些,那么不建议继续阅读下去。
    ………….
    霍金的宇宙模型中,奇点是所有经典物理定律完全失效的地方,它既是,它同时又是所有!霍金认为,量子理论可以解释奇点里发生的事,毕竟物理学不是哲学,人们显然不能接受纯粹的无或者无穷。奇点蕴含了整个宇宙本身,在创世之初的那一瞬间,奇点就是整个宇宙,它是时间,它是空间,它是上帝本体!
      宇宙的膨胀意味着时间的膨胀和空间的膨胀,既然是膨胀,肯定需要多余的物质和能量,当我们吹气球的时候,气球之所以会膨胀,那是因为有气体不断地注入气球内部,同时气球球壁还有足够的厚度可以展开,总之,整个过程是需要物质(球壁)和能量(吹气)的!宇宙外面是什么并不是我们讨论的范围,霍金认为宇宙就是宇宙,是一个自洽的整体,那么显然没有在宇宙外面吹气的那个人,宇宙也不会有球壁…促使宇宙膨胀的物质和能量来自哪里?
      来自奇点!
      来自奇点!
      来自奇点!
      奇点早就蕴含了一切!
      用霍金宇宙的奇点思想理解数学上的奇点概念,是朴素的。一条连续且光滑的曲线,它由它的奇点蕴含并生成,以 y=1x 为例,它由两条连续且光滑的曲线构成, x=0 是该函数的一个奇点,也是唯一的奇点,那么 x=0 处便蕴含并可生成整个两条曲线了。
      你可以把奇点想象成一个无线维度浓缩在一起的一个点,就像面团一样,可以展开到任何维度,可以擀成饺子皮,可以拉成拉面,可以团成馒头…现在我们用奇点的概念来描述一下函数 y=x12 的曲线的生成过程:

    这里写图片描述

    如果不加干预,整个曲线会一直展开下去,直到遇到定义域的边界,那么在泰勒公式的干预下,事情有所不同,当我们说将原函数在 x=a 处泰勒展开的时候,实际上我们是接管了整个展开过程, x>a 的后面的曲线将不再从奇点拉出,而是由泰勒公式预测出来并展开,此时奇点的物质和能量将停止向外释放,原始函数的曲线生成将停止,此后,泰勒展开的过程将用另外一条曲线去替代原始函数的曲线。需要注意的是,当我们将函数 f(x) x=a 处泰勒展开的时候,并非只针对 x>a 的点有效,而是所有定义域的点都有效,毕竟泰勒展开式和原始函数是完全不同的两个函数!
      由上面的过程性描述可知,如果将 f(x) x=a 处泰勒展开了,那么泰勒公式仅仅能看到的是曲线从其奇点开始到 x=a 结束这个区间的部分,其余的部分它是看不到的。这意味着什么?
      这意味着,泰勒公式仅仅可以利用曲线来自奇点的从奇点到这个展开点之间的小区间的“物质”和“能量”,这些能量有多少决定了泰勒公式能量曲线往后(离开奇点的方向上)延展多远,如果说从奇点到泰勒展开点,能量已经释放了 E ,那么泰勒公式就只能利用大小等于E的能量去展开原函数:

    这里写图片描述

    事实上也确实这样,抛开这些烧脑的东西,在我们日常生活中也经常会碰到类似的情况。
      当一个人讲话的时候,一些喜欢接话头的人就会插嘴说,我知道你想说什么,我来说吧。然而这种出风头的策略并非总是奏效。如果原来讲话的人刚开始说话,那么插话的人往往也预测不了太多的内容,然而如果最开始讲话的人说了很久,那么一些暗中观察的插话者往往能预测很多的内容并接着说下去。回到我们的泰勒展开,也就是说,展开点离开奇点越远,那么泰勒公式拟合的就越远,这背后的思想就是能量守恒,奇点已经将能量积累到了展开点,那么泰勒公式也就仅仅能用这么多能量(事实上所谓的能量就是各阶导数信息)来展开,这么多能量能跑多远呢?积累过程跑了多远,那就还能跑那么远!想想单摆运动吧,就这个道理。
      那么 y=sin(x) y=ex 这些函数的奇点在哪里?这些函数的奇点在无穷远处。这意味着,在任意一个展开点,函数曲线本身都已经积累的无穷的能量(即信息),这说明泰勒公式可以将其完全展开到无穷。
      离奇点越近,各种趋势越不易表现出来,奇点附近刚开始积累趋势,趋势尚未表现,这就是能量和运动的观点,我就是这样避开了那些收敛圆,收敛半径这些概念的。

    C.到底什么是数学

    如果你觉得数学纯思辨性的类似哲学的东西,那么你可以忽略我下面的所述,如果不是,请看完它,哪怕是心里压着邪火,保持着愤怒。
      只有在古希腊数学才是纯思辨哲学的分支,从罗马帝国的地中海世界开始,一直到今天,数学都只是工具,解题工具。当然这里说的解题并非我们考试中的解题,而是实实在在的处理数据时必须要解决的难题。
      不要把炼丹术和占星术看作是迷信这种不可救药的东西,它们和数学的关系源远流长。首先指出,现代数学和古希腊数学完全不是一个概念,甚至几乎没有什么关联,所以在理解现代数学本质的概念的时候,千万不要去想什么毕达哥拉斯学派什么的。炼丹术和占星术是现代化学和天文学的先祖,当它们无法用咒语欺骗国王的时候,它们就必须拿出证据来保住自己的饭碗,这无形中将它们推向了现代科学的“深渊”。千万不要将哥白尼,伽利略,牛顿…他们看成是拥有现代科学品质的明事理的人,在他们的年代,他们无一例外都披着神学的外衣,只是他们在处理一些棘手问题的时候,偶然间发现了一些所谓的真相,要让这些真相在逻辑上变得合理,他们必须处理大量的数据从而期望导出一些隐藏在这些数据背后的关系。在处理数据的时候,他们无一例外地被数据和关系的复杂性困扰,于是乎他们搞出一些处理技巧,这些技巧就是现代数学的前身,因此可以说炼丹术和占星术引导了现代物理,现代物理激发了现代数学,这其中一脉相承的就是神学和哲学的不断渗透和对抗。
      明白了这些之后,你会发现现在中学大学里的数学课程的教法是多么没有意义。这些课程看似很深邃,然而都是毫无意义的。我记得我上大学的时候(当时还是本科,后来才“进修到大专”),老师给我们讲梯度散度旋度,最后的输出就是背诵了一大堆的定理和公式,我问老师这些有什么用,老师说这些期末考试是必考点,以后考研也会考…后来我退学后跑到了女朋友(小小的妈妈)学校外面的村子里租了个房子,刚过去时,正逢她们班要期末考试了,也要考高等数学,什么洛必达法则,牛顿/莱布尼兹公式…爆炸,她们是日语教育专业啊!考这玩意儿毛用啊!
      然而抱怨是苍白的,我依然要拖着疲惫的身躯去给她们讲高等数学,对了,还包括她的同班男生,反正就是我女朋友全班…讲着讲着我就上瘾了(其实也没讲多久),当有人问我学这些有什么用的时候,我总是微笑着回答,这些都是必考点,以后你们考研也会考,说这话时我特别自豪,微笑里带着些许嘲讽和洒脱,因为我TMD再也不用考试和考研了!我不知道当时这样回答我的老师是不是也是这么想的。
    ….
    在以后的学习生涯中,我彻底摒弃了学校里的那一套,因为我再也不用考试了,而且也不会再参加任何形式的考试。所以我变得天马行空,我从马鞍面导出了Linux Netfilter的设计模型,最终确认作者也是这么想的,然后我想仅仅是精通iptables的配置或者看完conntrack的代码是多么Low啊,于是便更进一步探索了Cisco和Netfilter在设计上的差异,最终实现了基于Netfilter的Cisco模型…在我学习最小二乘法的时候,我试图理解平方的深意,后来我看了牛顿的《原理》之后,发现了平方律和立方律简直就是构成我们世界的基本元素啊!
      王姐姐说牛顿是外星人,我表示赞同。然而牛顿是怎么思考的?!
      1905年,爱因斯坦的奇迹年,主角是一位不修边幅,收入不高的专利局小职员,有点像《三体》小说作者刘慈欣,在火电站工作,不好好上班天天上班时间写小说…然而就是这个爱因斯坦道出了现代数学的本质,它只是工具!爱因斯坦从来没有系统学习过现代数学,他只是在用到的时候去请教身边的数学专家,他真的就是把数学当扳手使的。我不晓得其它的人怎么想,我只知道,狄拉克的算符,费曼的积分,霍金的虚时间轴,这些都是数学上的技巧,你要是问有什么物理意义,我觉得他们本人都说不出,只是这么处理很方便,仅此而已吧。
      那么,既然现代数学只是个工具,岂不是很Low?!No!每一个数学上的突破,均代表了一系列的总结,最终会引领新的突破,这方面,数学已经替代了哲学。在我工作的计算机领域,任何一个想法,如果你不能用数学表示出来,那便是不可处理的,请问不可处理的东西能完成KPI吗?于是便有了数学建模。然而模型的建立谈何容易。
    【外出买菜,未完待续】
    (TODO)

    展开全文
  • 个人收集整理-ZQ计算机常用计算公式汇总常用计算公式汇总单位的换算字节() 字节通信单位中千 , 百万计算机单位中 ,倍数刚好是的幂:^ 为次方; 为除 ; *为乘 ; ()为单位计算总线数据传输速率总线数据传输速率时钟频率...

    个人收集整理-ZQ

    计算机常用计算公式汇总

    常用计算公式汇总

    单位的换算

    字节() 字节

    通信单位中千 , 百万

    计算机单位中 ,

    倍数刚好是的幂

    :

    ^ 为次方; 为除 ; *为乘 ; ()为单位

    计算总线数据传输速率

    总线数据传输速率

    时钟频率()每个总线包含的时钟周期数*每个总线周期传送的字节数()b5E2R。b5E2R。

    计算系统速度

    每秒指令数时钟频率每个总线包含时钟周期数指令平均占用总线周期数

    平均总线周期数所有指令类别相 (平均总线周期数*使用频度)

    控制程序所包含的总线周期数(指令数*总线周期数指令)

    指令数指令条数*使用频度总指令使用频度

    每秒总线周期数主频时钟周期

    带宽频率*位宽

    计算机执行程序所需时间

    **

    执行程序所需时间编译后产生的机器指令数*指令所需平均周期数*每个机器周

    期时间p1Ean。p1Ean。

    指令码长

    定长编码: 码长>

    变长编码:将每个码长*频度,再累加其和

    平均码长每个码长*频度DXDiT。DXDiT。

    流水线计算

    流水线周期值等于最慢的那个指令周期流水线执行时间首条指令的执行时

    间(指令总数-)*流水线周期值

    流水线吞吐率任务数完成时间流水线加速比不采用流水线的执行时间采用

    流水线的执行时间RTCrp。RTCrp。

    存储器计算

    存储器带宽:每秒能访问的位数单位秒存储器带宽秒存储器周期()*每周期可

    访问的字节数

    ( 随机存取)传输率存储器周期 (非随机存取)读写位所需的平均时间平均存取

    时间位数据传输率

     内存片数:()* ()、表示要组成的存储器的字数和位数;

    、表示内存芯片的字数和位数

    1 / 6

    个人收集整理-ZQ

    存储器地址编码(第二地址 –第一地址)

    {例: [()] [(*)*]}

    内存位数:(要编址的字或字节数)5PCzV。5PCzV。

    计算

    平均访存时间:命中率 * 访问周期时间 失效率 *主存访问周期时间

    [例: (**)*(**) ]

    映射时,主存和会分成容量相同的组

    组相联映射主存地址计算

    主存地址(主存容量块数*字块大小) (主存块和块容量一致)

    [例: * (*)

    主存区号(主存容量块数容量块数)

    访存命中率存取次数(存取次数主存存取次数)jLBHr。jLBHr。

    磁带相关性能公式

    数据传输速率()磁带记录密度()*带速()数据块长充(记录数据所需长度)(块间

    间隔)

    (字节数记录)*块因子记录密度读条记录所需时间(启停时间)

    (有效时间)(*字节数记录)传输速度 ( 间隔时间)块间隔总长带速[(块化因

    子)*(块间间隔)]带速

    每块容量记录长度*块化系数每块长度容量(记录密度)

    存储记录的块数磁带总带长 (每块长度每块容量)

    磁带容量每块容量*块数xHAQX。xHAQX。

    磁盘常见技术指标计算公式

    双面盘片要* 因为最外面是保护面又 *非格式化容量=位密度**最内圈址径*

    总磁道数

    [例: (****) ]

    总磁道数记录面数*磁道密度*(外直径内直径) 

    [例面**() *]

    每面磁道数=( (外径-内径))×道密度

    每道位密度不同,容易相同

    每道信息量=内径周长×位密度

    [例: ××× 位 =位道]

    格式化容量=每道扇区数*扇区容量*总磁道数

    [例: (**) ]

    格式化容量=非格式化容量×

    平均传输速率最内圈直径*位密度*盘片转速

    [例: [**()]**]

    数据传输率=(外圈速率+内圈速率)

    外圈速率=外径周长×位密度×转速

    [例:(××× 位×转秒) = ]

    内圈速率=内径周长×位密度×转速

    [例: (××× 位×转秒) = ]

    2 / 6

    个人收集整理-ZQ

    数据传输率(+)

    存取时间寻道时间等待时间

    处理时间等待时间记录处理时间

    (记录处理最少等待时间,最长等待时间磁盘旋转周期 周[:记录道数 )

    移动道数(或扇区) 目标磁道(或扇区)当前磁道(

    展开全文
  • 平均发展速度的计算与单变量求解器的使用 平均发展速度的计算有两种方法:几何平均法和累计法。其计算依据和计算公式如表1所示。   表1 平均发展速度计算方法要点   【例】某总量指标如图1中...
     
    

    平均发展速度的计算与单变量求解器的使用

    平均发展速度的计算有两种方法:几何平均法和累计法。其计算依据和计算公式如表1所示。

     

    1 平均发展速度计算方法要点

    平均发展速度的计算与单变量求解器的使用

     

    【例】某总量指标如图1A3:B13。分别用几何平均法与累计法求平均发展速度。

     

    平均发展速度的计算与单变量求解器的使用
    1 平均发展速度的计算

     

    解法一:几何平均法

    几何平均法的计算有两种:

    1)在C4单元格输入:=B3/B4,并拖动此单元格复制到C5:C13,得各时期的环比发展速度,然后在F3单元格输入=GEOMEAN(C4:C13)

    2)在F3单元格直接输入:=POWER(B13/B3,1/10)

    解法二:累计法

    操作步骤如下:

    1)在D3单元格输入:=B4/B$3,并拖动此单元格复制到D5:D13,得各时期的定基发展速度,并在F5输入:=SUM(D4:D13),求得计算公式的右端项(∑ai/a0)。

    2)在F7单元格输入:=F6*(F6^10-1)/(F6-1),求出左端项表达式。其中F6单格存放平均发展速度。

    3)从数据选项卡选择:模拟分析/单变量求解,光标置于“目标单元格”右侧文本框,用鼠标选择F7单元格;在“目标值”右侧文本框输入F5中的数值“14.08695652”;光标置于“可变单元格”右侧文本框,用鼠标选择F6单元格,单击“确定”,求得平均发展速度(F6单元格)。

    展开全文
  • 通过python理解相速度和群速度

    千次阅读 2019-12-09 14:42:20
    但是从物理学的发展来说,波动光学旨在解决几何光学无法解决的问题,可谓光线模型的一种升级。从编程的角度来说,波动光学在某些情况下可以简单地理解为在光线模型的基础上,引入一个相位项。 相速度与群速度 ...
  • 欧拉公式

    千次阅读 2018-05-07 19:57:37
    他曾用两种方法来描述流体的运动,即分别根据空间固定点(1755)和根据确定的流体质点(1759)描述流体速度场。前者称为欧拉法,后者称为拉格朗日法。欧拉奠定了理想流体的理论基础,给出了反映质量守恒的连续方程...
  • 由于较早地发现了与“不可公度”的量有关的这些困难,使希腊人没能发展早已为东方所掌握的数字计算的技术。相反,他们却迫使自己钻进了纯粹公理几何的丛林之中。于是科学史上出现了一个奇怪的曲折,…几乎两千年来,...
  • 动力学的三大基本公式是什么?

    千次阅读 2021-01-14 12:35:49
    展开全部1、动e68a8462616964757a686964616f31333431356130量矩定理:F=ma(合外力提供物体的加速度);2、动能定理:W=1/2mV^2-1/2mv^2(合外力做的功等于物体的动能的改变量);3、动量定理:Ft=mV-mv(合外力的冲量等于...
  • 作为一名财务人员经常在财务的数据中分析计算平均增长率,如果说...我们在使用excel公式计算平均增长率之前需要了解什么是excel平均增长率计算公式,平均增长率是指我们单位从第一年到第N年的每一年的产值、利润、营...
  • 首先通过公式获得成绩表中总分最高的学生姓名。点击选择J3单元格。 2. 在输入公式之前,首先输入一个等号。 3. 接着输入一个引用函数,表示引用某一个单元格或者区域。 4. 鼠标双击插入该函数。该函数是以...
  • 做事的常识,成功的公式

    千次阅读 2016-08-15 07:06:22
    专心想象目标达成后的快乐、成就感,在脑子里形成一幅清晰的画面,确认自己看到了成功的画面,会让你更有动力,能帮你消除疲劳和不必要的忧虑,让你以最快的速度积极投入工作。 及时反馈 。小目标完成了,可以给...
  • 从人类的历史发展来看,近200年来的科技发展的成果超过了过去几千年中科技发展的成果,而且从短时间来看,这种加速趋势也是非常明显的,想想十年前和现在的对比,科技的发展确实是日新月异。科技的发展固然有偶然的...
  • SQL 同比、环比计算公式及实例演示

    千次阅读 2021-04-01 23:48:21
    同比数据计算公式: 同比:一般情况下是今年第n月与去年第n月比 ...计算方式:环比增长速度=(本期数-上期数)÷上期数×100% CREATE TABLE SalesDetail( ID int, --序号 DepartName varchar(50),.
  • 贝叶斯公式本质

    千次阅读 2017-03-13 17:10:14
    转载地址:http://mp.weixin.qq.com/s?__biz=MzA3OTgzMzUzOA==&mid=503740283&idx=1&sn=ea4aa313b699f04cd603889571343bd9#rd ...答案是,它们都会用到同一个数学公式——贝叶斯公式。它虽然看起来很简单、很不
  • 用波尔理论推导里德伯公式

    千次阅读 2021-07-19 16:57:39
    目录背景推导过程假设推导 ...数年之后,即1889年,瑞典物理学家里德伯提出的表示氢原子谱线的经验公式,即里德伯公式(又称里德伯-里兹公式)。 为了使理论与实验相契合,1913年,波尔通过量子化的假设与经典物理学
  • 泰勒公式浅谈原理(转)     上周写完了《《三体》读后思考-泰勒展开/维度打击/黑暗森林》后收到一些邮件,进一步思考了关于泰勒展开的意义。也许我掌握的那些网络技术比如Linux Netfilter,NAT之类,太过底层...
  • 大数据背后的神秘公式:贝叶斯公式

    万次阅读 多人点赞 2016-07-29 08:56:08
    答案是,它们都会用到同一个数学公式——贝叶斯公式。它虽然看起来很简单、很不起眼,但却有着深刻的内涵。那么贝叶斯公式是如何从默默无闻到现在广泛应用、无所不能的呢?一 什么是贝叶斯公式18世纪英国业余数学家...
  • 斯特林公式(Stirling)

    千次阅读 2017-05-02 22:43:20
    斯特林公式(Stirling's ...定义:斯特林公式在理论和应用上都具有重要的价值,对于概率论的发展也有着重大的意义。在数学分析中,大多都是利用Г函数、级数和含参变量的积分等知识进行证明或推导,很为繁琐
  • 深入浅出了解GCN原理(公式+代码)

    千次阅读 多人点赞 2020-11-01 21:27:11
    对CNN(Convolutional Neural Network)都是非常熟悉的,我们知道,在连续信号中的卷积是表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分,如下公式(1)。 ∫−∞+∞f(τ)g(x−τ)dτ(1)\int_{-\...
  • 同比和与环比的计算公式

    千次阅读 2015-01-19 13:15:41
    由于采用基期的不同,发展速度可分为同比发展速度、环比发展速度和定基发展速度。简单地说,就是同比、环比与定基比,都可以用百分数或倍数表示。  同比发展速度,一般指是指本期发展水平与上年同期发展水平对比...
  • AVO技术经过几十年的发展已成为石油勘探中的一种重要技术,针对非均质性油气藏的储层预测,AVO方法具有其他方法不可替代的作用。应用波动方程差分数值解方法,研究了横向变速小尺度体的AVO特征,讨论了横向小尺度体...
  • 你不得不了解的目标检测发展

    千次阅读 2020-02-07 13:03:59
    Faster R-CNN针对这个问题,提出了RPN网络来进行候选框的获取,从而摆脱了选择性搜索算法,也只需要一次卷积层操作,从而大大提高了识别速度。 主要步骤: 1.卷积层。原始图片先经过conv-relu-pooling的多层...
  • 展开全部一、同比增长计算公式:1、同比增长率=(本期数-同期数)÷同期数×100%例子:比如说去年3月的产32313133353236313431303231363533e4b893e5b19e31333365666237值100万,本年3月的产值300万,同比增长率是多少...
  • 泰勒公式意义详解

    万次阅读 多人点赞 2018-04-07 19:48:38
    进一步,以上这样发展会持续多久呢?好吧,求5阶导数吧,可以再推进一步。我们对曲线走势的掌握离开检测点随着越来越高阶导数的求解渐行渐远,6阶导数,7阶,8阶,9阶…我们对曲线走势的预测将越来越接近原先的函数...
  • 股市公式编辑器

    千次阅读 2017-03-01 16:34:44
    通达信公式教程 公式入门 我们大多数的用户并不是完全了解“公式编辑器”的意义,简单地,我们可以从以下几个角度进行理解: 一、指标分析: “公式编辑器”好比是一个工作母床,通过这个工作母床可以制造出所...
  • 病毒传播效果的衡量公式

    千次阅读 2016-08-09 16:53:00
    以下公式是用来衡量病毒传播效果的。我不认为有实际的操作意义, 但是里面的几个关键指标K, CT还是有很强的解释意义的。 Custs(0)是种子用户数量, Custs(t)是过了一个时间周期后, 增加的新用户人数。t则是周期...
  • 答案是,它们都会用到同一个数学公式——贝叶斯公式。它虽然看起来很简单、很不起眼,但却有着深刻的内涵。那么贝叶斯公式是如何从默默无闻到现在广泛应用、无所不能的呢? 18世纪英国业余数学家托马斯·贝叶斯...
  • 圆周率的计算公式

    千次阅读 2015-10-15 09:55:14
    圆周率古人计算圆周率,一般是用割圆法....随着数学的发展,数学家们在进行数学研究时有意无意地发现了许多计算圆周率的公式.下面挑选一些经典的常用公式加以介绍.除了这些经典公式外,还有很多其它公式
  • 对于训练速度来说,随机梯度下降法由于每次仅仅采用一个样本来迭代,训练速度很快,参数更新频率太快;而批量梯度下降法在样本量很大的时候,训练速度很慢。对于准确度来说,随机梯度下降法用于仅仅用一个样本决定...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 40,648
精华内容 16,259
关键字:

发展速度公式